Chapter 3: Second Order ODE §3.5 Complex roots of the CE

Satya Mandal, KU

20 February 2018

Homogeneous LSODEs

- Recall a Homogeneous LSODEs has one of the following two forms:

$$
\begin{equation*}
\mathcal{L}(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mathcal{L}(y)=P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0 \tag{2}
\end{equation*}
$$

where $p(t), q(t), P(t), Q(t), R(t)$ are functions of t.

- The Trivial Solution: For any homogeneous equation (1, 2), $y=0$ is a solution.

Complex solutions to real

Sometimes the equation 1 (or 2), would have complex solutions, while we are interested only in real solution. The following theorem helps.

Theorem 3.5.1: Consider the homogeneous equation (1), where $p(t), q(t)$ are real valued functions of t. Let $y=\varphi(t)=u(t)+i v(t)$ be a complex solution of the ODE (1), where $u(t)$ is the real part and $v(t)$ is the imaginary part of y.
Then, both $y=u(t), y=v(t)$ are solutions of (1).
Proof: Use linearity.

Complex roots of the CE

Consider a $2^{\text {nd }}$-Order Homogeneous linear ODE, with constant coefficients:

$$
\begin{gather*}
\mathcal{L}(y)=a y^{\prime \prime}+b y^{\prime}+c y=0 \quad a, b, c \in \mathbb{R} \tag{3}\\
\text { The CE of }(3) \text { is : } \quad a r^{2}+b r+c=0 \tag{4}
\end{gather*}
$$

- In §3.2, 3.4 we dealt with the situations, when (4), respectively, had unequal or repeated real roots.
- In this section, we deal with the case, when the CE (4) would have complex roots.

Continued

- The CE (4) would have complex root, when $b^{2}-4 a c<0$. The roots are

$$
\left\{\begin{array}{l}
r_{1}=\lambda+i \mu=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
r_{2}=\lambda-i \mu=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{array} \quad \text { where } \quad i=\sqrt{-1}\right.
$$

We say, r_{1} and r_{2} are conjugate of each other.

- As in §3.2 (3) has two solutions:

$$
\left\{\begin{array}{l}
y_{1}(t)=e^{r_{1} t}=\exp [(\lambda+i \mu) t]=e^{\lambda t} e^{i \mu t} \tag{5}\\
\left.\left.y_{2}(t)=e^{r_{2} t}=\exp \right](\lambda-i \mu) t\right]=e^{\lambda t} e^{-i \mu t}
\end{array}\right.
$$

- However, (5) involves complex exponentiation $e^{i \mu t}, e^{-i \mu t}$.

Complex Exponentiation

- For real numbers θ, we define $e^{i \theta}=\cos \theta+i \sin \theta$.
- For complex numbers $z=\rho+i \theta$ define

$$
e^{z}:=e^{\rho+i \theta}:=e^{\rho} e^{i \theta}=e^{\rho}(\cos \theta+i \sin \theta)
$$

- All the rules of exponentiation that you are familiar with work, with this definition of e^{z}. In particular

$$
e^{z+w}=e^{z} e^{w} \quad \text { for all } \quad z, w \in \mathbb{C}
$$

- Justifications for defining complex exponentiation e^{z} this way, is dealt with in the Complex Analysis Courses.

Solution of (3)

- So the solution (5) of (3) reduces to:

$$
\left\{\begin{array}{l}
y_{1}(t)=e^{\lambda t}(\cos \mu t+i \sin \mu t) \tag{6}\\
y_{2}(t)=e^{\lambda t}(\cos \mu t-i \sin \mu t)
\end{array}\right.
$$

- By Theorem 3.5.1 both the real and complex parts (of y_{1} or y_{2}) are solution of (3). We get two real solutions:

$$
\left\{\begin{array}{l}
u(t)=e^{\lambda t} \cos \mu t \tag{7}\\
v(t)=e^{\lambda t} \sin \mu t
\end{array}\right.
$$

Continued

- Wronskian of u, u is

$$
\begin{gathered}
W(u, v)(t)=\left|\begin{array}{cc}
u(t) & v(t) \\
u^{\prime}(t) & v^{\prime}(t)
\end{array}\right| \\
=\left|\begin{array}{cc}
e^{\lambda t} \cos \mu t & e^{\lambda t} \sin \mu t \\
\lambda e^{\lambda t} \cos \mu t-e^{\lambda t} \mu \sin \mu t & \lambda e^{\lambda t} \sin \mu t+e^{\lambda t} \mu \cos \mu t
\end{array}\right| \\
=e^{2 \lambda t}\left|\begin{array}{cc}
\cos \mu t & \sin \mu t \\
\lambda \cos \mu t-\mu \sin \mu t & \lambda \sin \mu t+\mu \cos \mu t
\end{array}\right|=\mu e^{2 \lambda t}
\end{gathered}
$$

Continued

- So, (since $\mu \neq 0$), Wronskian $W(u, v)(t)=\mu e^{2 \lambda t} \neq 0$.
- So, u, v form a fundamental set of solutions of (3).
- So, the general (real) solution of (3) has the form

$$
\begin{equation*}
y=c_{1} u(t)+c_{2} v(t)=c_{1} e^{\lambda t} \cos \mu t+c_{2} e^{\lambda t} \sin \mu t \tag{8}
\end{equation*}
$$

where c_{1}, c_{2} are arbitrary constants.

