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Objective

I Having discussed 1st and 2nd -Order ODE in previous
chapters, by Higher Order ODE, we would mean ODE of
order three and above.

I In this short exposition of Higher Order ODE, we discuss
that the Theory of Higher Order ODE is strikingly similar
to that of second order ODE, as discussed in Chapter 3.

I We would give an overview of the same, so that you get
the flavor, and not go deep into solving problems.
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ODE of Order n

I For an integer n ≥ 1, an ODE of order n is given by

dny

dtn
= f

(
t, y ,

dy

dt
, . . . ,

dn−1y

dtn−1

)
(1)

Sometime, we use the notation: y (r) := d ry
dtr

. So, the
above can be written as This is also written as

y (n) = f
(
t, y , y ′, y (2), . . . , y (n−1))
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Linear ODE of Order n

An ODE of order n, in either one of following two forms
dny
dtn

+ pn−1(t)
dn−1y
dtn−1 + · · ·+ p1(t)

dy
dt

+ p0(t)y = g(t)

Pn(t)
dny
dtn

+ Pn−1(t)
dn−1y
dtn−1 + · · ·+ P1(t)

dy
dt

+ P0(t)y = g(t)
(2)

would be called a Linear ODE of order n. We usually assume
that pi(t), Pi(t), g(t) are continuous on an open interval I .
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Linear Operators

In the context of (2), define linear operators:
L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

L := Pn(t)
dn

dtn
+ Pn−1(t)

dn−1

dtn−1 + · · ·+ P1(t)
d
dt
+ P0(t)

(3)
Such operators act on all n-times differentiable functions
y = y(t). Further, the Linear ODE (2) can be written as

L(y) = g(t) (4)
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An Initial Value Problem

Definition. Let L be a differential operator, as in (3). An
Initial Value Problem (IVP), of order n is as follows:{
L(y) = g(t) as in (1)
y(t0) = y0, y

′(t0) = y1, . . . , y
(n−1)(t0) = yn−1 t0 ∈ I

(5)
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The Existence and Uniqueness Theorem

Theorem 4.1.1. Consider the Initial value Problem (5). As
before, assume pi(t), g(t) or P(t), g(t) are continuous on the
interval I . Then,
I The IVP (5) has a solution y = ϕ(t).
I The domain of y = ϕ(t) is I ,
I The solution y = ϕ(t) is unique, on I .
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Homogeneous Linear ODE

Consider the Linear ODE (2). If g(t) = 0, in (2), then (2),
would be called Homogenous. So, a homogenous ODE can be
written as

L(y) = 0 (6)

where as in (3)
L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

L := Pn(t)
dn

dtn
+ Pn−1(t)

dn−1

dtn−1 + · · ·+ P1(t)
d
dt
+ P0(t)

(7)
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Linearity Lemmas

Lemma 4.1.2 Let L be a differential operator, as in (7).
Then, for any two n-times differentiable functions y = ϕ1(t)
and y = ϕ2(t), and real numbers c1, c2, we have

L (c1ϕ1 + c2ϕ2) = c1L (ϕ1) + c2L (ϕ2)
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Linear Combination of Solutions

Lemma 4.1.3 Let y = y1(t), y = y2(t), · · · , y = yk(t) be
solutions of the Homogeneous ODE (6), and c1, . . . , ck be real
numbers. Then, the linear combination

y = c1y1 + c2y2 + · · ·+ ckyk is a solutions of (6).

Proof. Follows from Lemma 4.1.1
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The Definition
Definition: Wronskian
Wronskian and Fundamental Set

Further Goals

We know,
I The Linear Homogeneous ODE (6) has a trivial solution

y = 0.
I By Lemma 4.1.3, any constant linear combination of

solutions of (6) is also a solution of (6) .
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Continued

Recall, n is the Order of the Linear Homogeneous ODE (6) .
I Question: Fix n solutions

y = y1(t), y = y2(t), · · · , y = yn(t) of the Linear
Homogenous ODE (6). Suppose, y = ϕ(t) is any other
solution of (6). Question is, whether or when we write
write ϕ as a constant linear combinations of
y = y1(t), y = y2(t), · · · , y = yn(t)?

As in the case of Order two ODE, we answer this
question subsequently.
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Definition: The Fundamental Set

Definition: Fix n solutions
y = y1(t), y = y2(t), · · · , y = yn(t) of the Linear Homogenous
ODE (6). We say that they form a Fundamental Set of
solutions of (6), if any solution y = ϕ(t) of (6) is a constant
linear combination That means, if

y = ϕ(t) =
n∑

i=1

ciyi(t) for some c1, . . . , cn ∈ R, ∀ t ∈ I ,
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Wronskian

Definition. Let y = y1(t), y = y2(t), · · · , y = yn(t) be
n − 1-times differentiable functions on an open interval
I : α < t < β. The Wronskian W (t), of these functions is
defined to be the determinant function:

W (t) =

∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) y3(t) · · · yn(t)
y ′1(t) y ′2(t) y ′3(t) · · · y ′n(t)

y
(2)
1 (t) y

(2)
2 (t) y

(2)
3 (t) · · · y

(2)
n (t)

· · · · · · · · · · · · · · ·
y
(n−1)
1 (t) y

(n−1)
2 (t) y

(n−1)
3 (t) · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣
t ∈ I

(8)
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Continued

Sometimes, to indicate its dependence on
y = y1(t), y = y2(t), · · · , y = yn(t), the Wronskian W (t) is
denoted by

W (y1, y2, · · · , yn)(t) := W (t)
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The (Wronskian) Theorem 4.1.4

Theorem 4.1.4 We consider the former, of the two, forms of
the Linear Homogeneous ODE

L(y) = dny

dtn
+pn−1(t)

dn−1y

dtn−1 +· · ·+p1(t)
dy

dt
+p0(t)y = 0 (9)

Assume pi(t) are continuous on and open interval I . Fix n
solutions y = y1(t), y = y2(t), · · · , y = yn(t) of (9).
Let W (t) denote the Wronskian of y = y1(t), y = y2(t), · · · ,
y = yn(t).
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Theorem 4.1.4: Continued

Then, the following three conditions are equivalent:
(1) W (t) 6= 0 for all t ∈ I .
(2) W (t0) 6= 0 for some t0 ∈ I .
(3) y = y1(t), y = y2(t), · · · , y = yn(t) form a Fundamental

set of Solutions of (9).
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Rest of This Chapter

Goal of this chapter remains to provide a flavor of the theory
of Higher Order ODEs.
I The next section gives a overview of Homogeneous Linear

ODE (6), with constant coefficients.
I The last section comments on the Methods to solve

Nonhomogenous Linear ODE with constant coefficients.
Again, these methods are strikingly similar, to that of
2nd -Order Linear ODEs, namely, the Method of Variation
of Parameter and the Method of Undetermined
Coefficients.
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Definition

Definition A Homogeneous Linear ODE (6) is said to have
constant coefficient, if pi(t),Pi(t) are constant functions. So,
a linear Homogeneous ODE, of order n, with constant
coefficients looks like

L(y) = an
dny

dtn
+ an−1

dn−1y

dtn−1 + · · ·+ a1
dy

dt
+ a0y = 0 (10)

with a0, a1, · · · , an ∈ R and an 6= 0.
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Definition

Definition A nonHomogeneous Linear ODE (2) is said to
have constant coefficient, if pi(t),Pi(t) are constant functions.
So, a linear Homogeneous ODE, of order n, with constant
coefficients looks like

L(y) = an
dny

dtn
+ an−1

dn−1y

dtn−1 + · · ·+ a1
dy

dt
+ a0y = g(t) (11)

with a0, a1, · · · , an ∈ R, an 6= 0 and g(t) 6= 0.
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