Chapter 3: Second Order ODE §3.2 Homogeneous Linear SODEs with constant coefficients

Satya Mandal, KU

10 February 2018

Goals

- In this section, we start working with Homogeneous LSODEs, with constant coefficients. Such an equation is written as:

$$
\begin{equation*}
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=0 \quad \text { where } \quad a, b, c \in \mathbb{R} \tag{1}
\end{equation*}
$$

also written as $a y^{\prime \prime}+b y^{\prime}+c=0$

The Characteristic equation

- Magically, solutions of (1) would be exponential functions $y=e^{r t}$, for some values of r; checked as folows.
- Substituting $y=e^{r t}$ in (1) we get

$$
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=\left(a r^{2}+b r+c\right) e^{r t}=0
$$

- It follows, $y=e^{r t}$ is a solution of (1) if and only if

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

This (2) is called the characteristic equation (CE) of (1).

Three cases of the roots of CE

- The roots of (2) is given by the Quadratic formula given by

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We would have three situations:

- The CE (2) has two distinct real roots $r=r_{1}, r_{2} \in \mathbb{R}$, $r_{1} \neq r_{2}$. (To be dealt with in this section).
- The CE (2) has two equal real roots $r=r_{1}=r_{2} \in \mathbb{R}$. (To be dealt with in §3.5).
- The CE (2) has two complex roots $r=r_{1}, r_{2} \in \mathbb{C}$, with $r_{1}=\overline{r_{2}}$. (To be dealt with in §3.4).

The case of two real roots $r_{1} \neq r_{2}$

Assume $r_{1} \neq r_{2}$ are two distinct roots of the CE (2).

- Then $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ are two solutions of (1). It follows, for any two arbitrary constants c_{1}, c_{2},

$$
\begin{equation*}
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \tag{3}
\end{equation*}
$$

is a solution of the LSODE (1). This can be seen by direct checking or by a "slick" method:

- Write

$$
\begin{aligned}
\mathcal{L}(y) & =a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y \\
\mathcal{L}\left(c_{1} y_{1}+c_{2} y_{2}\right) & =c_{1} \mathcal{L}\left(y_{1}\right)+c_{2} \mathcal{L}\left(y_{2}\right)=c_{1} * 0+c_{2} * 0=0
\end{aligned}
$$

- Note, for any funtion $z=\varphi(t)$, we can define

$$
\begin{gathered}
\mathcal{L}(z)=a \frac{d^{2} z}{d t^{2}}+b \frac{d z}{d t}+c z \text { and for } z_{1}=\varphi_{1}(t), z_{2}=\varphi_{2}(t) \\
\mathcal{L}\left(c_{1} z_{1}+c_{2} z_{2}\right)=c_{1} \mathcal{L}\left(z_{1}\right)+c_{2} \mathcal{L}\left(z_{2}\right)
\end{gathered}
$$

This is the "linearity" property of the "operator" \mathcal{L}.

Continued

- (3) will be called the general solution of the LSODE (1).

IVP: The Particular solution

- As in FODE, we need some additional information to determine the constants c_{1}, c_{2} in (3). Since we have two unknown constants, we would need two conditions.
- Along with LSODE (1), the initial value problem (IVP) has the form

$$
\left\{\begin{align*}
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y & =0 \tag{4}\\
y\left(t_{0}\right) & =y_{0} \\
y^{\prime}\left(t_{0}\right) & =y_{0}^{\prime}
\end{align*}\right.
$$

Continued

- We use the general solution (3) $y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
- Differentiating, $y^{\prime}(t)=c_{1} r_{1} e^{r_{1} t}+c_{2} r_{2} e^{r_{2} t}$
- Now, use the initial values:

$$
\left\{\begin{align*}
c_{1} e^{r_{1} t_{0}}+c_{2} e^{r_{2} t_{0}} & =y_{0} \tag{5}\\
c_{1} r_{1} e^{r_{1} t_{0}}+c_{2} r_{2} e^{r_{2} t_{0}} & =y_{0}^{\prime}
\end{align*}\right.
$$

- Solving (5), we get c_{1}, c_{2}. Combining with (3), we obtain particular solution.
- Using Cramer's rule, formula for c_{1}, c_{2} can be given.

