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SODEs

I Recall, second order ODE (SODE) has the form

d2y

dt2 = f

(
t, y ,

dy

dt

)
(1)

This is also written as

y” = f (t, y , y ′)
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LSODE

I A linear second order ODE (LSODE), is often written as:

d2y

dt2 + p(t)
dy

dt
+ q(t)y = g(t) (2)

This is also written as

y” + p(t)y ′ + q(t)y = g(t)

where p(t), q(t), g(t) are functions of t.
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I Another form of second order ODE (2) is:

P(t)
d2y

dt2 + Q(t)
dy

dt
+ R(t)y = G (t) (3)

where P(t),Q(t),R(t),G (t) are functions of t. This is
also written as

P(t)y” + Q(t)y ′ + R(t)y = G (t)
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Homogeneous Equations
I The ODEs (2, 3) would be called homogeneous, if

g(t) = 0 or G (t) = 0. So, it looks like:

y”+p(t)y ′+q(t)y = 0 or P(t)y”+Q(t)y ′+R(t)y = 0
(4)

I (The Trivial Solution): The constant y = 0 is a solution
of any such homogeneous equation (4). (This property is
analogous to that of system of homogeneous linear
equations Ax = 0, in algebra, where x = 0 is the trivial
solutuon.)

I In previous section, we considered LSODEs with constant
coefficients.
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Main Point

I Perhaps, the main point of this section is Theorem 3.3.3
regarding Fundamental Set of Solutions.

I We also State Existence and Uniqueness Theorem 3.3.2,
for Linear Homogeneous ODE, of order two.
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Derivative as an operator

I It is helpful think of derivative D = d
dt

as an operator.
I Given any differentiable function ϕ(t), D = d

dt
operates

on ϕ(t) and produces the derivative D(ϕ) = dϕ
dt
.

I D sends
ϕ 7→ D(ϕ) =

dϕ

dt
.

I We extend this idea of "operators" in the next frame, in
the context of linear second order ODE (LSODE).
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Differential Operators

I Suppose p(t), q(t) are two continuous functions on an
open interval I = (α, β), which means: α < t < β. We
define a differential operator L, which operates on all
twice differentiable functions ϕ(t) on I as follows:

L(ϕ) := d2ϕ

dt2 + p
dϕ

dt
+ qϕ (5)

This is also written as L(ϕ) := ϕ” + pϕ′ + qϕ.
I We also write L = D2 + pD + q where D = d

dt
.
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Continued

I Such operators are like "functions". Given a twice
differentiable functions ϕ, the "operation" L operates on
ϕ and produces a new function L(ϕ) := ϕ” + pϕ′ + qϕ.

L associates ϕ 7→ L(ϕ) := ϕ” + pϕ′ + qϕ
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Continued

I Example: L = D2 + 2etD +
√
t is a differential operator.

I When it operates on ϕ(t) = t3 + sin t, then L(t3 + sin t)

= D2(t3 + sin t) + 2etD(t3 + sin t) +
√
t(t3 + sin t)

= (6t − sint) + (3t3 + cos t) +
√
t(t3 + sin t)

I Example: L = D2 + sin(2t)D + ln t is a differential
operator.

I When it operates on ϕ(t) = e2t , then

L(e2t) = D2(e2t) + sin(2t)D(e2t) + ln t(e2t)

= 4e2t + sin(2t)(2e2t) + ln t(e2t)
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Properties and Plan
I Properties: Let L = D2 + pD + q. Then, L is a Linear

Operator, in the following sense:
I L is Linear, in the sense, for any two differentiable

function y = ϕ1(t), y = ϕ2(t), and for a ∈ R, we have{
L(ϕ1 + ϕ2) = L(ϕ1) + L(ϕ2)
L(aϕ1) = aL(ϕ1)

I Putting them together for scalars a, b ∈ R we have:

L(aϕ1 + bϕ2) = aL(ϕ1) + bL(ϕ2) (6)

I Plan: Get used to the idea (jargon) of such operators L.
Use this jargon to express LSODEs.
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Consequence of the Properties

Linear Combination of two solutions:
I Theorem 3.3.1: Suppose L = D2 + pD+ q is a differential

operator. Consider the homogeneous LSODE L(y) = 0.
Let y = ϕ1(t), y = ϕ2(t) be two solutions of this ODE.
Then, for any constants c1, c2 ∈ R, the linear combination
y = c1ϕ1(t) + c2ϕ2(t) is also a solution of this equation.
Proof. By (6) we have

L(c1ϕ1+c2ϕ2) = c1L(ϕ1)+c2L(ϕ2) = c1 ∗0+c2 ∗0 = 0.

