Chapter I: Introduction §1.2 Solving Some DE §1.3: Classification of DEs

Satya Mandal, KU

January 12, 2018

Equations from §1.1 §1.2 Solving some DE §1.3 Classification of DE

Equations from §1.1

We recall the equations discussed in $\S 1.1$.

- Falling Object Models:

$$
\begin{gather*}
m \frac{d v}{d t}=m g-\gamma v \tag{1}\\
10 \frac{d v}{d t}=98-2 v \quad \text { or } \quad \frac{d v}{d t}=9.8-.2 v \tag{2}
\end{gather*}
$$

Continued

- Population Growth Model:

$$
\begin{gather*}
\frac{d p}{d t}=r p \tag{3}\\
\frac{d p}{d t}=.5 p-450 \tag{4}
\end{gather*}
$$

- General First Order Equations:

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) \quad \text { where } f \text { is a function of } t, y \tag{5}
\end{equation*}
$$

The equations in $\S 1.1$ have been fairly simple, in the sense:

- All the DEs are of the form (5): $\frac{d y}{d t}=f(t, y)$. It involves only first derivative; and no higher order derivatives.
- For these DEs $(1,2,3)$, the right side $f(t, y)$ are linear.
- Solving such DEs (5), mainly, involves nothing more than revisiting antiderivatives.

Solving the Growth Model

- We solve the population growth model (4)

$$
\begin{equation*}
\frac{d p}{d t}=.5 p-450 \quad \Longrightarrow \frac{d p}{.5 p-450}=d t \tag{6}
\end{equation*}
$$

- $\int \frac{d p}{.5 p-450}=\int d t+C$, where C is an arbitrary constant.
- Substituting $u=.5 p-450$ we get

$$
\begin{gathered}
\frac{d u}{u}=.5 \int d t+C \quad \text { Or } \quad \ln |u|=.5 t+C \\
|.5 p-450|=e^{.5 t+C}=c e^{.5 t} \quad \text { Or } \quad p=900+c e^{.5 t}
\end{gathered}
$$

wher $c:= \pm e^{C}>0$ is an arbitrary constant.

Initial Value

- $p=900+c e^{.5 t}$ is a solution of (6), for all values of c. This would be called the General solution
- In the absence of additional information, we cannot determine the value of c.
- Such extra information is provided, often, by giving the population size $p\left(t_{0}\right)$ at a particular time t_{0}. For example, it may be given that $p(0)=1000$. Such information, is called an initial value.
- In case, $p(0)=1000$, we have

$$
1000=p(0)=900+c, \quad c=100
$$

Finally, our particular solution is $p=900+100 e^{.5 t}$

- In the next frame, compare the direction fields of the DE (4), with this solution $p=900+100 e^{.5 t}$.

Equations from §1.1 §1.2 Solving some DE §1.3 Classification of DE

Solve the Population Growth Model Initial Value More General such problems Examples

[^0]Satya Mandal, KU
Chapter I: Introduction §1.2 Solving Some DE §1.3: Classif

Solving such general equations

More generally, consider the initial value problem:

$$
\left\{\begin{array}{rl}
\frac{d y}{d t} & =a y-b \\
y(0) & =y_{0}
\end{array} \quad a, b \quad\right. \text { are constants, and }
$$

y_{0} is (an) initial value of y, at time $t=0$.

continued

(Trivial cases):

- If $a=0$ then the equation is rewritten as

$$
\left\{\begin{array}{ll}
\frac{d y}{d t} & =-b \\
y(0) & =y_{0}
\end{array} \quad\right. \text { Solution : exercise }
$$

- If $a y-b=0$ then, $y=y(t)=b / a$ and there is nothing to solve. We have

$$
\begin{cases}\frac{d y}{d t} & =0 \\ y(0) & =y_{0}\end{cases}
$$

Solution : (Answer : $\left.y=y_{0}=b / a\right)$

continued

(The Non-Trivial case):

$$
\left\{\begin{array}{ll}
\frac{d y}{d t} & =a y-b \tag{8}\\
y(0) & =y_{0}
\end{array} \quad a \neq 0, a y-b \neq 0\right.
$$

We proceed as in the growth model equation:

- We have $\frac{d y}{a y-b}=d t$. So, $\int \frac{d y}{a y-b}=\int d t+C$, where C is an arbitrary constant.
- So,

$$
\int \frac{d y}{y-\frac{b}{a}}=a \int d t+C \Longrightarrow \ln \left|y-\frac{b}{a}\right|=a t+C
$$

continued

- Taking exponential: The general solution of (8) is:

$$
y-\frac{b}{a}=c e^{t} \quad \text { where } \quad c= \pm e^{c} \quad \text { is also arbitrary }
$$

- $c=0$ corresponds to the equilibrium solution $y=\frac{b}{a}$.
- Using the initial value $y(0)=y_{0}: y_{0}-\frac{b}{a}=c$
- So, the final solution of the initial value problem (8) is: $y-\frac{b}{a}=\left[y_{0}-\frac{b}{a}\right] e^{a t}$. Which is

$$
\begin{equation*}
y=\frac{b}{a}+\left[y_{0}-\frac{b}{a}\right] e^{a t} \tag{9}
\end{equation*}
$$

Standard Examples

Following are some of the standard examples, available in the textbooks:

- Mass of decaying mass (usually radio). The Population Growth Model above, the growth or amortization of an interest paying account would be analogous.
- Motion of an ejected or falling body.
- Concentration of salt (or impurity) in a solution that is constantly diluted.
We discuss such examples subsequently.

Example 1: Decaying Mass

Statement: Let $Q(t)$ denote the mass of some radio-active substance, at time t. It is known that such substances disintegrates at a rate proportional to the current mass $Q(t)$. Write down a model, for this phenomenon.

- The rate of disintegration, at time t would be $\frac{d Q}{d t}$. According to the above stated model, $\frac{d Q}{d t}$ is proportional to $Q(t)$.
- So, the model is $\frac{d Q}{d t}=-r Q(t)$, for some constant $r>0$.
- By (8) and solution 9 , with $b=0, a=-r$, we have

$$
Q(t)=Q(0) e^{-r t}
$$

Continued

Statement: Now suppose initial mass is 1000 grams, which reduces to 900 grams in 10 hours. Compute r.

- We are also given $Q(0)=1000$ gram and $Q(10)=900$ grams (Unit of time used is "hours").
- So, we have

$$
900=1000 e^{-10 r} . \quad r=-\frac{\ln (.9)}{10}=.0105
$$

- So, $Q(t)=1000 e^{-.0105 t}$.

Example 2: Motion of a Falling Body

Statement: A missile has a vertical motion and horizontal motion. In this example, we only consider the vertical motion of such a missile. Suppose such a missile of mass 1000 kg , is projected and the vertical drag is proportional to square of the velocity. We formulate the model for vertical velocity.

- $v(t)$ will denote the vertical of the missile, at time t.
- The model of the falling body DE (1) was modified, by changing model on drag. By the stated model, the $\mathrm{drag}=\gamma \mathrm{v}^{2}$.
- So, the new model DE is

$$
\begin{equation*}
m \frac{d v}{d t}=m g-\gamma v^{2} \tag{10}
\end{equation*}
$$

Continued

- Recall $g=9.81$ meter $/ \mathrm{s}^{2}$. With $m=1000 \mathrm{~kg}$. So, we have

$$
\begin{equation*}
\frac{d v}{d t}=9.81-\frac{1}{1000} \gamma v^{2} \tag{11}
\end{equation*}
$$

Continued

Statement: Now suppose the vertical acceleration reduces to zero, when velocity $v(t)=100$ meter $/ \mathrm{sec}$. Compute the drag constant γ.

- We have, acceleration $\frac{d v}{d t}=0$, when $v=0$. Substituting in (11),

$$
0=9.81-\frac{1}{1000} \gamma\left(100^{2}\right)
$$

- So, $\gamma=.981$ and the model is

$$
\frac{d v}{d t}=9.81-\frac{.981}{1000} v^{2}=\frac{.981}{1000}\left(10000-v^{2}\right)
$$

Continued

- We separate variables (see §2.3):

$$
\begin{gathered}
\int \frac{d v}{v^{2}-10000}=-\frac{.981}{1000} \int d t+c \Longrightarrow \\
\int \frac{1}{200}\left(\frac{1}{v-100}-\frac{1}{v+100}\right) d v=-\frac{.981}{1000}+c \Longrightarrow \\
\frac{1}{200} \ln \left|\frac{v-100}{v+100}\right|=-\frac{.981}{1000}+c \Longrightarrow
\end{gathered}
$$

Continued

$$
\left|\frac{v-100}{v+100}\right|=C e^{-.1962 t} \quad \text { with } \quad C=e^{200 c}>0
$$

- So,

$$
\frac{v-100}{v+100}=C e^{-.1962 t} \quad \text { with } \quad-\infty<C<\infty
$$

- Substituting $v(0)=0$ we have $C=-1$

Continued

- So, the solution is given by

$$
\begin{gathered}
\frac{v-100}{v+100}=-e^{-.1962 t} \Longrightarrow \\
v(t)=100-(v+100) e^{-.1962 t}
\end{gathered}
$$

- Next Level: Let $h=h(t)$ denote the vertical distance of the missile, from the point of ejection, at time t. So,

$$
\frac{d h}{d t}=v=v(t)=100-(v+100) e^{-.1962 t}
$$

This equation can be solved to determine the height $h(t)$, of the missile, at time t.

Example 3: Concentration

Statement: A water reservoir contains 10^{6} gallons of water. The water is not acceptable for human consumption, due the level of chemicals in the water. The concentration of this chemicals is $.01 \mathrm{gm} / \mathrm{gallon}$. Pure water is added to the pond at the rate of 1,000 gallons $/ \mathrm{h}$. The well mixed water drains out of the pond at the same rate. Model the total quantity of chemicals in the pond and determine the concentration of the chemicals after one year.

Continued

Solution:

- Let $Q(t)=$ quatity of the chemical in the pond, at time t.
- So, $Q(0)=.01 * 10^{6}=10^{4} \mathrm{gm}$.
- Part a): The rate of change

$$
\frac{d Q}{d t}=-1000 * \frac{Q(t)}{10^{6}}=-\frac{Q(t)}{10^{3}}
$$

- We can use the general solution solution (9) or rework it out. I will rework. We have

$$
\begin{gathered}
\int \frac{d Q}{Q}=-\int \frac{d t}{10^{3}}+c \quad c \text { is a constant. } \\
\ln Q(t)=\frac{t}{10^{3}}+c .
\end{gathered}
$$

Continued

$$
\begin{aligned}
& \text { So, } Q(t)=C e^{-\frac{t}{10^{3}}} \quad C \geq 0 \text { is a constant } \\
& \\
& \text { Now, } Q(0)=10^{4} \Longrightarrow 10^{4}=C
\end{aligned}
$$

So, the solution is $Q(t)=10^{4} e^{-\frac{t}{10^{3}}}$
Finally, after one year, $t=365 * 24=8760$. So,

$$
Q(1 \text { year })=Q(8760)=10^{4} e^{-\frac{8760}{10^{3}}}=10^{4} e^{-8.760}
$$

So, the concentration is

$$
=\frac{Q(1 \text { year })}{10^{6}}=\frac{10^{4} e^{-8.760}}{10^{6}} \text { per gallon. This is near zero. }
$$

§1.3 Classification based on no of ind. variables

Two broad classifications of DEs are as follows:

- When a DE involves only a single independent variable x (or t), then it is called an Ordinary DE (also called ODE). Chapter 2, 3 would be on ODE.
- When a DE involves more than one independent variables $x_{1}, x_{2}, \ldots, x_{n}$, then it is called a Partial DE (also called PDE). PDEs will not be covered in this course.

Classification based on number of unknown variables

- There may only be one unknown dependent variable y, to be determined. As in linear algebra, only one DE (plus initial value) is needed to determine y.
- There may also be more than one unknown dependent variables $y_{1}, y_{2}, \ldots, y_{m}$, to be determined. As in linear algebra, a system of m (independent, in some sense) DE (plus initial values) are needed to determine $y_{1}, y_{2}, \ldots, y_{m}$. They will be called a System of DEs. We will consider such systems in chapter 7 .

Based on Order of derivatives

- DEs can be classified based on highest order of derivation present. We will cover
- First order DE (Chapter 2)
- Second order DE (Chapter 3)

Linearity and non-linearity

- An ODE of order n is called linear, if it looks like

$$
a_{0}(t) \frac{d^{n} y}{d t^{n}}+a_{1}(t) \frac{d^{n-1} y}{d t^{n-1}}+\cdots a_{n-1}(t) \frac{d y}{d t}+a_{n}(t) y=g(t)
$$

This is also written as:

$$
a_{0}(t) y^{(n)}+a_{1}(t) y^{(n-1)}+\cdots a_{n-1}(t) y^{(1)}+a_{n}(t) y=g(t)
$$

$a_{i}(t), g(t)$ are functions of the independent variable t.

[^0]: Comouting the field elements.
 Computing
 Ready.
 The forward orbit from $(-0.0014,1 e+03)$ left the computation window.
 The backward orbit from $(-0.0014,1 e+03)$
 Ready.

