Chapter 2: First Order DE
 §2.8 Numerical Solutions: Euler's Method

Satya Mandal, KU

6 February 2018

First Order DE

- Recall the general form of the First Order ODEs (FODE):

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \tag{1}
\end{equation*}
$$

- We can give analytic solutions to an ODE (1), only when it has some particular structure (e.g. Linear, separable, Homogeneous, Bernoulli's, Exact and others).

Objective

- For a solution $y=\varphi(t)$ of (1), passing through $\left(t_{0}, y_{0}\right)$, where $\left.y_{0}:=\varphi\left(t_{0}\right)\right)$, we have the following:
- The tangent to the graph of $y=\varphi(t)$, at $\left(t_{0}, y_{0}\right)$, is $m_{0}=f\left(t_{0}, y_{0}\right)$. Hence, the equation to the tangent is $y-y_{0}=m_{0}\left(t-t_{0}\right), \quad$ which can be computes from (1), without actually computing $y=\varphi(t)$.
- It also appears that we can sketch the graph of $y=\varphi(t)$, approximately, just by connecting the direction fields.
- In this section, we compute approximate solutions to the ODE (1), following the above.

Euler's Method

Let $y=\varphi(t)$ be a solution to the ODE (1), passing through a point $\left(t_{0}, y_{0}\right)$, (hence $y_{0}=\varphi\left(t_{0}\right)$).

- Rewrite the equation to the tangent to $y=\varphi(t)$,

$$
\text { at }\left(t_{0}, y_{0}\right): \quad y=y_{0}+f\left(t_{0}, y_{0}\right)\left(t-t_{0}\right)
$$

- The Notation " \approx " would mean "approximately equal".
- If $t=t_{1}$ is close enough to t_{0} then

$$
\varphi\left(t_{1}\right) \approx y_{0}+f\left(t_{0}, y_{0}\right)\left(t_{1}-t_{0}\right) . \text { So, use }
$$

$$
y_{1}:=y_{0}+f\left(t_{0}, y_{0}\right)\left(t_{1}-t_{0}\right) \quad \text { as an approximation to } \varphi\left(t_{1}\right)
$$

Continued: Euler's Method

- Compare three lines:

$$
\left\{\begin{array}{l}
y=\varphi\left(t_{1}\right)+f\left(t_{1}, \varphi\left(t_{1}\right)\right)\left(t-t_{1}\right) \\
y=y_{1}+f\left(t_{1}, \varphi\left(t_{1}\right)\right)\left(t-t_{1}\right) \\
y=y_{1}+f\left(t_{1}, y_{1}\right)\left(t-t_{1}\right)
\end{array}\right.
$$

The first line is the tangent to $y=\varphi(t)$, at $\left(t_{1}, \varphi\left(t_{1}\right)\right)$. The $2^{\text {nd }}$-line is parallel to the $1^{\text {st }}$, passing through $\left(t_{1}, y_{1}\right)$. The $3^{\text {rd }}$ passes through $\left(t_{1}, y_{1}\right)$, with slope $=f\left(t_{1}, y_{1}\right)$.

- Since $y_{1} \approx \varphi\left(t_{1}\right)$, use the $3^{r d}$-line as an approximation to the first, if t is close enough to t_{1}.
- It $t=t_{2}$ is close enough to t_{1}, then
$\varphi\left(t_{2}\right) \approx \varphi\left(t_{1}\right)+f\left(t_{1}, \varphi\left(t_{1}\right)\right)\left(t_{2}-t_{1}\right) \approx y_{1}+f\left(t_{1}, y_{1}\right)\left(t_{2}-t_{1}\right)$
Use
$y_{2}:=y_{1}+f\left(t_{1}, y_{1}\right)\left(t_{2}-t_{1}\right) \quad$ as an approximation to $\varphi\left(t_{2}\right)$.
- The process continues, and we have a sequence of points

$$
\left(t_{0}, y_{0}\right),\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \cdots,\left(t_{n}, y_{n}\right), \cdots
$$

with $\varphi\left(t_{n}\right) \approx y_{n}$.

Problem solving: Euler's Method

- Given an initial value problem (IVP)

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y) \tag{2}\\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

we will be asked to use Euler Method and approximate $\varphi(T)$, for some T.

- Startin at $t=t_{0}$, attempt to reach T, in n equal jump of time interval h.
- Either h or n will be given. We will have $h=\frac{T-t_{0}}{n}$.
- We will take $t_{0}=t_{0}, t_{1}=t_{0}+h, t_{2}=t_{1}+h, \ldots$.
- We will have $\varphi\left(t_{n}\right) \approx y_{n}=y_{n-1}+f\left(t_{n-1}, y_{n-1}\right) h$

Tools: Matlab and Excel

- A word of wisdom: Never do any computation by hand.
- For this section, use one or both of the following:
- Use MS excel
- Use my matlab program "Euler14". Direction is given in my site.
- To use "Euler14" give command Euler14 $\left(n, t_{0}, t_{1}, y_{0}\right)$, where $\left(t_{0}, y_{0}\right)$ is the initial value, t_{1} is the final t-value. And $n=\frac{t_{1}-t_{0}}{h}$.

Example 1

Consider the IVP

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=2 t \\
y(0)=1
\end{array}\right.
$$

- Compute the analytic solution $y=\varphi(t)$ of the ODE, and evaluate $\varphi(1)$.
- Use Euler's Method to approximate the solution at $t=1$ with $h=.1, .05, .025$
- Compare that actual value $\varphi(1)$ and the approximated value.

