Chapter 3: Second Order ODE §3.4 Repeated roots of the CE

Satya Mandal, KU

19 February 2018

Homogeneous LSODEs

- Recall a Homogeneous LSODEs has forms:

$$
\begin{equation*}
\mathcal{L}(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

where $p(t), q(t), g(t)$ are functions of t.

- Then, (1) can also be written as:

$$
\begin{equation*}
\mathcal{L}(y)=P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0 \tag{2}
\end{equation*}
$$

where $P(t), Q(t), R(t), G(t)$ are functions of t.

- The Trivial Solution: For any homogeneous equation (1, 2), $y=0$ is a solution.

Repeated equal roots of the CE

- Recall the Homogeneous LSODEs, with constant coefficients:

$$
\begin{gather*}
\mathcal{L}(y)=a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { with } \quad a, b, c \in \mathbb{R} \tag{3}\\
\text { The } \mathrm{CE} \text { of }(3): a r^{2}+b r+c=0
\end{gather*}
$$

- In §3.2, we dealt with the case when (4) had two distinct real roots. In this section, we deal with case when CE has repeated roots. This will be the case, when $b^{2}-4 a c=0$.

Continued

- The equal root is $r=-\frac{b}{2 a}$.
- Then, $y_{1}=e^{-\frac{b t}{2 a}}$ is a solution of (3), which can be checked by substitution in (3).
- In the next frame, we directly check, $y_{2}(t)=t y_{1}(t)$ is also a solution of (3).

Continued

- Substituting $y=y_{2}$ in (3): $\mathcal{L}\left(y_{2}\right)=$

$$
\begin{gathered}
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=a\left(2 y_{1}^{\prime}+t y_{1}^{\prime \prime}\right)+b\left(y_{1}+t y_{1}^{\prime}\right)+c\left(t y_{1}\right) \\
=t\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+\left(2 a y_{1}^{\prime}+b y_{1}\right)=t * 0+\left(2 a y_{1}^{\prime}+b y_{1}\right) \\
=2 a\left(-\frac{b}{2 a} e^{-\frac{b t}{2 a}}\right)+b\left(e^{-\frac{b t}{2 a}}\right)=0 .
\end{gathered}
$$

This establishes that y_{2} is a solution of (3).

- So, we have two solutions of (3):

$$
\left\{\begin{array}{l}
y_{1}=e^{-\frac{b t}{2 a}} \tag{5}\\
y_{2}=t y_{1}=t e^{-\frac{b t}{2 a}}
\end{array}\right.
$$

Fundamental Pair

We investigate, if y_{1}, y_{2} form a Fundamental pair of solutions.

- Compute the Wronskian:

$$
\begin{aligned}
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left\lvert\, \begin{array}{cc}
e^{-\frac{b t}{2 a}} & t e^{-\frac{b t}{2 a}} \\
-\frac{b}{2 a} e^{-\frac{b t}{2 a}} & e^{-\frac{b t}{2 a}}+t\left(-\frac{b}{2 a} e^{-\frac{b t}{2 a}}\right)
\end{array}\right. \\
& =e^{-\frac{b t}{a}}\left|\begin{array}{cc}
1 & t \\
-\frac{b}{2 a} & 1-\frac{b t}{2 a}
\end{array}\right|=e^{-\frac{b t}{a}} \neq 0
\end{aligned}
$$

- Since Wronskian $W\left(y_{1}, y_{2}\right) \neq 0, y_{1}=e^{-\frac{b t}{2 a}}, y_{2}=t e^{-\frac{b t}{2 a}}$ form a fundamental pair solutions.

The General Solution

- By §3.3, any solution (the general solution) of (3) can be written as: $y=c_{1} y_{1}+c_{2} y_{2}$ That is

$$
\begin{equation*}
y=c_{1} e^{r t}+c_{2} t e^{r t} \tag{6}
\end{equation*}
$$

OR

$$
\begin{equation*}
y=\left(c_{1}+c_{2} t\right) e^{r t} \tag{7}
\end{equation*}
$$

where $r=-\frac{b}{2 a}$ is the double root of the CE and c_{1}, c_{2} are arbitrary constants.

