Chapter 2: First Order DE §2.1 Linear DE: Integrating Factors

Satya Mandal, KU

January 18, 2018

First Order DE

- This chapter deals with first order DE. That means only first order derivative $\frac{d y}{d t}$ appears in the equation. We write them as

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \tag{1}
\end{equation*}
$$

where $f(t, y)$ is a function of both the independent variable t and the (unknown) dependent variable y.

- If $f(t, y)=\frac{G(t, y)}{P(t, y)}$ is a fraction, (1) can be written as

$$
\begin{equation*}
P(t, y) \frac{d y}{d t}=G(t, y) \tag{2}
\end{equation*}
$$

Linear ODE of $1^{\text {st }}$-order

- $1^{\text {st }}$-order DEs (1) are called linear, if $f(t, y)$ is "linear" in y, in the following sense:

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{3}
\end{equation*}
$$

where $p(t), g(t)$ are functions of t.

- In analogy to equation (2), this can also be written as

$$
\begin{equation*}
P(t) \frac{d y}{d t}+Q(t) y=G(t) \tag{4}
\end{equation*}
$$

where $P(t), Q(t), G(t)$ are functions of t.

Method of Integrating Factor

A method to solve linear equations of the form (3):

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{5}
\end{equation*}
$$

$$
\text { Let } \mu(t)=\exp \left(\int p(t) d t\right) . \text { Then } \frac{d \mu}{d t}=p(t) \mu(t)
$$

- Multiply the equation (5) by $\mu(t)$, we get

$$
\begin{gathered}
\mu(t) \frac{d y}{d t}+\mu(t) p(t) y=\mu(t) g(t) \quad O R \\
\mu(t) y^{\prime}+\mu^{\prime}(t) y=\mu(t) g(t)
\end{gathered}
$$

Continued

- So,
$\frac{d}{d t}(\mu(t) y)=\mu(t) g(t) \Longrightarrow \mu(t) y=\int \mu(t) g(t) d t+c$, where c is an arbitrary constant. So, with

$$
\mu(t)=\exp \left(\int p(t) d t\right)
$$

a general solution of (5) is

$$
\begin{equation*}
y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right] \tag{6}
\end{equation*}
$$

This solution is valid on the domain $\mu(t) \neq 0$

Convenient form for Numerical Solutions

- In particular, a solution of (5) is

$$
\begin{equation*}
y=\frac{1}{\mu(t)}\left[\int_{t_{0}}^{t} \mu(s) g(s) d s+c\right] \tag{7}
\end{equation*}
$$

where t_{0} is a suitable number (often zero). This solution
(7) is useful for numerical solution.

- $\mu(t)$ is called an integrating factor (IF).

Example I

Solve the initial value problem $\left\{\begin{array}{cl}y^{\prime}-\frac{y}{1+t} & =(1+t) e^{t} \\ y(0) & =0\end{array}\right.$

- Integrating factor (IF):

$$
\mu(t)=\exp \left(\int \frac{-1}{1+t} d t\right)=\exp (-\ln (1+t))=\frac{1}{1+t}
$$

- First Method: use solution (6):

$$
\begin{aligned}
& y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right] \\
= & (1+t)\left[\int \frac{1}{1+t}(1+t) e^{t} d t+c\right]
\end{aligned}
$$

Continued: Sample I

$$
y=(1+t)\left[\int e^{t} d t+c\right]=(1+t)\left(e^{t}+c\right)
$$

- Using the initial value: $0=y(0)=(1+c)$ or $c=-1$.
- The Final Solution:

$$
y=(1+t)\left(e^{t}-1\right)
$$

Continued: Sample I

- Direct Method (without using solution 6):
- Multiply the equation by the IF $\mu(t)=\frac{1}{1+t}$:

$$
\begin{gathered}
\frac{1}{1+t} y^{\prime}-\frac{1}{1+t} \frac{y}{1+t}=\frac{1}{1+t}(1+t) e^{t} \\
\frac{1}{1+t} y^{\prime}-\frac{y}{(1+t)^{2}}=e^{t}
\end{gathered}
$$

- We expect the LHS to be $\frac{d}{d t}(\mu(t) y)$: In deed:

$$
L H S=\frac{d}{d t}\left(\frac{y}{1+t}\right)=e^{t}
$$

Continued: Sample I

- Integrating both sides:

$$
\frac{y}{1+t}=\int e^{t} d t+c \quad \Longrightarrow \frac{y}{1+t}=e^{t}+c
$$

- As before, we use initial value condition $y(0)=0$ and get $c=-1$.
- So, again, the final solution

$$
y=(1+t)\left(e^{t}-1\right)
$$

§2.1 Linear Equations Solving Some Problems from §2.1

Example I
Example II
Example III

Example II

Solve the initial value problem

$$
\left\{\begin{aligned}
\left(1+t^{2}\right)^{3} y^{\prime}+4 t\left(1+t^{2}\right)^{2} y & =1 \\
y(0) & =0
\end{aligned}\right.
$$

- First Step; Reduce the problem to the form (3). To do this divide the equation by $\left(1+t^{2}\right)^{3}$. We get:

$$
y^{\prime}+\frac{4 t}{t^{2}+1} y=\frac{1}{\left(t^{2}+1\right)^{3}}
$$

- The integrating factor: $\mu(t)=\exp \left(\int \frac{4 t}{t^{2}+1} d t\right)=$

$$
=\exp \left(2 \int \frac{2 t}{t^{2}+1} d t\right)=\exp \left(2 \ln \left(t^{2}+1\right)\right)=\left(t^{2}+1\right)^{2}
$$

Sample II: Use solution (5)

- By solution (5): $y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right]$

$$
\begin{gathered}
=\frac{1}{\left(t^{2}+1\right)^{2}}\left[\int\left(t^{2}+1\right)^{2} \frac{1}{\left(t^{2}+1\right)^{3}} d t+c\right] \\
y=\frac{1}{\left(t^{2}+1\right)^{2}}\left[\int \frac{1}{\left(t^{2}+1\right)} d t+c\right] \\
y=\frac{1}{\left(t^{2}+1\right)^{2}}\left[\tan ^{-1} t+c\right]
\end{gathered}
$$

Continued

- Using initial value condition $y(0)=0$, we have $0=\tan ^{-1} 0+c=c$.
- So, the final solution

$$
y=\frac{1}{\left(t^{2}+1\right)^{2}}\left[\tan ^{-1} t\right]
$$

[^0]Ready.

Example III

Consider the initial value problem: $\left\{\begin{array}{l}y^{\prime}-y=1+3 \sin t \\ y(0)=y_{0}\end{array}\right.$
Find the value of y_{0} so that $\lim _{t \rightarrow \infty} y(t)$ is finite.

- Integrating factor (IF): $\mu(t)=\exp \left(\int-d t\right)=e^{-t}$.
- By solution (5): $y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right]$

$$
\begin{aligned}
& =e^{t}\left[\int e^{-t}(1+3 \sin t) d t+c\right] \\
& =e^{t}\left[-e^{-t}+3 \int e^{-t} \sin t d t+c\right]
\end{aligned}
$$

Continued

- Recall $\int e^{-t} \sin t d t=-\frac{e^{-t}(\sin t+\cos t)}{2}$
- So, the solution

$$
\begin{gathered}
y=e^{t}\left[-e^{-t}-3 \frac{e^{-t}(\sin t+\cos t)}{2}+c\right] \\
y=-1-\frac{3(\sin t+\cos t)}{2}+c e^{t}
\end{gathered}
$$

- Use the initial value condition $y(0)=y_{0}$:

$$
y_{0}=-1-\frac{3}{2}+c \quad \text { or } \quad c=y_{0}+\frac{5}{2}
$$

Continued

- So, the solution of the initial value problem:

$$
y=-1-\frac{3(\sin t+\cos t)}{2}+\left(y_{0}+\frac{5}{2}\right) e^{t}
$$

- Now, unless $\left(y_{0}+\frac{5}{2}\right) \neq 0, \lim _{t \rightarrow \infty} y= \pm \infty$.
- So, for the $\lim _{t \rightarrow \infty} y$ to remain finite,

$$
y_{0}+\frac{5}{2}=0 \quad \text { OR } \quad y_{0}=-\frac{5}{2} .
$$

Cursor position: (-14, 12.9)
Computing the field elements.
Ready.
The forward orbit from $(-0.032,-0.029)$ left the computation window.
The backward orbit from $(-0.032,-0.029)$
Ready.

[^0]: Comput
 The forward orbit from $(-0.31,-0.37)$ left the computation window.
 The backward orbit from $(-0.31,-0.37)$ left the computation window.