Solution:

The ODE can be solved by a simple antiderivative:

$$
y=\varphi(t)=\int 2 t d t+c=t^{2}+c \Longrightarrow y=\varphi(t)=t^{2}+1
$$

So, $\varphi(1)=1$.
Next, use Euler Method Approximation. We give two options:

- Use simple excel program.
- Use the Matlab program Euler14 that I will give you.

Euler Method Approximation

We have

$$
y_{n}=y_{n-1}+f\left(t_{n-1}, y_{n-1}\right) h=y_{n-1}+2 t_{n-1} h
$$

We do some of them by hand: We have, with $h=.1$:

- $t_{0}=0$ anr $y_{0}=1$.
- $t_{1}=.1$ and $y_{1}=1+2 * 0 * .1=1$
- $t_{2}=t_{1}+h=.2$ and $y_{2}=1+2 * .1 * .1=1.02$
- $t_{3}=t_{2}+h=.3$ and $y_{3}=1.02+2 * .2 * .1=1.06$
- $t_{4}=t_{3}+h=.4$ and $_{4}=1.06+(2 * .3) * .1=1.12$

Continued

For this first problem, we do a chart with the actual values (with $h=.1$)

t_{i}	y_{i} (Approximation)	Actual $\varphi(t)=t^{2}+1$
0	1	1
.1	1	1.01
.2	1.02	1.04
.3	1.06	1.09
.4	1.12	1.16
\ldots	\ldots	\cdots
1	1.9	2

Euler14 Outputs

With $h=.1$

t_{i}	y_{i}
0	1.0000
0.1000	1.0000
0.2000	1.0200
0.3000	1.0600
0.4000	1.1200
0.5000	1.2000
0.6000	1.3000
0.7000	1.4200
0.8000	1.5600
0.9000	1.7200
1.0000	1.9000

Euler14 Outputs

Euler14 Outputs

With $h=.025 \quad$| t_{i} | y_{i} |
| :---: | :---: |
| 0 | 1.0000 |
| 0.0250 | 1.0000 |
| 0.0500 | 1.0012 |
| 0.0750 | 1.0037 |
| \cdots | \cdots |
| 0.9000 | 1.7875 |
| 0.9250 | 1.8325 |
| | 41 lines. |
| | 0.9500 |
| 1.8780 | 1.9263 |
| 1.0000 | 1.9750 |

The Approximated graph of the integral curve $y=\varphi(t)=t^{2}+1$: with $h=.025$.

Example 2

Consider the IVP

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=-\cos t \\
y(0)=1
\end{array}\right.
$$

- Compute the analytic solution $y=\varphi(t)$ of the ODE, and evaluate $\varphi(\pi)$.
- Use Euler's Method to approximate the solution at $t=\pi$ with 30 steps. That means $h=\frac{\pi}{30} \approx .1047$
- Compare that actual value $\varphi(\pi)$ and the approximated value.

Solution:

The ODE can be solved by a simple antiderivative:

$$
\left\{\begin{array}{l}
y=\varphi(t)=-\int \cos t d t+c \\
y(0)=1
\end{array} \Longrightarrow y=\varphi(t)=-\sin t+1\right.
$$

So, $\varphi(\pi)=1$.
Next, use Euler Method Approximation. We give two options:

- Use simple excel program.
- Use the Matlab program Euler14 that I will give you.

Euler14 Outputs

With $h=\frac{\pi}{30} \quad$| t_{i} | y_{i} |
| :---: | :---: |
| | 0 |
| 0.1047 | 1.0000 |
| 0.2094 | 0.7911 |
| \ldots | \ldots |
| | 1.5708 |
| .6755 | -0.0514 |
| \ldots | \ldots |
| 2.8274 | 0.5891 |
| 2.9322 | 0.6887 |
| 3.0369 | 0.7911 |
| 3.1416 | 0.8953 |

The Approximated graph of the integral curve $y=\varphi(t)=-\sin t+1:$ with $h=\frac{\pi}{30}$.

The table and the graph show negative values for $y=\varphi(t)=-\sin t+1$, which shows the limitations of Euler

Example 3

Consider the following wo IVPs

$$
\left\{\begin{array} { l }
{ \frac { d y } { d t } = y - t } \\
{ y (0) = 1 }
\end{array} \quad n d \quad \left\{\begin{array}{l}
\frac{d y}{d t}=y-t \\
y(0)=0
\end{array}\right.\right.
$$

- Compute the analytic solution $y=\varphi(t)$ of the ODE, and evaluate $\varphi(1)$.
- Use Euler's Method to approximate the solutions at $t=1$ with $h=.025$
- Compare that actual value $\varphi(1)$ and the approximated value.

Solution:

- The ODE can be written as: $\frac{d y}{d t}-y=-t$, which is linear.
- With integrating factor $\mu(t)=r^{-t}$, we have

$$
e^{-t} y=\int-t e^{-t} d t+c=t e^{-t}+e^{-t}+c \Longrightarrow y=1+t+c e^{t}
$$

- So, solutions, in these two cases:

$$
\left\{\begin{array}{llr}
\text { If } y(0)=1 & y=\varphi(t)=1+t & \varphi(1)=2 \\
\text { If } y(0)=0 & y=\psi(t)=1+t-e^{t} & \varphi(1)=2-e
\end{array}\right.
$$

Euler14 Outputs: The case $y(0)=1$

The Case $y(0)=1$

The Approximated graph of the integral curve $y=\varphi(t)=t+1$:

Continued

This one is a straight line and matched perfectly, with actual values of $y=t+1$.

Euler14 Outputs: The case $y(0)=0$

Continued

Note $\psi(1)=2-e \approx-.7183$.

The Case $y(0)=0$

The Approximated graph of the integral curve $y=\psi(t)=t+1-e^{t}:$

