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Equations from §1.1

We recall the equations discussed in §1.1.
I Falling Object Models:

m
dv

dt
= mg − γv (1)

10
dv

dt
= 98− 2v or

dv

dt
= 9.8− .2v (2)
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Continued

I Population Growth Model:

dp

dt
= rp (3)

dp

dt
= .5p − 450 (4)

I General First Order Equations:

dy

dt
= f (t, y) where f is a function of t, y . (5)
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The equations in §1.1 have been fairly simple, in the sense:
I All the DEs are of the form (5): dy

dt
= f (t, y). It involves

only first derivative; and no higher order derivatives.
I For these DEs (1, 2, 3), the right side f (t, y) are linear.
I Solving such DEs (5), mainly, involves nothing more than

revisiting antiderivatives.
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Solving the Growth Model

I We solve the population growth model (4)

dp

dt
= .5p − 450 =⇒ dp

.5p − 450
= dt (6)

I
∫

dp
.5p−450 =

∫
dt + C , where C is an arbitrary constant.

I Substituting u = .5p − 450 we get

du

u
= .5

∫
dt + C Or ln |u| = .5t + C

|.5p − 450| = e .5t+C = ce .5t Or p = 900+ ce .5t

wher c := ±eC > 0 is an arbitrary constant.
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Initial Value

I p = 900+ ce .5t is a solution of (6), for all values of c .
This would be called the General solution

I In the absence of additional information, we cannot
determine the value of c .

I Such extra information is provided, often, by giving the
population size p(t0) at a particular time t0. For example,
it may be given that p(0) = 1000. Such information, is
called an initial value.
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I In case, p(0) = 1000, we have

1000 = p(0) = 900+ c , c = 100

Finally, our particular solution is p = 900+ 100e .5t

I In the next frame, compare the direction fields of the DE
(4), with this solution p = 900+ 100e .5t .
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Solving such general equations

More generally, consider the initial value problem:{
dy
dt

= ay − b
y(0) = y0

a, b are constants, and (7)

y0 is (an) initial value of y , at time t = 0.
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continued

(Trivial cases):
I If a = 0 then the equation is rewritten as{

dy
dt

= −b
y(0) = y0

Solution : exercise

I If ay − b = 0 then, y = y(t) = b/a and there is nothing
to solve. We have{

dy
dt

= 0
y(0) = y0

Solution : (Answer : y = y0 = b/a)

Satya Mandal, KU Chapter I: Introduction §1.2 Solving Some DE §1.3: Classification of DEs



Equations from §1.1
§1.2 Solving some DE

§1.3 Classification of DE

Solve the Population Growth Model
Initial Value
More General such problems
Examples

continued

(The Non-Trivial case):{
dy
dt

= ay − b
y(0) = y0

a 6= 0, ay − b 6= 0 (8)

We proceed as in the growth model equation:
I We have dy

ay−b
= dt. So,

∫
dy

ay−b
=
∫
dt + C , where C is

an arbitrary constant.
I So, ∫

dy

y − b
a

= a

∫
dt + C =⇒ ln

∣∣∣∣y − b

a

∣∣∣∣ = at + C
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continued

I Taking exponential: The general solution of (8) is:
y − b

a
= cet where c = ±eC is also arbitrary

I c = 0 corresponds to the equilibrium solution y = b
a
.

I Using the initial value y(0) = y0: y0 − b
a
= c

I So, the final solution of the initial value problem (8) is:
y − b

a
=
[
y0 − b

a

]
eat . Which is

y =
b

a
+

[
y0 −

b

a

]
eat (9)
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Standard Examples

Following are some of the standard examples, available in the
textbooks:

I Mass of decaying mass (usually radio).
The Population Growth Model above, the growth or
amortization of an interest paying account would be
analogous.

I Motion of an ejected or falling body.
I Concentration of salt (or impurity) in a solution that is

constantly diluted.
We discuss such examples subsequently.
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Example 1: Decaying Mass

Statement: Let Q(t) denote the mass of some radio-active
substance, at time t. It is known that such substances
disintegrates at a rate proportional to the current mass Q(t).
Write down a model, for this phenomenon.

I The rate of disintegration, at time t would be dQ
dt
.

According to the above stated model, dQ
dt

is proportional
to Q(t).

I So, the model is dQ
dt

= −rQ(t), for some constant r > 0.
I By (8) and solution 9, with b = 0, a = −r , we have

Q(t) = Q(0)e−rt
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Continued

Statement: Now suppose initial mass is 1000 grams, which
reduces to 900 grams in 10 hours. Compute r .

I We are also given Q(0) = 1000 gram and Q(10) = 900
grams (Unit of time used is "hours").