- We can write the same as

$$
\begin{equation*}
y=e^{\lambda t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right) \tag{9}
\end{equation*}
$$

Behavior of the solution

If the CE (4) has complex roots or $\mu \neq 0$, then, the solution
(9) has two factors:

- The exponential factor:

$$
E(t)=e^{\lambda t}
$$

Depending on the sign of λ this part will "blow up" to ∞ or "decay" to the x-axis (horizontal asymptote).

- The periodic factor.

$$
\Phi(t)=c_{1} \cos \mu t+c_{2} \sin \mu t \quad \text { with periodicity }=\frac{2 \pi}{\mu}
$$

- Further,

$$
-\left(\left|c_{1}\right|+\left|c_{2}\right|\right) \leq \Phi(t) \leq\left(\left|c_{1}\right|+\left|c_{2}\right|\right)
$$

The graph of $\Phi(t)$ contributes to a steady oscillation.

- The behavior of the solution y (as in (9)) will be a combination of (1) the exponential rise/decay due to $E(t)$ and (2) the periodic oscillation due to $\Phi(t)$.

Continued

So, the nature of the solutions is summarized as follows:

- If $\lambda=0$ then the solution would be a steady oscillation.
- If $\lambda>0$, it will be unsteady oscillation.
- If $\lambda<0$ the oscillation will stabilize with time.

Example 1

Consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}-4 y^{\prime}+8 y=0 \\
y(\pi / 8)=0 \\
y^{\prime}(\pi / 8)=e^{\pi / 4}
\end{array}\right.
$$

- Solve the problem
- Sketch the graph
- Describe the nature of the solution, as $t \rightarrow \infty$

Solution

- The CE: $r^{2}-4 r+8=0$
- Roots of the CE: $r_{1}=2+2 i, r_{2}=2-2 i$.
- By solution (9), the general solution

$$
y=e^{\lambda t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right)=e^{2 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)
$$

- The answer to the last part: the solution would be an unsteady oscillation; because the exponential part is $e^{2 t}$

Continued

- Before we use the initial values, compute

$$
y^{\prime}=2 e^{2 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+e^{2 t}\left(-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t\right)
$$

- Initial value conditions:

$$
\begin{aligned}
& \left\{y(\pi / 8)=2 e^{\pi / 4}\left(\frac{c_{1}}{\sqrt{2}}+\frac{c_{2}}{\sqrt{2}}\right)=0\right. \\
& y^{\prime}(\pi / 8)=2 e^{\pi / 4}\left(\frac{c_{1}}{\sqrt{2}}+\frac{c_{2}}{\sqrt{2}}\right)+e^{\pi / 4}\left(-\frac{2 c_{1}}{\sqrt{2}}+\frac{2 c_{2}}{\sqrt{2}}\right)=e^{\pi / 4} \\
& \left\{\begin{array} { r }
{ c _ { 1 } + c _ { 2 } = 0 } \\
{ \frac { 4 } { \sqrt { 2 } } c _ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-\frac{1}{2 \sqrt{2}} \\
c_{2}=\frac{1}{2 \sqrt{2}}
\end{array}\right.\right.
\end{aligned}
$$

Continued

- So, the solution is

$$
y=e^{2 t}\left(-\frac{1}{2 \sqrt{2}} \cos 2 t+\frac{1}{2 \sqrt{2}} \sin 2 t\right)
$$

- Repeat: $y=y(t)$ has an unsteady/unstable oscillation.

Graph of $y=y(t)$:

Example 2 (Dampened Oscillation)

Consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y^{\prime}+5 y=0 \\
y(\pi / 4)=2 \\
y^{\prime}(\pi / 4)=-4
\end{array}\right.
$$

- Solve the problem
- Sketch the graph
- Describe the nature of the solution, as $t \rightarrow \infty$

Solution

- The CE: $r^{2}+4 r+5=0$
- Roots of the CE: $r_{1}=-2+i, r_{2}=-2-i$.
- By solution (9), the general solution

$$
y=e^{\lambda t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right)=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right)
$$

- The answer to the last part: the solution will be an stabilized/dampened/ decaying oscillation; because the exponential part is $e^{-2 t}$

Continued

- Before we use the initial values, compute

$$
y^{\prime}=-2 e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right)+e^{-2 t}\left(-c_{1} \sin t+c_{2} \cos t\right)
$$

