
On complex solutions
This Section

Examples

Chapter 3: Second Order ODE
§3.5 Complex roots of the CE

Satya Mandal, KU

20 February 2018

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the CE



On complex solutions
This Section

Examples

Homogeneous LSODEs

I Recall a Homogeneous LSODEs has one of the following
two forms:

L(y) = y” + p(t)y ′ + q(t)y = 0 (1)

Or L(y) = P(t)y” + Q(t)y ′ + R(t)y = 0 (2)

where p(t), q(t),P(t),Q(t),R(t) are functions of t.
I The Trivial Solution: For any homogeneous equation (1,

2), y = 0 is a solution.
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Complex solutions to real

Sometimes the equation 1 (or 2), would have complex
solutions, while we are interested only in real solution. The
following theorem helps.

Theorem 3.5.1: Consider the homogeneous equation (1),
where p(t), q(t) are real valued functions of t.
Let y = ϕ(t) = u(t) + iv(t) be a complex solution of the
ODE (1), where u(t) is the real part and v(t) is the imaginary
part of y .
Then, both y = u(t), y = v(t) are solutions of (1).
Proof: Use linearity.
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Complex roots of the CE

Consider a 2nd -Order Homogeneous linear ODE, with constant
coefficients:

L(y) = ay” + by ′ + cy = 0 a, b, c ∈ R (3)

The CE of (3) is : ar 2 + br + c = 0 (4)

I In §3.2, 3.4 we dealt with the situations, when (4),
respectively, had unequal or repeated real roots.

I In this section, we deal with the case, when the CE (4)
would have complex roots.
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Continued

I The CE (4) would have complex root, when
b2 − 4ac < 0. The roots are{

r1 = λ + iµ = −b+
√
b2−4ac
2a

r2 = λ− iµ = −b−
√
b2−4ac
2a

where i =
√
−1

We say, r1 and r2 are conjugate of each other.
I As in §3.2 (3) has two solutions:{

y1(t) = er1t = exp[(λ + iµ)t] = eλte iµt

y2(t) = er2t = exp](λ− iµ)t] = eλte−iµt
(5)

I However, (5) involves complex exponentiation e iµt , e−iµt .
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Complex Exponentiation

I For real numbers θ, we define e iθ = cos θ + i sin θ.
I For complex numbers z = ρ + iθ define

ez :=eρ+iθ := eρe iθ = eρ(cos θ + i sin θ)

I All the rules of exponentiation that you are familiar with
work, with this definition of ez . In particular

ez+w = ezew for all z ,w ∈ C.

I Justifications for defining complex exponentiation ez this
way, is dealt with in the Complex Analysis Courses.
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Solution of (3)

I So the solution (5) of (3) reduces to:{
y1(t) = eλt(cosµt + i sinµt)
y2(t) = eλt(cosµt − i sinµt)

(6)

I By Theorem 3.5.1 both the real and complex parts (of y1

or y2) are solution of (3). We get two real solutions:{
u(t) = eλt cosµt
v(t) = eλt sinµt (7)
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Continued

I Wronskian of u, u is

W (u, v)(t) =

∣∣∣∣ u(t) v(t)
u′(t) v ′(t)

∣∣∣∣
=

∣∣∣∣ eλt cosµt eλt sinµt
λeλt cosµt − eλtµ sinµt λeλt sinµt + eλtµ cosµt

∣∣∣∣
= e2λt

∣∣∣∣ cosµt sinµt
λ cosµt − µ sinµt λ sinµt + µ cosµt

∣∣∣∣ = µe2λt
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Continued

I So, (since µ 6= 0), Wronskian W (u, v)(t) = µe2λt 6= 0.
I So, u, v form a fundamental set of solutions of (3).
I So, the general (real) solution of (3) has the form

y = c1u(t) + c2v(t) = c1e
λt cosµt + c2e

λt sinµt (8)

where c1, c2 are arbitrary constants.
I We can write the same as

y = eλt(c1 cosµt + c2 sinµt) (9)

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the CE



On complex solutions
This Section

Examples
Complex roots of the CE

Behavior of the solution

If the CE (4) has complex roots or µ 6= 0, then, the solution
(9) has two factors:

I The exponential factor:

E (t) = eλt

Depending on the sign of λ this part will "blow up" to
∞ or "decay" to the x−axis (horizontal asymptote).

I The periodic factor.

Φ(t) = c1 cosµt + c2 sinµt with periodicity=
2π
µ
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I Further,

−(|c1|+ |c2|) ≤ Φ(t) ≤ (|c1|+ |c2|)

The graph of Φ(t) contributes to a steady oscillation.
I The behavior of the solution y (as in (9)) will be a

combination of (1) the exponential rise/decay due to
E (t) and (2) the periodic oscillation due to Φ(t).
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Continued

So, the nature of the solutions is summarized as follows:
I If λ = 0 then the solution would be a steady oscillation.
I If λ > 0, it will be unsteady oscillation.
I If λ < 0 the oscillation will stabilize with time.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Example 1

Consider the IVP: 
y”− 4y ′ + 8y = 0
y(π/8) = 0
y ′(π/8) = eπ/4

I Solve the problem
I Sketch the graph
I Describe the nature of the solution, as t →∞
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Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Solution

I The CE: r 2 − 4r + 8 = 0
I Roots of the CE: r1 = 2 + 2i , r2 = 2− 2i .
I By solution (9), the general solution

y = eλt(c1 cosµt + c2 sinµt) = e2t(c1 cos 2t + c2 sin 2t)

I The answer to the last part: the solution would be an
unsteady oscillation; because the exponential part is e2t
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Continued

I Before we use the initial values, compute

y ′ = 2e2t(c1 cos 2t+c2 sin 2t)+e2t(−2c1 sin 2t+2c2 cos 2t)

I Initial value conditions: y(π/8) = 2eπ/4
(

c1√
2

+ c2√
2

)
= 0

y ′(π/8) = 2eπ/4
(

c1√
2

+ c2√
2

)
+ eπ/4

(
−2c1√

2
+ 2c2√

2

)
= eπ/4

{
c1 + c2 = 0

4√
2
c2 = 1 =⇒

{
c1 = − 1

2
√

2
c2 = 1

2
√

2

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the CE



On complex solutions
This Section

Examples

Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Continued

I So, the solution is

y = e2t
(
− 1
2
√
2
cos 2t +

1
2
√
2
sin 2t

)
I Repeat: y = y(t) has an unsteady/unstable oscillation.
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Graph of y = y(t):
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8 y=e2t(cos(2t)+sin(2t))/2sqrt2
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Example 2 (Dampened Oscillation)

Consider the IVP: 
y” + 4y ′ + 5y = 0
y(π/4) = 2
y ′(π/4) = −4

I Solve the problem
I Sketch the graph
I Describe the nature of the solution, as t →∞
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Solution

I The CE: r 2 + 4r + 5 = 0
I Roots of the CE: r1 = −2 + i , r2 = −2− i .
I By solution (9), the general solution

y = eλt(c1 cosµt + c2 sinµt) = e−2t(c1 cos t + c2 sin t)

I The answer to the last part: the solution will be an
stabilized/dampened/ decaying oscillation; because the
exponential part is e−2t
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Continued

I Before we use the initial values, compute

y ′ = −2e−2t(c1 cos t + c2 sin t) + e−2t(−c1 sin t + c2 cos t)

I Initial value conditions: y(π/4) = e−π/2
(

c1√
2

+ c2√
2

)
= 2

y ′(π/4) = −2e−π/2
(

c1√
2

+ c2√
2

)
+ e−π/2

(
− c1√

2
+ c2√

2

)
= −4{

c1 + c2 = 2
√
2eπ/2

−4 + e−π/2
(
− c1√

2
+ c2√

2

)
= −4 ⇒

{
c1 + c2 = 2

√
2eπ/2

c1 = c2
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Continued

I So, c1 = c2 =
√
2eπ/2

I So, the solution is

y = e−2t (c1 cos t + c2 sin t)

= e−2t
(√

2eπ/2 cos t +
√
2eπ/2 sin t

)
=
√
2e−2t+π/2 (cos t + sin t)

I Repeat: the y = y(t) has stabilized/dampened/ decaying
oscillation.
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Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Graph of y = y(t): The exponential part E (t) = e−2t+π/2

dampens (flattens) the graphs very quickly.
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y=sqrt(2)e-2t+pi/2(cost t+sin t)
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Example 4 (Stable oscillation)

Example 3

Consider the IVP: 
y” + 9y = 0
y(0) = 0
y ′(0) = 1

I Solve the problem
I Sketch the graph
I Describe the nature of the solution, as t →∞
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Solution

I The CE: r 2 + 9 = 0
I Roots of the CE: r1 = 3i , r2 = −3i .
I By solution (9), the general solution

y = eλt(c1 cosµt + c2 sinµt) = c1 cos 3t + c2 sin 3t

I Answer to the last part: the solution will be a STABLE
oscillation; because there is no exponential part.
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Example 2 (Dampened Oscillation)
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Example 4 (Stable oscillation)

Continued

I Before we use the initial values, compute

y ′ = −3c1 sin 3t + 3c2 cos 3t

I Initial value conditions:{
y(0) = c1 = 0
y ′(0) = 3c2 = 1 =⇒

{
c1 = 0
c2 = 1

3
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Continued

I So, the solution is

y =
1
3
sin 3t

I Repeat: y = y(t) has an STABLE oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Graph of y = y(t):
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Sample III: Stable Oscillation
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On the Matlab Graph

I It took some trial and error to get a good graph.
I Following commands were used to get this graph:

I t=[0:.01:10];
I y=sin(3*t)/3;
I plot(t,y), title(’Sample III: Stable Oscillation’)
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Example 4

Consider the IVP: 
y” + π2y = 0
y(1) = 1
y ′(1) = 1

I Solve the problem
I Sketch the graph
I Describe the nature of the solution, as t →∞
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Solution

I The CE: r 2 + π2 = 0
I Roots of the CE: r1 = πi , r2 = −πi .
I By solution (9), the general solution

y = eλt(c1 cosµt + c2 sinµt) = c1 cosπt + c2 sin πt

I Answer to the last part: the solution will be a STABLE
oscillation; because there is no exponential part.
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Continued

I Before we use the initial values, compute

y ′ = −πc1 sin πt + πc2 cosπt

I Initial value conditions:{
y(1) = −c1 = 1
y ′(1) = −πc2 = 1 =⇒

{
c1 = −1
c2 = − 1

π
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Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Example 4 (Stable oscillation)

Continued

I So, the solution is

y = c1 cosπt + c2 sin πt = − cosπt − 1
π
sinπt

I Repeat: y = y(t) has an STABLE oscillation.
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Graph of y = y(t):
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y=-cos(pi t)-sin(pi t)/pi
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