Example 1

Consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+8 y^{\prime}+16 y=0 \\
y(0)=1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The CE $r^{2}+8 r+16=0$.
- Roots of the CE $r=\frac{-8 \pm \sqrt{64-4 * 16}}{2}=-4$, which is a double root.
- By (7), the general solution is

$$
\begin{equation*}
y=\left(c_{1}+c_{2} t\right) e^{r t}=\left(c_{1}+c_{2} t\right) e^{-4 t} \tag{8}
\end{equation*}
$$

- The derivative:

$$
\begin{equation*}
y^{\prime}=c_{2} e^{-4 t}-4\left(c_{1}+c_{2} t\right) e^{-4 t} \tag{9}
\end{equation*}
$$

Continued

- The initial conditions:

$$
\left\{\begin{array} { l }
{ y (0) = c _ { 1 } = 1 } \\
{ y ^ { \prime } (0) = c _ { 2 } - 4 c _ { 1 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=5
\end{array}\right.\right.
$$

- So, the solution is

$$
y=(1+5 t) e^{-4 t}
$$

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left((1+5 t) e^{-4 t}\right)=0
$$

Graph of $y=y(t)$:

Example IA

Change the initial condition in (I) and consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+8 y^{\prime}+16 y=0 \\
y(1)=e^{-4} \\
y^{\prime}(1)=e^{-4}
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The general solution remains the same as in (8) and the derivative y^{\prime} is also as in (13)
- The initial conditions:

$$
\begin{gathered}
\left\{\begin{array}{l}
y(1)=\left(c_{1}+c_{2}\right) e^{-4}=e^{-4} \\
y^{\prime}(1)=c_{2} e^{-4}-4\left(c_{1}+c_{2}\right) e^{-4}=e^{-4} \Longrightarrow \\
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - 4 c _ { 1 } - 3 c _ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-4 \\
c_{2}=5
\end{array}\right.\right.
\end{array}\right.
\end{gathered}
$$

Continued

- From the general solution (8):

$$
y=\left(c_{1}+c_{2} t\right) e^{-4 t}=(-4+5 t) e^{-4 t}
$$

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left((-4+5 t) e^{-4 t}\right)=0
$$

Graph of $y=y(t)$:

In Example IB, we change the sign of $y^{\prime}(1)$.

Example IB

Change the initial condition in (I), again and consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+8 y^{\prime}+16 y=0 \\
y(1)=e^{-4} \\
y ?(1)=-e^{-4}
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The general solution remains the same as in (??) and the derivative y^{\prime} is also as in (13)
- The initial conditions:

$$
\begin{aligned}
& \left\{\begin{array}{l}
y(1)=\left(c_{1}+c_{2}\right) e^{-4}=e^{-4} \\
y^{\prime}(1)=c_{2} e^{-4}-4\left(c_{1}+c_{2}\right) e^{-4}=-e^{-4} \Longrightarrow \\
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - 4 c _ { 1 } - 3 c _ { 2 } = - 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-2 \\
c_{2}=3
\end{array}\right.\right.
\end{array}\right.
\end{aligned}
$$

Continued

- From the general solution (8):

$$
y=\left(c_{1}+c_{2} t\right) e^{-4 t}=(-2+3 t) e^{-4 t}
$$

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left((-2+3 t) e^{-4 t}\right)=0
$$

Graph of $y=y(t)$:

In Example IC, I will have $y^{\prime}(1)=0$.