- Initial value conditions:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y(\pi / 4)=e^{-\pi / 2}\left(\frac{c_{1}}{\sqrt{2}}+\frac{c_{2}}{\sqrt{2}}\right)=2 \\
y^{\prime}(\pi / 4)=-2 e^{-\pi / 2}\left(\frac{c_{1}}{\sqrt{2}}+\frac{c_{2}}{\sqrt{2}}\right)+e^{-\pi / 2}\left(-\frac{c_{1}}{\sqrt{2}}+\frac{c_{2}}{\sqrt{2}}\right)=-4
\end{array}\right. \\
& \left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 2 \sqrt { 2 } e ^ { \pi / 2 } } \\
{ - 4 + e ^ { - \pi / 2 } (- \frac { c _ { 1 } } { \sqrt { 2 } } + \frac { c _ { 2 } } { \sqrt { 2 } }) = - 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}+c_{2}=2 \sqrt{2} e^{\pi / 2} \\
c_{1}=c_{2}
\end{array}\right.\right.
\end{aligned}
$$

Continued

- So, $c_{1}=c_{2}=\sqrt{2} e^{\pi / 2}$
- So, the solution is

$$
\begin{gathered}
y=e^{-2 t}\left(c_{1} \cos t+c_{2} \sin t\right) \\
=e^{-2 t}\left(\sqrt{2} e^{\pi / 2} \cos t+\sqrt{2} e^{\pi / 2} \sin t\right) \\
=\sqrt{2} e^{-2 t+\pi / 2}(\cos t+\sin t)
\end{gathered}
$$

- Repeat: the $y=y(t)$ has stabilized/dampened/decaying oscillation.

Graph of $y=y(t)$: The exponential part $E(t)=e^{-2 t+\pi / 2}$ dampens (flattens) the graphs very quickly.

Example 3

Consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+9 y=0 \\
y(0)=0 \\
y^{\prime}(0)=1
\end{array}\right.
$$

- Solve the problem
- Sketch the graph
- Describe the nature of the solution, as $t \rightarrow \infty$

Solution

- The CE: $r^{2}+9=0$
- Roots of the CE: $r_{1}=3 i, r_{2}=-3 i$.
- By solution (9), the general solution

$$
y=e^{\lambda t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right)=c_{1} \cos 3 t+c_{2} \sin 3 t
$$

- Answer to the last part: the solution will be a STABLE oscillation; because there is no exponential part.

Continued

- Before we use the initial values, compute

$$
y^{\prime}=-3 c_{1} \sin 3 t+3 c_{2} \cos 3 t
$$

- Initial value conditions:

$$
\left\{\begin{array} { l }
{ y (0) = c _ { 1 } = 0 } \\
{ y ^ { \prime } (0) = 3 c _ { 2 } = 1 }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
c_{1}=0 \\
c_{2}=\frac{1}{3}
\end{array}\right.\right.
$$

Continued

- So, the solution is

$$
y=\frac{1}{3} \sin 3 t
$$

- Repeat: $y=y(t)$ has an STABLE oscillation.

Graph of $y=y(t)$:

Sample III: Stable Oscillation

On the Matlab Graph

- It took some trial and error to get a good graph.
- Following commands were used to get this graph:
- $\mathrm{t}=[0 . .01: 10]$;
- $\mathrm{y}=\sin \left(3^{*} \mathrm{t}\right) / 3$;
- plot(t,y), title('Sample III: Stable Oscillation')

Example 4

Consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\pi^{2} y=0 \\
y(1)=1 \\
y^{\prime}(1)=1
\end{array}\right.
$$

- Solve the problem
- Sketch the graph
- Describe the nature of the solution, as $t \rightarrow \infty$

Solution

- The CE: $r^{2}+\pi^{2}=0$
- Roots of the CE: $r_{1}=\pi i, r_{2}=-\pi i$.
- By solution (9), the general solution

$$
y=e^{\lambda t}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right)=c_{1} \cos \pi t+c_{2} \sin \pi t
$$

- Answer to the last part: the solution will be a STABLE oscillation; because there is no exponential part.

Continued

- Before we use the initial values, compute

$$
y^{\prime}=-\pi c_{1} \sin \pi t+\pi c_{2} \cos \pi t
$$

- Initial value conditions:

$$
\left\{\begin{array} { l }
{ y (1) = - c _ { 1 } = 1 } \\
{ y ^ { \prime } (1) = - \pi c _ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-1 \\
c_{2}=-\frac{1}{\pi}
\end{array}\right.\right.
$$

Continued

- So, the solution is

$$
y=c_{1} \cos \pi t+c_{2} \sin \pi t=-\cos \pi t-\frac{1}{\pi} \sin \pi t
$$

- Repeat: $y=y(t)$ has an STABLE oscillation.

Graph of $y=y(t)$:

