Chapter 2: First Order ODE §2.7 Exact Equations

Satya Mandal, KU

4 February 2018

First Order ODE

- Recall the general form of the First Order DEs (FODE):

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

(In this section use x as the independent variable; not t.)

- This can also be written as

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{2}
\end{equation*}
$$

with variety of choices of $M(x, y), N(x, y)$.

Exact FODE

Sometimes, we may be lucky:

- Suppose there is a function $\psi(x, y)$ such that

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}(x, y)=M(x, y) \quad \text { and } \quad \frac{\partial \psi}{\partial y}(x, y)=N(x, y) . \tag{3}
\end{equation*}
$$

- In that case, the equation (2) would reduce to

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=M+N \frac{d y}{d x}=0 \quad \Longrightarrow \quad \psi(x, y)=c
$$

where c is an arbitrary constant.

Exact FODE

- Therefore, any solution $y=\varphi(x)$ of (2) would satisfy the equation $\psi(x, \varphi(x))=c$.
- If we can find such a function $\psi(x, y)$, DE (2) would be called an Exact ODE.
- Question: When or how can we tell that a ODE of the type (2) is exact? The Answer: The following Theorem

Exactness Theorem

Theorem 2.7.1

- Assume $M(x, y), N(x, y), \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x}$ are continuous on

$$
\text { the rectangle } \mathcal{R}:=\left\{(x, y): \begin{array}{l}
a<x<b \\
c<y<d
\end{array}\right\}
$$

- Then the ODE (2) is EXACT in \mathcal{R}

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \text { at each } \quad(x, y) \in \mathcal{R}: . \tag{4}
\end{equation*}
$$

Continued

- That means there is a function $\psi(x, y)$ satisfying equation

$$
\text { (3) : } \frac{\partial \psi}{\partial x}=M, \frac{\partial \psi}{\partial y}=N \Longleftrightarrow M, N \text { satisfy equation (4). }
$$

- Proof. We skip the proof. However, same steps in the proof is followed to solve such equations.
- For solving problems, it is important to follow the steps, as in the following samples.
- Remark. Note that Equation (3) is a Partial Differential Equation (PDE), which is cover in a latter course.

Example 1

Consider the ODE

$$
\begin{equation*}
(7 x+4 y)+(2 x-13 y) \frac{d y}{d x}=0 \tag{5}
\end{equation*}
$$

- Determine, if it is exact.
- If yes, solve it.

Continued: Solution

- Here $M=(7 x+4 y)$ and $N=2 x-13 y$.
- So, $\frac{\partial M}{\partial y}=4$ and $\frac{\partial N}{\partial x}=2$
- So, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$. So, equation (5) is not exact.
- In the next Sample, I change equation (5) slightly, to make it exact.

Example 2

Consider the DE

$$
\begin{equation*}
(2+4 y x)+\left(2 x^{2}-2 y\right) \frac{d y}{d x}=0 \tag{6}
\end{equation*}
$$

- Determine, if it is exact.
- If yes, solve it.

Example 2

- Here $M=2+4 y x$ and $N=2 x^{2}-2 y$.
- So, $\frac{\partial M}{\partial y}=4 x$ and $\frac{\partial N}{\partial x}=4 x$
- So, $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=4 x$. So, equation (6) is exact.

Continued: Step 1

- We set

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=M=2+4 y x, \quad \frac{\partial \psi}{\partial y}=N=2 x^{2}-2 y \tag{7}
\end{equation*}
$$

- Integrating the first one, with respect to x :

$$
\psi(x, y)=\int(2+4 y x) d x+h(y)
$$

where $h(y)$ is function of y, to be determined. So,

$$
\begin{equation*}
\psi(x, y)=2 x+2 x^{2} y+h(y) \tag{8}
\end{equation*}
$$

Continued: Step 2

- Differentiating equation (8), then combining with the second part of the equation (7)

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=2 x^{2}+\frac{d h(y)}{d y}=2 x^{2}-2 y \tag{9}
\end{equation*}
$$

- (we $h(y)$ to be independent of x) and we have:

$$
\frac{d h(y)}{d y}=-2 y \quad \Longrightarrow \quad h(y)=-y^{2}
$$

(We do not need to have a constant).

- Combining with equation (8), we have

$$
\psi(x, y)=2 x+2 x^{2} y+h(y) \quad \Longrightarrow \quad \psi(x, y)=2 x+2 x^{2} y-y^{2}
$$

The Answer

- So, the general solution to the DE (6) is

$$
\psi(x, y)=2 x+2 x^{2} y-y^{2}=c
$$

where c is an arbitrary constant.

- For each value of c, we get a solution of (6).

Example 3

Consider the ODE

$$
\begin{equation*}
\frac{d y}{d x}=\frac{-e^{x}+b y}{b x-c y} \tag{10}
\end{equation*}
$$

- Determine, under what condition, the ODE is exact?
- Then, solve it.

Solution

- Rewrite the ODE (10): $-\left(-e^{x}+b y\right)+(b x-c y) \frac{d y}{d x}=0$
- Here $M=-\left(-e^{x}+b y\right)$ and $N=b x-c y$.
- So, $\frac{\partial M}{\partial y}=-b$ and $\frac{\partial N}{\partial x}=b$
- So, $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ if $-b=b$. So, equation (10) if $b=0$.
- With $b=0$, we rewrite DE (10) as:

$$
\begin{equation*}
e^{x}-c y \frac{d y}{d x}=0, \quad \text { With } \quad M=e^{x}, \quad N=-c y \tag{11}
\end{equation*}
$$

Continued

- We set

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=M=e^{x}, \quad \frac{\partial \psi}{\partial y}=N=-c y \tag{12}
\end{equation*}
$$

- Integrating the first one, with respect to x :

$$
\psi(x, y)=\int e^{x} d x+h(y)
$$

where $h(y)$ is function of y, to be determined. So,

$$
\begin{equation*}
\psi(x, y)=e^{x}+h(y) \tag{13}
\end{equation*}
$$

Continued

- Differentiate (13), with respect to y and use (12)

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=\frac{d h(y)}{d y}=-c y \tag{14}
\end{equation*}
$$

- (we expect $h(y)$ to be independent of x) and we have:

$$
\frac{d h(y)}{d y}=-c y \quad \Longrightarrow \quad h(y)=-\frac{c y^{2}}{2}
$$

(We do not need to have a constant).

Continued

- From (13), we have

$$
\psi(x, y)=e^{x}+h(y) \quad \Longrightarrow \quad \psi(x, y)=e^{x}-\frac{c y^{2}}{2}
$$

- So, the general solution to the DE (10) is

$$
\psi(x, y)=e^{x}-\frac{c y^{2}}{2}=c
$$

where c is an arbitrary constant.

Example 4

Consider the ODE

$$
\begin{equation*}
(y \cos x+6 x)+\left(\sin x+e^{y}\right) \frac{d y}{d x}=0 \tag{15}
\end{equation*}
$$

- Determine, if it is exact.
- If yes, solve it.

Solution: Step 1

- Here $M=y \cos x+6 x$ and $N=\sin x+e^{y}$.
- So, $\frac{\partial M}{\partial y}=\cos x$ and $\frac{\partial N}{\partial x}=\cos x$
- So, $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ So, the ODE (15) is exact.

Step 2

- We set

$$
\frac{\partial \psi}{\partial x}=M=y \cos x+6 x, \quad \frac{\partial \psi}{\partial y}=N=\sin x+e^{y}(16)
$$

- Integrating the first one, with respect to x :

$$
\psi(x, y)=\int(y \cos x+6 x) d x+h(y)
$$

where $h(y)$ is function of y, to be determined. So,

$$
\begin{equation*}
\psi(x, y)=y \sin x+3 x^{2}+h(y) \tag{17}
\end{equation*}
$$

Step 3

- Differentiate (17), with respect to y and use (12)

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=\sin x+\frac{d h}{d x}=\sin x+e^{y} \tag{18}
\end{equation*}
$$

- (we $h(y)$ to be independent of x) and we have:

$$
\frac{d h(y)}{d y}=e^{y} \quad \Longrightarrow \quad h(y)=e^{y}
$$

(We do not need to have a constant).

Answer

- From (17), we have

$$
\psi(x, y)=y \sin x+3 x^{2}+h(y)=y \sin x+3 x^{2}+e^{y}
$$

- So, the general solution to the DE (15) is

$$
\psi(x, y)=y \sin x+3 x^{2}+e^{y}=c
$$

where c is an arbitrary constant.