The proof is complete.
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Existence and Uniqueness

I Given any equation (in math or life), existence of a
solution is not guaranteed. If and when, there is a
solution, there is no guarantee that the solution would be
unique. We seek conditions, under which, there are such
guarantees.

I In §2.5 we dealt with these questions for first order Linear
ODEs.In complete analogy to the Existence and
Uniqueness Theorem (2.5.1) for 1st-order Linear IVPs, in
the next frame, we state the Existence and Uniqueness
Theorem for 2nd -order IVPs.
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The Existence and Uniqueness Theorem

I Theorem 3.3.2. Consider the 2nd -order Linear IVP
y” + p(t)y ′ + q(t)y = g(t)

y(t0) = y0

y ′(t0) = y ′0

(7)

Assume p(t), q(t), g(t) are continuous on an open
interval I : α < t < β and t0 in I . Then,

I The IVP (7) has a solution y = ϕ(t).
I The domain of y = ϕ(t) is I ,
I The solution y = ϕ(t) is unique, on I .
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Remark

Since the above Existence and Uniqueness Theorem (3.3.2) is
completely analogous to the corresponding theorem for First
Order ODE (Theorem 2.5.1), we would skip any further
discussion on this Theorem.
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Further Goals

Consider a 2nd -order Linear Homogeneous ODE, on an open
interval I : α < t < β:{

d2y
dt2

+ p(t)dy
dt

+ q(t)y = 0 or

P(t)d
2y

dt2
+ Q(t)dy

dt
+ R(t)y = 0

(8)

Assume p(t), q(t) etc. are continuous on I . Write it (8) as:

L(y) = 0 where L =

{
d2

dt2
+ p(t) d

dt
+ q(t) OR

P(t) d2

dt2
+ Q(t) d

dt
+ R(t)

(9)
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Continued

We know,
I The ODE (9) has the trivial solution y = 0.
I Also, if y = ϕ1(t), y = ϕ2(t) solutions of (9), then any

constant linear combination

y = aϕ1 + bϕ2 is a solutions of (9).
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Continued

I Question: Suppose y = ϕ1(t), y = ϕ2(t) are two
solutions of the ODE (9). Suppose, y = ϕ(t) is any other
solution of (9). Question is, can we write ϕ as a constant
linear combinations of ϕ1 and ϕ2?

We investigate, under what conditions on
y = ϕ1(t), y = ϕ2(t), such is the case?
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Definition: The Fundamental Set

Definition: Suppose y = ϕ1(t), y = ϕ2(t) are two solutions
of the ODE (9). We say that y = ϕ1(t), y = ϕ2(t) form a
Fundamental Set of solutions, if any other solution y = ϕ(t)
can be written as a constant linear combination of
y = ϕ1(t), y = ϕ2(t). That means, if

y = ϕ(t) = aϕ1(t) + bϕ2(t) ∀ t ∈ I for some a, b ∈ R

(Now, we investigate, when y = ϕ1(t), y = ϕ2(t) would be a
Fundamental Set of solutions.)

Satya Mandal, KU Chapter 3:Second Order ODE §3.3 Fundamental Set of Solutions of Homogeneous LSODEs



Differential Operators
Existence and Uniqueness

Fundamental Set of Solutions
Examples

With constant coefficients
More Examples
Abel’s Theorem

Examples on Abel’s Theorem

The Definition
Definition: Wronskian
Wronskian and Fundamental Set

Wronskian

Definition. Let y = ϕ1(t), y = ϕ2(t) be two differentiable
functions on an open interval I : α < t < β. The Wronskian
W (t), of these two functions is defined to be the function:

W (t) =

∣∣∣∣ ϕ1(t) ϕ2(t)
ϕ′1(t) ϕ′2(t)

∣∣∣∣ t ∈ I (10)

Sometimes,to indicate its dependence on ϕ1, ϕ2, W (t) is
denoted by

W (ϕ1, ϕ2)(t) := W (t)

.
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The (Wronskian) Theorem 3.3.3

Theorem 3.3.3 Consider the 2nd -order Linear ODE (9). Fix
t0 ∈ I . Let y = ϕ1(t), y = ϕ2(t) be two solutions of (9). Let
W (t) denote the Wronskian of y = ϕ1(t), y = ϕ2(t). Then,
the following three conditions are equivalent:
(1) W (t) 6= 0 for all t ∈ I .
(2) W (t0) 6= 0.
(3) y = ϕ1(t), y = ϕ2(t) form a Fundamental set (pair) of

Solutions of (9).
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The Proof.

(1) =⇒ (2) is obvious. To prove (2) =⇒ (3), let y = ϕ(t) be
a solution of (9). We need to prove that ϕ = c1ϕ1 + c2ϕ2.
Write y0 = ϕ(t0), y ′0 = ϕ′(t0). Consider the system of two
linear equations(

ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

)(
c1

c2

)
=

(
y0

y ′0

)
We have

W (t0) =

∣∣∣∣ ϕ1(t0) ϕ2(t0)
ϕ′1(t0) ϕ′2(t0)

∣∣∣∣ 6= 0

Satya Mandal, KU Chapter 3:Second Order ODE §3.3 Fundamental Set of Solutions of Homogeneous LSODEs



Differential Operators
Existence and Uniqueness

Fundamental Set of Solutions
Examples

With constant coefficients
More Examples
Abel’s Theorem

Examples on Abel’s Theorem

The Definition
Definition: Wronskian
Wronskian and Fundamental Set

Proof: Continued

By Cramer’s Rule, in Linear Algebra (Math 290), the above
system has a unique solution, given by

c1 =

∣∣∣∣ y0 ϕ2(t0)
y ′0 ϕ′2(t0)

∣∣∣∣
W (t0)

, c2 =

∣∣∣∣ ϕ1(t0) y0

ϕ′1(t0) y ′0

∣∣∣∣
W (t0)

(11)

With c1, c2, as in (11), let

ψ(t) = c1ϕ1 + c2ϕ2
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Proof: Continued

I Both ψ and ϕ are solutions of (11).
I They are both solutions of the IVP:

L(y) = y” + p(t)y ′ + q(t)y = 0
y(t0) = y0

y ′(t0) = y ′0

I By uniqueness part of Theorem 3.3.2,
ϕ = ψ = c1ϕ1 + c2ϕ2.

So, (3) is established. That means ϕ1, ϕ2 forms a
Fundamental set of solutions.
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Proof: Continued
To prove (3) =⇒ (1), assume W (τ0) = 0 for some τ0 ∈ I .
Claim: There are choices of real numbers y0, y

′
0, to be

determined, such that the system(
ϕ1(τ0) ϕ2(τ0)
ϕ′1(τ0) ϕ′2(τ0)

)(
c1

c2

)
=

(
y0

y ′0

)
(12)

has no solutions. For notational convenience, denote

C =

(
ϕ1(τ0) ϕ2(τ0)
ϕ′1(τ0) ϕ′2(τ0)

)
=

(
a b
c d

)
We have Adj(C )C =

(
W (τ0) 0

0 W (τ0)

)
=

(
0 0
0 0

)
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Continued
Multiplying Equation 12 by Adj(C ) we have,(

0
0

)
= Adj(C )

(
y0

y ′0

)
=

(
d −b
−c d

)(
y0

y ′0

)

=

(
dy0 − by ′0
−cy0 + dy ′′0

)
Chose y0, y1 3

(
dy0 − by ′0
−cy0 + dy ′′0

)
6=
(

0
0

)
(13)

With this choice, the linear system (12) would not have any
solution.
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Continued

With the above choice (13) of y0, y
′
0, consider the IVP

L(y) = y” + p(t)y ′ + q(t)y = 0
y(τ0) = y0

y ′(τ0) = y ′0

By existence part of Theorem 3.3.2, this IVP has a unique
solution y = ϕ(t). This solution y = ϕ(t) cannot be written
as a linear combination ϕ = c1ϕ1 + c2ϕ2. Because, such c1, c2

must be a solution of the linear system (12).
The Proof of the Theorem is complete.
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Example 1
Example 2
Example 3

Example 1

Compute the Wronskian of y1 = sin t, y2 = cos t.

Solution:

I The derivatives
{

y ′1 = cos t
y ′2 = − sin t

I The Wronskian:

W (t) =

∣∣∣∣ y1(t) y2(t)
y ′1 y ′2(t)

∣∣∣∣ = ∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣ = −1
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Example 1
Example 2
Example 3

Example 2

Compute the Wronskian of y1 = e2t , y2 = e−2t .

Solution:

I The derivatives
{

y ′1 = 2e2t

y ′2 = −2e−2t

I The Wronskian:

W (t) =

∣∣∣∣ y1(t) y2(t)
y ′1 y ′2(t)

∣∣∣∣ = ∣∣∣∣ e2t e−2t

2e2t −2e−2t

∣∣∣∣ = −4
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Example 3

Consider the 2nd -order ODE

d2y

dt
− 2

dy

dt
− 3y = 0

I Compute a pair of solutions, as in §3.2.
I Compute the Wronskian of this pair.
I Use Theorem 3.3.3 to conclude that this pair is a

Fundamental set of solutions.
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Example 1
Example 2
Example 3

Solution

I The CE: r 2 − 2r − 3 = 0. So, r1 = −1, r2 = 3
I So,

y1 = er1t = e−t , y2 = er2t = e3t

are two solutions.
I The Wronskian:

W (t) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ e−t e3t

−e−t 3e3t

∣∣∣∣ = 4e2t
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Example 2
Example 3

Continued

I Finally: Since W (t) = 4e2t 6= 0, this pair of solutions
y1 = e−t , y2 = e3t form a Fundamental set of solution.
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An Application of Theorem 3.3.3

The Example 3 is a particular case of the following Lemma:

Lemma 3.3.4 Consider a 2nd -order ODE with constant
coefficients:

a
d2y

dt
+ b

dy

dt
+ cy = 0

Suppose the Characteristic Equation ar 2 + br + c = 0 has two
real roots r = r1, r2, with r1 6= r2. Then,{

y1 = er1t

y2 = er2t
form a Fundamental Set of Solutions

of the ODE.
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Proof.

The Wronskian:

W (t) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ er1t er2t

r1e
r1 r2e

r2t

∣∣∣∣ = (r2 − r1)e
(r1+r2)t 6= 0

By Theorem 3.3.3 they y1 = er1t , y2 = er2t form a
Fundamental Set of Solutions. The proof is complete.
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An Application of Theorem 3.3.3

Remark: Other Two Cases

Remark. We would see in the next two sections that, Lemma
3.3.4 remains valid, even when the Characteristic Equation
ar 2 + br + c = 0 of the ODE

a
d2y

dt
+ b

dy

dt
+ cy = 0

has two repeated real root or two conjugate complex roots.
Next few problems are "warm up" for the same.
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Example 4
Example 5
Example 6

Example 4
Consider the ODE d2y

dt2
+ 9y = 0. Consider the functions

y1(t) = cos 3t, y2(t) = sin 3t. (1) Verify, if y1, y2 are solutions
of this DE, (2) If yes, do they form a fundamental set of
solutions?

I Check, if y1(t) = cos 3t is a solution.

y ′1 = −3 sin 3t, y1” = −9 cos 3t =⇒

y1” + 4y1 = −9 cos 3t + 4 cos 3t = 0

So, y1(t) = cos 2t is a solution of this ODE. Similarly, so
is y2(t) = sin 3t.
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Continued

I The Wronskian:

W (t) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ 3 cos 3t sin 3t
−3 sin 3t 3 cos 3t

∣∣∣∣ = 3

I Finally: In deed, W (t) = 36=0. By (3.3.3), y1 = cos 3t,
y2 = sin 3t form a fundamental set of solutions.

I Remark. The CE r 2 + 9 = 0 had Complex roots, to be
dealt with in §3.5.
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Example 5

Consider the ODE

d2y

dt2 − 2
dy

dt
+ 2y = 0. Let

{
y1 = et sin t
y2 = et cos t

(1) Check, y1, y2 are solutions of this ODE. (2) Prove they
form a fundamental set of solutions.
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Solution:

We have

dy1

dt
= et(sin t + cos t),

d2y1

dt2 = 2et cos t

So,

d2y1

dt2 −2
dy1

dt
+2y1 = 2et cos t−2(et(sin t+cos t))+2et sin t = 0

So, y1 is a solution. Likewise, y2 is a solution.
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Continued:

Compute
dy2

dt
= et(cos− sin t),

So, the Wronskian: W (t) =∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ et sin t et cos t
et(sin t + cos t) et(cos− sin t)

∣∣∣∣ = −e2t 6= 0

By Theorem 3.3.3 y1, y2 form a fundamental set of solutions.

Remark. The CE r 2 − 2r + 2 = 0 had Complex roots, to be
dealt with in §3.5..
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Example 6

Consider the ODE

d2y

dt2 − 4
dy

dt
+ 4y = 0. Let

{
y1 = e2t

y2 = te2t

(1) Check, y1, y2 are solutions of this ODE. (2) Prove they
form a fundamental set of solutions.
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Solution:

{
dy1
dt

= 2e2t , d2y1
dt2

= 4e2t

dy2
dt

= e2t(1+ 2t) d2y2
dt2

= 4e2t(1+ t)

So,{
d2y1
dt2

+ 4dy1
dt

+ 4y1 = 4e−2t − 8e−2t + 4e−2t = 0
d2y2
dt2

+ 4dy2
dt

+ 4y2 = 4e2t(1+ t)− 4e2t(1+ 2t) + 4te2t = 0

So, both y1, y2 are solutions.
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Continued:

So, the Wronskian: W (t) =∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ e2t te2t

2e2t e2t(1+ 2t)

∣∣∣∣ = e4t 6= 0

By Theorem 3.3.3 y1, y2 form a fundamental set of solutions.

Remark. The CE r 2 − 4r + 4 = 0 had a repeated real root
r = 2, to be dealt with in §3.4.
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Abel’s Theorem

Consider the 2nd -order homogeneous linear ODE, on an
interval I : α < t < β:

d2y

dt2 + p(t)
dy

dt
+ q(t)y = 0 (14)

where p(t), q(t) are continuous function on I .
I In the next frame, we state Abel’s Theorem, to compute

the Wronskian of any two solutions y = y1(t), y = y2(t).
I However, it does not seem very useful, because it does not

help to determine whether the Wronskian is zero or not?
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Theorem 3.3.5

Theorem 3.3.5 Suppose y1, y2 are two solutions of (14) and
p, q are continuous on the open interval I : α < t < β. Then,

W (y1, y2)(t) = c exp
(
−
∫

p(t)dt

)
(15)

where c is constant, independent of t, while it depends on
y1, y2.

Consequently, either W (y1, y2)(t) = 0 for all t in I (case
c = 0) or W (y1, y2)(t) 6= 0 for all t in I .
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Proof.

We have {
y1” + p(t)y ′1 + q(t)y1 = 0
y2” + p(t)y ′2 + q(t)y2 = 0 =⇒

{
y1”y2 + p(t)y ′1y2 + q(t)y1y2 = 0
y2”y1 + p(t)y ′2y1 + q(t)y2y1 = 0 =⇒

(y2”y1 − y1”y2) = −p(t)(y ′2y1 − y ′1y2) = −p(t)W (t) (16)

where W (t) := W (y1, y2)(t) = y ′2y1 − y ′1y2.

Satya Mandal, KU Chapter 3:Second Order ODE §3.3 Fundamental Set of Solutions of Homogeneous LSODEs



Differential Operators
Existence and Uniqueness

Fundamental Set of Solutions
Examples

With constant coefficients
More Examples
Abel’s Theorem

Examples on Abel’s Theorem

The Statement

Continued

It turns out
dW (t)

dt
= y2”y1 − y1”y2

From (16), we get

dW (t)

dt
= −p(t)W (t) =⇒

∫
dW (t)

W (t)
= −

∫
p(t)dt + c0 =⇒

ln(W (t)) = −
∫

p(t)dt+c0 =⇒ W (t) = c exp
(
−
∫

p(t)dt

)
The proof is complete.
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Example 7

Consider the, general form, 2nd -order Linear Homogeneous
ODE, with constant coefficients:

a
d2y

dt2 + b
dy

dt
+ cy = 0 a 6= 0. (17)

Let y = y1, y = y2 be two solutions. Use Abel’s theorem to
determine the Wronskian W (y1, y2), up to a constant.
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Solution:

We rewrite the ODE in the standard form:

a
d2y

dt2 +
b

a

dy

dt
+

c

a
y = 0

By Abel’s Theorem:

W (y1, y2) = c exp
(
−
∫

b

a
dt

)
= ce−

b
a
t
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I Remark 1. The roots of the CE of (17), are

r =
−b ±

√
b2 − 4ac
2a

So, −b
a
=some of the two roots

I Remark 2. Unfortunately, we cannot determine c ,
without further information about y1, y2. For this reason,
we de-emphasize Abel’s Theorem.
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Example 8

Consider the 2nd -order Linear Homogeneous ODE

(1+ t4)y” + 4t3y ′ + q(t)y = 0

Let y = y1, y = y2 be two solutions. Use Abel’s theorem to
determine the Wronskian W (y1, y2), up to a constant.

I Rewrite the ODE in the standard form

y” +
4t3

1+ t4 y
′ +

q(t)

1+ t4 = 0
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Continued

I So, p(x) = 4t3
1+t4

.
I By (15), the Wronskian

W = c exp
(
−
∫

p(t)dt

)
= c exp

(
−
∫

4t3

1+ t4dt

)
= c exp

(
− ln |1+ t4|

)
=

c

1+ t4
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