Example IC

Change the initial condition in (I), again and consider the IVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+8 y^{\prime}+16 y=0 \\
y(1)=e^{-4} \\
y^{\prime}(1)=0
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The general solution remains the same as in (??) and the derivative y^{\prime} is also as in (13)
- The initial conditions:

$$
\begin{gathered}
\left\{\begin{array}{l}
y(1)=\left(c_{1}+c_{2}\right) e^{-4}=e^{-4} \\
y^{\prime}(1)=c_{2} e^{-4}-4\left(c_{1}+c_{2}\right) e^{-4}=0
\end{array}\right. \\
\left\{\begin{array} { l }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - 4 c _ { 1 } - 3 c _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=-3 \\
c_{2}=4
\end{array}\right.\right.
\end{gathered}
$$

Continued

- From the general solution (8):

$$
y=\left(c_{1}+c_{2} t\right) e^{-4 t}=(-3+4 t) e^{-4 t}
$$

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left((-3+4 t) e^{-4 t}\right)=0
$$

Graph of $y=y(t)$:

Example 2

Consider the IVP:

$$
\left\{\begin{array}{l}
4 y^{\prime \prime}-20 y^{\prime}+25 y=0 \\
y(0)=1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The CE $4 r^{2}-20 r+25=0$.
- Roots of the CE $r=\frac{20 \pm \sqrt{20^{2}-4 * 4 * 25}}{8}=\frac{5}{2}$, which is a double root.
- By (7), the general solution is

$$
\begin{equation*}
y=\left(c_{1}+c_{2} t\right) e^{r t}=\left(c_{1}+c_{2} t\right) e^{\frac{5 t}{2}} \tag{10}
\end{equation*}
$$

- The derivative:

$$
\begin{equation*}
y^{\prime}=c_{2} e^{\frac{5 t}{2}}+\frac{5}{2}\left(c_{1}+c_{2} t\right) e^{\frac{5 t}{2}} \tag{11}
\end{equation*}
$$

Continued

- The initial conditions:

$$
\left\{\begin{array} { l }
{ y (0) = c _ { 1 } = 1 } \\
{ y ^ { \prime } (0) = c _ { 2 } + \frac { 5 } { 2 } c _ { 1 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=-\frac{3}{2}
\end{array}\right.\right.
$$

Continued

- From the general solution (11):

$$
y=\left(c_{1}+c_{2} t\right) e^{\frac{5 t}{2}}=\left(1-\frac{3}{2} t\right) e^{\frac{5 t}{2}}
$$

§3.4 Repeated Roots
Examples

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(\left(1-\frac{3}{2} t\right) e^{\frac{5 t}{2}}\right)=-\infty
$$

§3.4 Repeated Roots

Graph of $y=y(t)$:

To be Inserted

Example 3

Consider the IVP:

$$
\left\{\begin{array}{l}
25 \frac{d^{2} y}{d t^{2}}+10 \frac{d y}{d t}+y=0 \\
y(0)=1 \\
y^{\prime}(0)=2
\end{array}\right.
$$

Solve this IVP and give the graph of the solution.

Solution

- The CE $25 r^{2}+10 r+1=0$.
- Roots of the CE $r=\frac{-10 \pm \sqrt{100-4 * 25}}{50}=-\frac{1}{5}$, which is a double root.
- By (7), the general solution is

$$
\begin{equation*}
y=\left(c_{1}+c_{2} t\right) e^{r t}=\left(c_{1}+c_{2} t\right) e^{-\frac{t}{5}} \tag{12}
\end{equation*}
$$

- The derivative:

$$
\begin{equation*}
y^{\prime}=c_{2} e^{-\frac{t}{5}}-\frac{1}{5}\left(c_{1}+c_{2} t\right) e^{-\frac{t}{5}} \tag{13}
\end{equation*}
$$

Continued

- The initial conditions:

$$
\left\{\begin{array} { l }
{ y (0) = c _ { 1 } = 1 } \\
{ y ^ { \prime } (0) = c _ { 2 } - \frac { 1 } { 5 } c _ { 1 } = 2 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=\frac{11}{5}
\end{array}\right.\right.
$$

Continued

- From the general solution (12):

$$
y=\left(c_{1}+c_{2} t\right) e^{-\frac{t}{5}}=\left(1+\frac{11}{5} t\right) e^{-\frac{t}{5}}
$$

§3.4 Repeated Roots Examples

The Limit

We also compute the Limit:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(\left(1+\frac{11}{5} t\right) e^{-\frac{t}{5}}\right)=0
$$

§3.4 Repeated Roots

Example IB Example IC Example 2
Example 3

Graph of $y=y(t)$:

