Chapter 4: Higher Order ODE §4.2 Linear Homogeneous ODE with constant coefficients

Satya Mandal, KU

9 March 2018

Goals

In this section we give an overview of Linear Homogeneous ODE, with constant coeffients. Again, the main point of this section is that the methods of solving such ODE is strikingly similar to that of $2^{\text {nd }}$-order Homogeneous Linear ODE.

Definition

Recall the following definition.
Definition A Homogeneous Linear ODE is said to have constant coefficient looks like

$$
\begin{equation*}
\mathcal{L}(y)=a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{1} \frac{d y}{d t}+a_{0} y=0 \tag{1}
\end{equation*}
$$

with $a_{0}, a_{1}, \cdots, a_{n} \in \mathbb{R}$ and $a_{n} \neq 0$.

The Characteristic equation

As in the case of $2^{\text {nd }}$-order, solutions of (1) would be exponential functions $y=e^{r t}$, for some real or complex number r; checked as follows.

- Substituting $y=e^{r t}$ in (1) we get

$$
\mathcal{L}\left(e^{r t}\right)=e^{r t}\left(a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}\right)=0
$$

- It follows, $y=e^{r t}$ is a solution of (1) if and only if

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=0 \tag{2}
\end{equation*}
$$

Continued

- So, solving the ODE (1) reduces to solving the polynomial equation (2). This Equation (2) is called the characteristic equation (CE) of (1).
- The polynomial

$$
\begin{equation*}
\rho(r):=a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0} \tag{3}
\end{equation*}
$$

is the characteristic polynomial of (1). So, the characteristic equation can be written as

$$
\rho(r)=0
$$

The Roots of the characteristic polynomial

We can write

$$
\rho(r)=\left(r-r_{1}\right)^{k_{1}}\left(r-r_{2}\right)^{k_{2}} \cdots\left(r-r_{m}\right)^{k_{m}} \quad \text { with } k_{i} \geq 1
$$

$k_{1}+\cdots+k_{m}=n$, where $r_{1}, \ldots, r_{m} \in \mathbb{C}$ are distinct (with some $\left.r_{i} \in \mathbb{R}\right)$.

Solutions of (1): Real Root

If r_{1} is real, then r_{1} spits out the following k_{1} solutions of (1):

$$
\left\{\begin{array}{l}
y=e^{r_{1} t} \\
y=t e^{r_{1} t} \\
y=t^{2} e^{r_{1} t} \\
\cdots \\
y=t^{k_{1}-1} e^{r_{1} t}
\end{array}\right.
$$

Likewise, for any real root r_{i}.

Continued

If r_{1} is complex (i.e. $r_{1} \notin \mathbb{R}$), then its conjugate $\overline{r_{1}}$ is also a root of $\rho(r)$. Without loss of generality $r_{2}=\overline{r_{1}}$. The pair $\left\{\begin{array}{l}r_{1}=\lambda_{1}+\mu_{1} i \\ r_{1}=r_{2}=\lambda_{1}-\mu_{2} i\end{array}\right.$ spits out $2 k_{1}$ solutions of (1):

$$
\begin{cases}y=e^{\lambda_{1} t} \cos \mu_{1} t & y=e^{\lambda_{1} t} \sin \mu_{1} t \\ y=t e^{\lambda_{1} t} \cos \mu_{1} t & y=t e^{\lambda_{1} t} \sin \mu_{1} t \\ y=t^{2} e^{\lambda_{1} t} \cos \mu_{1} t & y=t^{2} e^{\lambda_{1} t} \sin \mu_{1} t \\ \cdots & \cdots \\ y=t^{k_{1}-1} e^{\lambda_{1} t} \cos \mu_{1} t & y=t^{k_{1}-1} e^{\lambda_{1} t} \sin \mu_{1} t\end{cases}
$$

Likewise, for each pair of complex roots r_{i}, \bar{r}_{i} of $\rho(r)$.

A Fundamental Set and General Solutions

The process explained in the above two frames, give total of n real solutions (1):

$$
y=y_{1}(t), y=y_{2}(t), \ldots, y=y_{n}(t)
$$

Theorem 4.2.1 The list of n solutions above form a Fundamental Set of Solutions of (1). So, a general solution of (1) is:

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} \quad \text { where } \quad c_{i} \in \mathbb{R} \tag{4}
\end{equation*}
$$

Solving Some Examples

Unlike quadratic formula for roots of polynomials $\rho(r)$ with $\operatorname{deg}(\rho(r)) \leq 2$, there no straight forward formula to find the roots of polynomials $\rho(r)$ with $\operatorname{deg}(\rho(r)) \geq 3$. With the objective of providing only flavor, we consider a few simple problems.

Example 1

Find the general solution of homogeneous ODE
$\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0$

- The CE: $r^{3}-2 r^{2}-r+2=0$.

$$
(r+1)(r-1)(r-2)=0 . \text { So, } r_{1}=-1, r_{2}=1, r_{3}=2
$$

- By (4) the general solution is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+c_{3} e^{r_{3} t}=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{2 t}
$$

Example 2

Find the general solution of homogeneous ODE
$\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0$

- The CE: $r^{3}-2 r^{2}+r-2=0$.
$\left(r^{2}+1\right)(r-2)=0$. So, $r_{1}=2, r_{2}=i, r_{3}=-i$.
- $r_{1}=2$ contributes a solution $y_{1}=e^{r_{1} t}=e^{2 t}$.

The pair of complex root $r_{2}=i, r_{2}=-i$ contributes two
solution $\left\{\begin{array}{l}y_{2}=\cos t \\ y_{3}=\sin t\end{array}\right.$

- By (4) the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=c_{1} e^{2 t}+c_{2} \cos t+c_{3} \sin t
$$

Example 3

Find the general solution of homogeneous ODE
$\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+5 y=0$

- The CE: $r^{3}-r^{2}+3 r+5=0$. We see $r=-1$ is a root

$$
(r+1)\left(r^{2}-2 r+5\right)=0 . \text { So, } r_{1}=-1, r_{2}, r_{3}=1 \pm 2 i .
$$

- $r_{1}=-1$ contributes a solution $y_{1}=e^{r_{1} t}=e^{-t}$.

The pair $r_{2}, r_{3}=1 \pm 2 i$ contributes two solution

$$
\left\{\begin{array}{l}
y_{2}=e^{t} \cos 2 t \\
y_{3}=e^{t} \sin 2 t
\end{array}\right.
$$

- By (4) the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}=c_{1} e^{-t}+c_{2} e^{t} \cos 2 t+c_{3} e^{t} \sin 2 t
$$

Example 4

Find the general solution of homogeneous ODE
$\frac{d^{4} y}{d x^{4}}+4 \frac{d^{3} y}{d x^{3}}+9 \frac{d^{2} y}{d x^{2}}+16 \frac{d y}{d x}+20 y=0$

- The CE: $r^{4}+4 r^{3}+9 r^{2}+16 r+20=0$.
$\left(r^{2}+4\right)\left(r^{2}+4 r+5\right)=0$. So,

$$
r_{1}, r_{2}= \pm 2 i, r_{3}, r_{4}=-2 \pm i
$$

- $r_{1}, r_{2}= \pm 2 i$ contributes a two solution $\left\{\begin{array}{l}y_{1}=\cos 2 t \\ y_{2}=\sin 2 t\end{array}\right.$

The pair $r_{3}, r_{4}=-2 \pm i$ contributes two solution $\left\{\begin{array}{l}y_{3}=e^{-2 t} \cos t \\ y_{4}=e^{-2 t} \sin t\end{array}\right.$

Continued

- By (4) the general solution is

$$
\begin{gathered}
y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{4} y_{4} \\
=c_{1} \cos 2 t+c_{2} \sin 2 t+c_{3} e^{-2 t} \cos t++c_{4} e^{-2 t} \sin t
\end{gathered}
$$

