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Homogeneous LSODEs

» Recall a Homogeneous LSODEs has one of the following
two forms:

Ly)=y" +p(t)y’ +q(t)y =0 (1)

Or L(y)=P(t)y" +Q(t)y' + R(t)y =0 (2)
where p(t), q(t), P(t), Q(t), R(t) are functions of t.

» The Trivial Solution: For any homogeneous equation (1,
2), y = 0 is a solution.
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On complex solutions

Complex solutions to real

Sometimes the equation 1 (or 2), would have complex
solutions, while we are interested only in real solution. The
following theorem helps.

Theorem 3.5.1: Consider the homogeneous equation (1),
where p(t), q(t) are real valued functions of t.

Let y = o(t) = u(t) + iv(t) be a complex solution of the
ODE (1), where u(t) is the real part and v(t) is the imaginary
part of y.

Then, both y = u(t), y = v(t) are solutions of (1).

Proof: Use linearity.
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This Section Complex roots of the CE

Complex roots of the CE

Consider a 2"¥-Order Homogeneous linear ODE, with constant
coefficients:

L(y)=ay" +by' +cy=0 a,b,ceR (3)

The CE of (3)is: ar’ +br+c=0 (4)

» In §3.2, 3.4 we dealt with the situations, when (4),
respectively, had unequal or repeated real roots.

» In this section, we deal with the case, when the CE (4)
would have complex roots.
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This Section Complex roots of the CE

Continued

» The CE (4) would have complex root, when
b?> — 4ac < 0. The roots are

. _ 2 __
{ no= A+ ip = =it

We say, r; and r, are conjugate of each other.
» As in §3.2 (3) has two solutions:

yi(t) = et = exp[(\ + ip)t] = eMtert
{ ya(t) = €2 = exp](A — in)t] = eMe Mt (5)

» However, (5) involves complex exponentiation e’#t, e+t
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This Section Complex roots of the CE

Complex Exponentiation

v

For real numbers 0, we define e’ = cosf + isin6.

v

For complex numbers z = p + i define
e :=ePT .= ePe!® = eP(cosf + isinf)

All the rules of exponentiation that you are familiar with
work, with this definition of €*. In particular

v

Z4+w z _w

e = e‘e forall z,we C.

v

Justifications for defining complex exponentiation e* this
way, is dealt with in the Complex Analysis Courses.
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This Section Complex roots of the CE

Solution of (3)

» So the solution (5) of (3) reduces to:

y1(t) = eM(cos put + isin ut) (6)
yo(t) = e*(cos put — isin ut)

» By Theorem 3.5.1 both the real and complex parts (of y;
or y») are solution of (3). We get two real solutions:

u(t) = eMcos put
{ v(t) = e sinpt (7)
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This Section Complex roots of the CE

Continued

» Wronskian of u, u is

B ’ e’ cos ut eMsin ut

e cos ut — eMysin put AeMsin put + ey cos ut

cos it sin ut
Acos put — psinput  Asin put + g cos pt

2Xt

e2)\t = pe
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This Section Complex roots of the CE

Continued

So, (since it # 0), Wronskian W (u, v)(t) = pe*'t # 0.

So, u, v form a fundamental set of solutions of (3).

v

v

v

So, the general (real) solution of (3) has the form
y = cu(t) + qv(t) = crecos ut + ceMsinput  (8)

where ¢, ¢, are arbitrary constants.

» We can write the same as

y = eM(cy cos put + ¢y sin put) (9)

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the C



This Section Complex roots of the CE

Behavior of the solution

If the CE (4) has complex roots or i # 0, then, the solution
(9) has two factors:

» The exponential factor:
E(t) =M

Depending on the sign of A this part will "blow up" to
oo or "decay" to the x—axis (horizontal asymptote).

» The periodic factor.

2
®(t) = ¢ cos ut + cpsinput with periodicity= uill
!
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This Section Complex roots of the CE

» Further,
—(lal +lal) < o(t) < (la| + |cl)

The graph of ®(t) contributes to a steady oscillation.

» The behavior of the solution y (as in (9)) will be a
combination of (1) the exponential rise/decay due to
E(t) and (2) the periodic oscillation due to ®(t).
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This Section Complex roots of the CE

Continued

So, the nature of the solutions is summarized as follows:
» If A =0 then the solution would be a steady oscillation.
» If A >0, it will be unsteady oscillation.
» If A < 0 the oscillation will stabilize with time.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 1

Consider the IVP:

Yy —4y' +8y=0
y(m/8) =0
y'(m/8) = e™/*

» Solve the problem

» Sketch the graph

» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

The CE: r> —4r+8=0
Roots of the CE: =2+ 2/, n =2 —2/.
By solution (9), the general solution

v

v

v

y = eM(cy cos put + ¢y sin put) = e*(cy cos 2t + ¢y sin 2t)

v

The answer to the last part: the solution would be an
unsteady oscillation; because the exponential part is et
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Example 1 (unstable oscillation)

Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)
Examples

Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute

/

y' = 2e*(cy cos 2t+cy sin 2t)+e*(—2c; sin 2t+2¢; cos 2t)

Initial value conditions:

y(7/8) = 2em/4 (\—; n 72) 0

(77'/8) — 2e™/* (\—} \—}) -+ e™/4 < %% + 2\/Cg> e™/4

1

a+a=0 G =—575

{ 4, s o 12\@
V22 2= 32
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, the solution is

1 1
2t .
y=e (— cos 2t + sin 2t)
2.2 22

» Repeat: y = y(t) has an unsteady/unstable oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t):

x10%

y=e?(cos(2t)+sin(2t))/2sqrt2

25
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 2 (Dampened Oscillation)

Consider the IVP:

y' +4y' +5y =0
y(r/4) =2
y/(n/4) = —4

» Solve the problem

» Sketch the graph
» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

» The CE: r> +4r +5=0
» Rootsofthe CE: n = -2+i, n=—-2—1.
» By solution (9), the general solution

y = eM(cicos put + cysinut) = e *(crcost + e sin t)

» The answer to the last part: the solution will be an
stabilized/dampened/ decaying oscillation; because the
exponential part is e~
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute
y' = —2e?*(cicost+cysint) + e 2 (—cysint+ ¢ cost)

» Initial value conditions:

y(r/4) =2 (% + %) =2
yY'(n/4) = —2e77 (f/—g + j—g) + e /2 (—f/—g + %) = —4

a + o = 2v/2e™? a1+ o = 2v/2e™?
—4 4 e /2 (_&4_&) = —4 = c1 =¢C
V2 V2 1 2
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, ¢; = ¢ = \/2e™/?

» So, the solution is

y=e?(cicost+ csint)

—e 2t <\/§e”/2 cos t + V2e™?sin t)

= /2e7247/2 (cos t + sin t)

» Repeat: the y = y(t) has stabilized/dampened/ decaying
oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t): The exponential part E(t) = e 2t*7/2

dampens (flattens) the graphs very quickly.

y=sqrt(2)e’2*P"2(cost t+sin t)
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 3

Consider the IVP:

y' ' +9y =0
y(0) =0
y'(0)=1

» Solve the problem
» Sketch the graph

» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

The CE: r24+9=0

>
» Roots of the CE: b =3/, n = —3I.
» By solution (9), the general solution
y = e(cy cos put 4 ¢y sin put) = ¢ cos 3t + cysin 3t
» Answer to the last part: the solution will be a STABLE

oscillation; because there is no exponential part.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute
y' = =3¢ sin3t + 3¢, cos 3t

» Initial value conditions:

wik O
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, the solution is

1
y:§sm3t

» Repeat: y = y(t) has an STABLE oscillation.

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the C



Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t):

Sample III: Stable Oscillation
0.4 T T T T T T T T T
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

On the Matlab Graph

» It took some trial and error to get a good graph.
» Following commands were used to get this graph:
» t=[0:.01:10];
» y=sin(3*t)/3;
» plot(t,y), title('Sample Ill: Stable Oscillation")
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 4

Consider the IVP:

< <
'—l
v+
Il

[ S

<
N
—~~
[y
N

Il

» Solve the problem
» Sketch the graph
» Describe the nature of the solution, as t — oo

Satya Mandal, KU Chapter 3: Second Order ODE §3.5 Complex roots of the C



Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

The CE: r2 4+ 72 =0

>
» Roots of the CE: b = 7i, n = —m7i.
» By solution (9), the general solution
y = eM(cycos put 4 ¢y sinput) = ¢ cosmt + cysinwt
» Answer to the last part: the solution will be a STABLE

oscillation; because there is no exponential part.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute

y' = —mc sinmt + mep cos Tt

» Initial value conditions:

{ﬂD:—q:l . {q:—l

y(1)=—-7mc=1 G =—=
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, the solution is
y =ccosmt+ csinmt = —cosmt — —sinTt

™

» Repeat: y = y(t) has an STABLE oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t):

y=-cos(pi t)-sin(pi t)/pi
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