I So, we have

900 = 1000e−10r . r = − ln(.9)
10

= .0105

I So, Q(t) = 1000e−.0105t .
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Example 2: Motion of a Falling Body
Statement: A missile has a vertical motion and horizontal
motion. In this example, we only consider the vertical motion
of such a missile. Suppose such a missile of mass 1000 kg, is
projected and the vertical drag is proportional to square of the
velocity. We formulate the model for vertical velocity.

I v(t) will denote the vertical of the missile, at time t.
I The model of the falling body DE (1) was modified, by

changing model on drag. By the stated model, the
drag= γv 2.

I So, the new model DE is

m
dv

dt
= mg − γv 2 (10)
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Continued

I Recall g = 9.81 meter/s2. With m = 1000 kg . So, we
have

dv

dt
= 9.81− 1

1000
γv 2 (11)
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Continued

Statement: Now suppose the vertical acceleration reduces to
zero, when velocity v(t) = 100 meter/sec . Compute the drag
constant γ.

I We have, acceleration dv
dt

= 0, when v = 0. Substituting
in (11),

0 = 9.81− 1
1000

γ(1002).

I So, γ = .981 and the model is

dv

dt
= 9.81− .981

1000
v 2 =

.981
1000

(
10000− v 2)
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Continued

I We separate variables (see §2.3):∫
dv

v 2 − 10000
= − .981

1000

∫
dt + c =⇒

∫
1
200

(
1

v − 100
− 1

v + 100

)
dv = − .981

1000
+ c =⇒

I

1
200

ln
∣∣∣∣v − 100
v + 100

∣∣∣∣ = − .9811000
+ c =⇒
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Continued

I ∣∣∣∣v − 100
v + 100

∣∣∣∣ = Ce−.1962t with C = e200c > 0

I So,

v − 100
v + 100

= Ce−.1962t with −∞ < C <∞

I Substituting v(0) = 0 we have C = −1
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Continued

I So, the solution is given by

v − 100
v + 100

= −e−.1962t =⇒

v(t) = 100− (v + 100)e−.1962t

I Next Level: Let h = h(t) denote the vertical distance of
the missile, from the point of ejection, at time t. So,

dh

dt
= v = v(t) = 100− (v + 100)e−.1962t

This equation can be solved to determine the height h(t),
of the missile, at time t.
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Example 3: Concentration

Statement: A water reservoir contains 106 gallons of water.
The water is not acceptable for human consumption, due the
level of chemicals in the water. The concentration of this
chemicals is .01 gm/gallon. Pure water is added to the pond
at the rate of 1,000 gallons/h. The well mixed water drains
out of the pond at the same rate . Model the total quantity of
chemicals in the pond and determine the concentration of the
chemicals after one year.
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Continued
Solution:

I Let Q(t) =quatity of the chemical in the pond, at time t.
I So, Q(0) = .01 ∗ 106 = 104 gm.
I Part a): The rate of change

dQ

dt
= −1000 ∗ Q(t)

106 = −Q(t)

103

I We can use the general solution solution (9) or rework it
out. I will rework. We have∫

dQ

Q
= −

∫
dt

103 + c c is a constant.

lnQ(t) =
t

103 + c .
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Continued

So, Q(t) = Ce−
t

103 C ≥ 0 is a constant

Now, Q(0) = 104 =⇒ 104 = C .

So, the solution is Q(t) = 104e−
t

103

Finally, after one year, t = 365 ∗ 24 = 8760. So,

Q(1 year) = Q(8760) = 104e−
8760
103 = 104e−8.760

So, the concentration is

=
Q(1 year)

106 =
104e−8.760

106 per gallon. This is near zero.
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§1.3 Classification based on no of ind. variables

Two broad classifications of DEs are as follows:
I When a DE involves only a single independent variable x

(or t), then it is called an Ordinary DE (also called ODE).
Chapter 2, 3 would be on ODE.

I When a DE involves more than one independent variables
x1, x2, . . . , xn, then it is called a Partial DE (also called
PDE). PDEs will not be covered in this course.
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Classification based on number of unknown
variables

I There may only be one unknown dependent variable y , to
be determined. As in linear algebra, only one DE (plus
initial value) is needed to determine y .

I There may also be more than one unknown dependent
variables y1, y2, . . . , ym, to be determined. As in linear
algebra, a system of m (independent, in some sense) DE
(plus initial values) are needed to determine
y1, y2, . . . , ym. They will be called a System of DEs. We
will consider such systems in chapter 7.
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Based on Order of derivatives

I DEs can be classified based on highest order of derivation
present. We will cover

I First order DE (Chapter 2)
I Second order DE (Chapter 3)
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Linearity and non-linearity

I An ODE of order n is called linear, if it looks like

a0(t)
dny

dtn
+ a1(t)

dn−1y

dtn−1 + · · · an−1(t)
dy

dt
+ an(t)y = g(t)

This is also written as:

a0(t)y
(n) + a1(t)y

(n−1) + · · · an−1(t)y
(1) + an(t)y = g(t)

ai(t), g(t) are functions of the independent variable t.
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