Example 1

- Find the general solution of homogeneous SODE $2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0$
- The CE: $2 r^{2}+r-1=0$. So, $r_{1}=\frac{1}{2}, r_{2}=-1$
- By (3) the general solution is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{\frac{t}{2}}+c_{2} e^{-t}
$$

Example 2

- Find the general solution of homogeneous SODE $2 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}=0$
- The CE: $2 r^{2}+3 r=0$. So, $r_{1}=0, r_{2}=-\frac{3}{2}$.
- By (3) the general solution is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1}+c_{2} e^{-\frac{3 t}{2}}
$$

Example 3

- Find the general solution of homogeneous SODE $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=0$
- The CE: $r^{2}-r-6=0$. So, $r_{1}=3, r_{2}=-2$
- By (3) the general solution is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{3 t}+c_{2} e^{-2 t}
$$

Example 4

- Find the general solution of homogeneous SODE

$$
\frac{d^{2} y}{d x^{2}}-(1+\pi) \frac{d y}{d x}+\pi y=0
$$

- The CE: $r^{2}-(1+\pi) r+\pi=0$. So, $r_{1}=1, r_{2}=\pi$
- By (3) the general solution is

$$
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{t}+c_{2} e^{\pi t}
$$

Example 5

- Solve the initial value problem:

$$
\left\{\begin{aligned}
3 \frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+y & =0 \\
y(0) & =4 \\
y^{\prime}(0) & =0
\end{aligned}\right\}, \quad \text { Find } \quad \lim _{t \rightarrow \infty} y(t)
$$

and sketch the graph.

- The CE: $3 r^{2}-4 r+1=0$. So, $r_{1}=1, r_{2}=\frac{1}{3}$
- By (3) the general solution is

$$
\begin{equation*}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{t}+c_{2} e^{\frac{t}{3}} \tag{6}
\end{equation*}
$$

Exponential Solutions Two distinct real roots of CE Examples: General Solutions

Examples: IVP

Continued

- Differentiate: $y^{\prime}=c_{1} e^{t}+\frac{1}{3} c_{2} e^{\frac{t}{3}}$.
- USE initial values:

$$
\begin{aligned}
& \left\{\begin{array} { r }
{ c _ { 1 } e ^ { 0 } + c _ { 2 } e ^ { 0 } = 4 } \\
{ c _ { 1 } e ^ { 0 } + \frac { 1 } { 3 } c _ { 2 } e ^ { 0 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{r}
c_{1}+c_{2}=4 \\
c_{1}+\frac{1}{3} c_{2}=0
\end{array}\right.\right. \\
& \Longrightarrow\left\{\begin{array}{r}
c_{1}+c_{2}=4 \\
3 c_{1}+c_{2}=0
\end{array} \Longrightarrow c_{1}=-2, c_{2}=6\right.
\end{aligned}
$$

- Particular Solution: By 6,

$$
y=c_{1} e^{t}+c_{2} e^{\frac{t}{3}}=-2 e^{t}+6 e^{\frac{t}{3}}
$$

Continued

- To compute the limit, write $z=e^{\frac{t}{3}}$.

Then,

$$
\begin{gathered}
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(-2 e^{t}+6 e^{\frac{t}{3}}\right) \\
=\lim _{z \rightarrow \infty}\left(-2 z^{3}+6 z\right)=-\infty
\end{gathered}
$$

(Recall, the higher order term dominates, while computing such limits.)

Exponential Solutions Two distinct real roots of CE Examples: General Solutions

Examples: IVP

Example 5
Example 6
Example 7
Example 7a
Example 7b
Example 8

The graph of the solution:

Matlab commands to Plot Graphs

To plot the graph, following commands were given:

- $\mathrm{t}=[0.5: 10]$;
- $\mathrm{y}=-2^{*} \exp (\mathrm{t})+6^{*} \exp (\mathrm{t} / 3)$;
- plot(t,y), title('The Equation')

Example 6

- Solve the initial value problem:

$$
\left\{\begin{aligned}
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-12 y & =0 \\
y(1) & =1 \\
y^{\prime}(1) & =1
\end{aligned}\right\}, \quad \text { Find } \quad \lim _{t \rightarrow \infty} y(t)
$$

and sketch the graph.

- The CE: $r^{2}+4 r-12=0$. So, $r_{1}=-6, r_{2}=2$
- By (3) the general solution is

$$
\begin{equation*}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{-6 t}+c_{2} e^{2 t} \tag{7}
\end{equation*}
$$

Exponential Solutions Two distinct real roots of CE Examples: General Solutions Examples: IVP

Continued

- Differentiate: $y^{\prime}=-6 c_{1} e^{-6 t}+2 c_{2} e^{2 t}$.
- USE initial values:

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ c _ { 1 } e ^ { - 6 } + c _ { 2 } e ^ { 2 } } & { = 1 } \\
{ - 6 c _ { 1 } e ^ { - 6 } + 2 c _ { 2 } e ^ { 2 } } & { = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{r}
c_{1}+c_{2} e^{8}=e^{6} \\
-6 c_{1}+2 c_{2} e^{8}=e^{6}
\end{array}\right.\right. \\
& \Longrightarrow\left\{\begin{array}{rl}
6 c_{1}+6 c_{2} e^{8} & =6 e^{6} \\
-6 c_{1}+2 c_{2} e^{8} & =e^{6}
\end{array} \Longrightarrow c_{1}=\frac{e^{6}}{8}, c_{2}=\frac{7}{8 e^{2}}\right.
\end{aligned}
$$

- Particular Solution: By 7,

$$
y=c_{1} e^{-6 t}+c_{2} e^{2 t}=\frac{e^{6}}{8} e^{-6 t}+\frac{7}{8 e^{2}} e^{2 t}
$$

Continued

- To compute the limit, write $z=e^{2 t}$. Then,

$$
\begin{gathered}
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(\frac{e^{6}}{8} e^{-6 t}+\frac{7}{8 e^{2}} e^{2 t}\right) \\
=\lim _{z \rightarrow \infty}\left(\frac{e^{6}}{8} z^{-3}+\frac{7}{8 e^{2}} z\right)=\infty
\end{gathered}
$$

Exponential Solutions Two distinct real roots of CE Examples: General Solutions

Examples: IVP

Example 5
Example 6
Example 7
Example 7a
Example 7b
Example 8

The graph of the solution:

Matlab commands to Plot Graphs

To plot the graph, following commands were given:

- $\mathrm{t}=[0.5: 10]$;
- $\mathrm{y}=\exp \left(6-6^{*} \mathrm{t}\right) / 8+7^{*} \exp \left(2^{*} \mathrm{t}-2\right) / 8$;
- plot(t,y), title('The Equation')

Example 7

- Solve the initial value problem:

$$
\left\{\begin{aligned}
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t} & =0 \\
y(0) & =\alpha \\
y^{\prime}(0) & =2
\end{aligned}\right\} \text {, For what value of } \alpha, \lim _{t \rightarrow \infty} y(t)
$$

is finite?

- The CE: $r^{2}-2 r=0$. So, $r_{1}=0, r_{1}=2$
- By (3) the general solution is

$$
\begin{equation*}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1}+c_{2} e^{2 t} \tag{8}
\end{equation*}
$$

Continued

- Differentiate: $y^{\prime}=2 c_{2} e^{2 t}$.
- USE initial values:

$$
\left\{\begin{array} { r }
{ c _ { 1 } + c _ { 2 } = \alpha } \\
{ 2 c _ { 2 } = 2 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=\alpha-1 \\
c_{2}=1
\end{array}\right.\right.
$$

- Particular Solution: By 8,

$$
y=c_{1}+c_{2} e^{2 t}=(\alpha-1)+e^{2 t}
$$

Continued

- Now

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left((\alpha-1)+e^{2 t}\right)=\infty
$$

So, the limit is never finite, irrespective of the value of α.

Example 7 a

- Solve the initial value problem:

$$
\left\{\begin{aligned}
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t} & =0 \\
y(0) & =0 \\
y^{\prime}(0) & =
\end{aligned}\right\} \text {, For what value of } \alpha, \quad \lim _{t \rightarrow \infty} y(t)
$$

is finite?

- The ODE is same as in Example 7. The general solution is, as in (8).

Continued

- Differentiate: $y^{\prime}=2 c_{2} e^{2 t}$.
- USE initial values:

$$
\left\{\begin{array} { r l }
{ c _ { 1 } + c _ { 2 } = } & { 0 } \\
{ 2 c _ { 2 } } & { = \alpha }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-\frac{\alpha}{2} \\
c_{2}=\frac{\alpha}{2}
\end{array}\right.\right.
$$

- Particular Solution: By 8,

$$
y=c_{1}+c_{2} e^{2 t}=-\frac{\alpha}{2}+\frac{\alpha}{2} e^{2 t}
$$

Exponential Solutions Two distinct real roots of CE Examples: General Solutions Examples: IVP

Continued

- Now

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(-\frac{\alpha}{2}+\frac{\alpha}{2} e^{2 t}\right)=-\frac{\alpha}{2}+\frac{\alpha}{2} \lim _{t \rightarrow \infty} e^{2 t}
$$

So, the limit is finite, only when $\alpha=0$.

Example 7b

- Solve the initial value problem:

$$
\left\{\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}=0 \\
& y(0)=0 \\
& y^{\prime}(0)= \\
& \hline
\end{aligned}\right\} \text {, For what value of } \alpha, \lim _{t \rightarrow \infty} y(t)
$$

is finite?

- The CE: $r^{2}+2 r=0$. So, $r_{1}=0, r_{1}=-2$
- By (3) the general solution is

$$
\begin{equation*}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1}+c_{2} e^{-2 t} \tag{9}
\end{equation*}
$$

Continued

- Differentiate: $y^{\prime}=-2 c_{2} e^{-2 t}$.
- USE initial values:

$$
\left\{\begin{array} { r l }
{ c _ { 1 } + c _ { 2 } = } & { 0 } \\
{ - 2 c _ { 2 } } & { = \alpha }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=\frac{\alpha}{2} \\
c_{2}=
\end{array}-\frac{\alpha}{2} .\right.\right.
$$

- Particular Solution: By 9,

$$
y=c_{1}+c_{2} e^{-2 t}=\frac{\alpha}{2}-\frac{\alpha}{2} e^{-2 t}
$$

Continued

- Now

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(\frac{\alpha}{2}-\frac{\alpha}{2} e^{-2 t}\right)=\frac{\alpha}{2}
$$

So, the limit is always finite.

Example 8

- Solve the initial value problem:

$$
\left\{\begin{aligned}
\frac{d^{2} y}{d t^{2}}-4 y & =0 \\
y(0) & =-1 \\
y^{\prime}(0) & =2
\end{aligned}\right\} \text {, Also, compute } \lim _{t \rightarrow \infty} y(t) .
$$

- The CE: $r^{2}-4=0$. So, $r_{1}=-2, r_{2}=2$
- By (3) the general solution is

$$
\begin{equation*}
y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{-2 t}+c_{2} e^{2 t} \tag{10}
\end{equation*}
$$

Continued

- Differentiate: $y^{\prime}=-2 c_{2} e^{-2 t}+2 c_{2} e^{2 t}$.
- USE initial values:

$$
\left\{\begin{array} { r l }
{ c _ { 1 } + c _ { 2 } } & { = - 1 } \\
{ - 2 c _ { 1 } + 2 c _ { 2 } } & { = 2 }
\end{array} \Longrightarrow \left\{\begin{array}{rl}
c_{1}+c_{2} & =-1 \\
-c_{1}+c_{2} & =1
\end{array}\right.\right.
$$

So, $c_{1}=-1$ and $c_{2}=0$

- Particular Solution: By 10,

$$
y=c_{1} e^{-2 t}+c_{2} e^{2 t}=-e^{-2 t}
$$

Example 5
Example 6 Example 7 Example 7a Example 7b Example 8

Continued

- Now

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(-e^{-2 t}\right)=0
$$

