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Equations from §1.1

Equations from §1.1

We recall the equations discussed in §1.1.
» Falling Object Models:

d
md—\; =mg — yv (1)

d d
10d—‘; —98-2v or CT: —98-2v (2
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Equations from §1.1

Continued

» Population Growth Model:

dp
dr rp (3)

dp
— = 5p — 450 4
g = P (4)

» General First Order Equations:
dy

= f(t,y) where f is a function of t,y.  (5)
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§1.2 Solving some DE

The equations in §1.1 have been fairly simple, in the sense:

» All the DEs are of the form (5): % = f(t,y). It involves

only first derivative; and no higher order derivatives.
» For these DEs (1, 2, 3), the right side f(t,y) are linear.

» Solving such DEs (5), mainly, involves nothing more than
revisiting antiderivatives.
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Solving the Growth Model

» We solve the population growth model (4)

d d

0 dt (6)

5/3‘17’;50 = f dt + C, where C is an arbitrary constant.

» Substituting u = .5p — 450 we get

du _

u .5/dt+C Or In|ul=5t+C

|.5p — 450 = 57 = ce®* Or p =900 + ce®"

wher ¢ := +e¢ > 0 is an arbitrary constant.
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§1.2 Solving some DE

NIEIRYZINE

» p =900+ ce>" is a solution of (6), for all values of c.
This would be called the General solution

» In the absence of additional information, we cannot
determine the value of c.

» Such extra information is provided, often, by giving the
population size p(tp) at a particular time ty. For example,
it may be given that p(0) = 1000. Such information, is
called an initial value.
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§1.2 Solving some DE

» In case, p(0) = 1000, we have
1000 = p(0) = 900 + ¢, ¢ = 100

Finally, our particular solution is p = 900 + 100e-*

» In the next frame, compare the direction fields of the DE
(4), with this solution p = 900 + 100e->*.
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§1.2 Solving some DE
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§1.2 Solving some DE

Solving such general equations

More generally, consider the initial value problem:

dy = 3y —
{ )(/ﬁ(O) ;y b a,b are constants, and (7)
=Y

Yo is (an) initial value of y, at time t = 0.
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§1.2 Solving some DE

continued

(Trivial cases):

» If a = 0 then the equation is rewritten as

dy =_b
{ dt Solution : exercise
y(0) =y

» If ay — b =0 then, y = y(t) = b/a and there is nothing
to solve. We have

@ _g
{ dt Solution : (Answer : y = yo = b/a)
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continued

(The Non-Trivial case):

dy — _
{ﬁm ;Z b L0 —bt0  (8)

We proceed as in the growth model equation:
» We have % = dt. So, f% = [dt+ C, where C is
an arbitrary constant.

» So,

b
y——’:at—irC
a

d
/ yb:a/dt+C:>|n
Y=
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§1.2 Solving some DE

continued

v

Taking exponential: The general solution of (8) is:
y—2=ce where ¢ = 4e® is also arbitrary
b

3"

v

= 0 corresponds to the equilibrium solution y =

Using the initial value y(0) = yo: yo— 2 = ¢

v

v

So, the final solution of the initial value problem (8) is:
y — g = [yo — g] e?*. Which is

y=§+[y—lje‘” (9)
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§1.2 Solving some DE

Standard Examples

Following are some of the standard examples, available in the
textbooks:
» Mass of decaying mass (usually radio).
The Population Growth Model above, the growth or
amortization of an interest paying account would be
analogous.
» Motion of an ejected or falling body.
» Concentration of salt (or impurity) in a solution that is
constantly diluted.

We discuss such examples subsequently.
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§1.2 Solving some DE

Example 1: Decaying Mass

Statement: Let Q(t) denote the mass of some radio-active
substance, at time t. It is known that such substances
disintegrates at a rate proportional to the current mass Q(t).
Write down a model, for this phenomenon.

» The rate of disintegration, at time t would be ‘;—?.

According to the above stated model, % is proportional
to Q(t).
> So, the model is €@ = —rQ(t), for some constant r > 0.

» By (8) and solution 9, with b =0,a = —r, we have

Q(t) = Q(0)e™"
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§1.2 Solving some DE

Continued

Statement: Now suppose initial mass is 1000 grams, which
reduces to 900 grams in 10 hours. Compute r.

» We are also given Q(0) = 1000 gram and Q(10) = 900
grams (Unit of time used is "hours").

» So, we have

In(.9)
10

900 = 1000e~107. = — = .0105

» So, Q(t) = 1000e~-0105¢,
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Example 2: Motion of a Falling Body

Statement: A missile has a vertical motion and horizontal
motion. In this example, we only consider the vertical motion
of such a missile. Suppose such a missile of mass 1000 kg, is
projected and the vertical drag is proportional to square of the
velocity. We formulate the model for vertical velocity.

» v(t) will denote the vertical of the missile, at time t.

» The model of the falling body DE (1) was modified, by

changing model on drag. By the stated model, the

drag= yv2.
» So, the new model DE is
d
md—\; = mg — yv? (10)
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§1.2 Solving some DE

Continued

» Recall g = 9.81 meter/s®>. With m = 1000 kg. So, we

have

1
P 981

— 11
dt 1000 (11)
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§1.2 Solving some DE

Continued

Statement: Now suppose the vertical acceleration reduces to
zero, when velocity v(t) = 100 meter/sec. Compute the drag

constant ~.
» We have, acceleration % = 0, when v = 0. Substituting
in (11),

1
= 9.81 — ——~(100?).
0= 981 — 75557(100%)

» So, v = .981 and the model is

dv 981 081
Y _981— 2 _
gt~ 2%~ 1000 = 1000

(10000 — v?)
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§1.2 Solving some DE

Continued

» We separate variables (see §2.3):

/ dv __.981/dt+c .
v2 — 10000 1000

/L 11 dv__.981+C:>
200 \v—100 v+ 100 ~ 1000
1 n
200

—

v — 100 _.981+C
v+100| 1000
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§1.2 Solving some DE

Continued

| 2
-1
I oo
v
» So,
— 100
ﬁ = Ce_'1962t with -0 < C<oo
v

» Substituting v(0) = 0 we have C = —1
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Continued

» So, the solution is given by
v—100
v+100

v(t) = 100 — (v + 100)e 1962
» Next Level: Let h = h(t) denote the vertical distance of
the missile, from the point of ejection, at time t. So,
dh
dt

_ 1962t

v = v(t) = 100 — (v + 100)e 9%

This equation can be solved to determine the height h(t),
of the missile, at time t.
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§1.2 Solving some DE

Example 3: Concentration

Statement: A water reservoir contains 10° gallons of water.
The water is not acceptable for human consumption, due the
level of chemicals in the water. The concentration of this
chemicals is .01 gm/gallon. Pure water is added to the pond
at the rate of 1,000 gallons/h. The well mixed water drains
out of the pond at the same rate . Model the total quantity of
chemicals in the pond and determine the concentration of the
chemicals after one year.
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§1.2 Solving some DE

Continued

Solution:
» Let Q(t) =quatity of the chemical in the pond, at time t.
» So, Q(0) = .01 % 10° = 10* gm.
» Part a): The rate of change
d@ Q() _ Q)
g 1000 S0 = T ags
» We can use the general solution solution (9) or rework it
out. | will rework. We have

dQ dt—l—c ci tant
—=— | —= is a constant.
Q 103
t
[ = — .
n Q(t) 103+C
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§1.2 Solving some DE

Continued

So, Q(t)= Ce"1® C >0 isa constant
Now, Q(0)=10* = 10* = C.
So, the solution is Q(t) = 10%e 10
Finally, after one year, t = 365 % 24 = 8760. So,

8760

Q(1 year) = Q(8760) = 10%e 103 = 10%e 8760
So, the concentration is

Q(1 year)  10%e 870
10 106

per gallon. This is near zero.
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§1.3 Classification of DE

§1.3 Classification based on no of ind. variables

Two broad classifications of DEs are as follows:

» When a DE involves only a single independent variable x
(or t), then it is called an Ordinary DE (also called ODE).
Chapter 2, 3 would be on ODE.

» When a DE involves more than one independent variables
X1, X2, - - -, Xn, then it is called a Partial DE (also called
PDE). PDEs will not be covered in this course.
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§1.3 Classification of DE

Classification based on number of unknown
variables

» There may only be one unknown dependent variable y, to
be determined. As in linear algebra, only one DE (plus
initial value) is needed to determine y.

» There may also be more than one unknown dependent
variables y1, y5, ..., ym, to be determined. As in linear
algebra, a system of m (independent, in some sense) DE
(plus initial values) are needed to determine
Y1, Y2, -+, ¥m. They will be called a System of DEs. We
will consider such systems in chapter 7.
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§1.3 Classification of DE

Based on Order of derivatives

» DEs can be classified based on highest order of derivation
present. We will cover
» First order DE (Chapter 2)
» Second order DE (Chapter 3)

Satya Mandal, KU Chapter I: Introduction §1.2 Solving Some DE §1.3: Classif



§1.3 Classification of DE

Linearity and non-linearity

» An ODE of order n is called linear, if it looks like

d"y d"ly dy
ao(t )dt” +31(t)w+"'3 1(t )E+an( )y = g(t)

This is also written as:

ao(t)y!" + a(t)y" D + - ana()yW + an(t)y = g(1)

aj(t), g(t) are functions of the independent variable t.
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