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Objective

The objective of this section is to explain that any second
degree linear ODE represents the motion of a particle. This
emanates from Newton's Laws of Motion that

Force = Mass x Acceleration (1)

Consider a 2"-order linear ODE, with constant coefficients:

d? d
dt}zl—l—bdercy g(t) with abceR, a#0 (2)

Without loss of generality, we can assume that a > 0.
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Continued

Now suppose the following:
1. Let y = y(t) be the position, at time t, of a particle of
mass a = m, moving in a straight line. Then, the
. . . . 2
acceleration of the particle, at time t, is %. So, total
force acting on the particle, at time t is

d?y

By Newton's Law (1), this would equal to the total force
acting on the particle.
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Forces Acting on the Particle

Depending on the situation, the forces acting on the particle,
could be classified, as follows:

> Forces f(t) that is proportional to the velocity % (for

example, drag). So, fi(t) = —b%, for some constant —b.
» Forces fy(t) that is proportional to the position/distance
y of the particle. So, fy(t) = —cy, for some constant —c.

» Other external forces that are not one of the above,
which we denote by g(t). Gravitational pull could be one
such example.

Satya Mandal, KU Chapter 3: Second Order ODE §3.8 Elements of Particle D



Agreement

So, the total force, at time t is:

d
F(8) = () + () + 8(t) = ~b° — oy + g(1)
2
By Newton’s Law (1) a% = —b% —cy + g(t)
which is precisely the ODE (2):
d’y  dy
aﬁ +bE+Cy—g(t)
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Conclusion

The 2"-order ODE

d2 d
Y

s ™ +cy=g(t) with abceR, a>0 (3)

represents motions of a particle of mass m := a. Depending
on the actual situation, we may have

b=0 or c=0 or g(t)=0
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Simple Harmonic Motion (SHM)

The ODE (3), is said to represent Simple Harmonic Motion, if
b =0, g(t) =0, with ¢ > 0. Changing notations, the Simple
Harmonic Motion is represented by the Equation:

d2y

dt2+f<cy—0 with 0<a,k < o0 (4)

With w = \/E, roots of the CE r = twi
a

A fundamental set of solutions are

y1 = coswt
Yo = sinwt
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Continued: SHM

So, a general solution is y = Acoswt + Bsinwt

A = Rcosd
With B = Rsind y = Rcos(wt —0)  (5)
R =A2 1 B?

Further, note one could "use" sin in (5), because

. ™
y = Rcos (wt — d) = Rsin <wt—5+§>,
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Math to Mechanics: SHM
The solution of SHM (4), in the latter form (5)

y = Rcos (wt — 0) where w = g (6)

is much preferred in Mechanics and Engineering. The
unknown constants R, can be computed from initial
conditions. We define:

R = Amplitude

w = Frequency

T := 2% = 2, /% = Periodicity

0 = Phase
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Simple Harmonic Oscillation

Simple Harmonic Motion is also referred to as
Simple Harmonic Oscillation.
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Simple Pendulum

The motion of a "simple pendulum" would be an example of
Simple Harmonic Motion (up to an approximation). Most of
us are familiar with Pendulum Clocks and, Pendulums. A
"simple pendulum" is an idealized physical structure, defined
as follows, for purpose of studying the motion of a pendulum.
Definition. A Simple Pendulum consists of a point mass m
(to be called the "bob"), hanging from a string of length ¢.
The other end of the string is fixed at a pivot point O. The
bob is displaced by an initial angle 6y, and released from rest,
to oscillate freely. Assume, the string has no mass, there is no
friction at the pivot point O and there is no resistance due to
air or otherwise.
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Modeling; Polar Coordinate Syatem

To model the motion of the simple pendulum, use polar
coordinate system (r, ), as in the diagram, in the next frame.
The pivot point O is the origin and vertical line downward
through O is x-axis. The positive direction, for 6 would be the
anti-clockwise direction.

Notation The length of the string ¢ being fixed, let (¢, 6(t))

denote the position of the bob, t seconds after it is released
from rest. We study the function 6 = 6(t).
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

The Model of Angular Motion

The table of actions on the bob, and their components:

Components : Tangential

Gravitaty : —mgsinf
20
dt?

Acceleration : 14

By Newton's Law, the model for the motion of the simple
pendulum:

_ 420 20 g .
—mgsm@zmﬁﬁ = F:—Zsmﬁ (7)
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Approximation to The Model

» Pendulum oscillated within small angle 6. And, for small
angles sin ) =~ 6, approximately.
» So, the model (8) is approximated by the model:
d?0 g d’0 g
i LA A

This establishes that the angular motion of the Pendulum
is, approximately, a Simple Harmonic Motion.
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Solution of SHM

g
By (6) { The Perlodlclty w=./%

= Rcos (/&t - 9)

The Initial Conditions:

0(0) = Rcos (8) = 6o R =6
{ 0'(0) = R\/Esin (6) = :>{ 5=0

t) = g cos (1/%t)

So, Amplitude : = g

Periodicity : = 27” =27 §
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

A Simple Spring-Mass System

A Simple Spring-Mass System is another example of SHM.

Definition. A Simple Spring-Mass System consists of an
object, of mass m, resting on a frictionless rail, and a spring.
One end of the string is tied to the wall, above a frictionless
rail (without touching), and other end to the object. Further,
1. At equilibrium, the length of this sytem is /.
2. Object is pulled from the equilibrium point and releases
from rest. The object starts sliding back and fourth.
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Simple Harmonic Motion

Example: Simple Pendulum

Example: Spring-Mass System

ey
. E
0

The Spring Mass-System: In Equilibrium Position

» The origin "O" is the position of the object, at
equilibrium. The Object is pulled (or compressed) to the
position xp, and released from rest.

» x = x(t) would denote the position of the object, at time
t, after release from rest. So, x(0) = xo and x’(0) = 0.
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

The Model

» At time t, the only force acting on the body is due to the
pull toward the position of equilibrium O, due to spring
action. (Use Hooke's Law!) So,F(t) = —kx(t), where
k > 0 is the spring constant. The negative sign accounts
for the fact that F(t) acts opposite to the positive
direction of x.

» By Newton's Law

d?x d?x
m— g = F(f) = mz+ rx(t) =0
This is exactly the Simple Harmonic Motion Model (4).
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

Exercise

Exercise. Given x(0) = xo and x’(0) = 0, write down the
Equation of x = x(t). In Particular, give the Amplitude,
periodicity and Frequency.
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Simple Harmonic Motion

Example: Simple Pendulum
Example: Spring-Mass System

SHM: The Typical Graph

A Typical Graph of the solution of (4),
Simple Harmonic Motion:

y=-cos(pi t)-sin(pi t)/pi
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Damped Harmonic Motion

Damped Harmonic Motion: Definition

Refer back to the Equation 3. It was argued that a 2"-order
ODE (3) represents the motion of particle, of mass m = a.

Definition. The motion of a particle, as in (3), is referred to
as Damped Harmonic Motion (DHM), if

g(t)=0, a>0b>0c>0 and b*—4ac<0
Changing notations, a DHM is given by
d? d
y ly 0 {a>0,7>0,;«;>0 (9)

g Vg TS and 72 —4ak <0
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Damped Harmonic Motion

DHM: Qualifications

» The qualification "Damped" refers to the term fy%, which
represents the force due to damp, because of resistance,
friction etc. The model assumes that this is proportional
to the velocity % and v is the dampening constant.

» The qualification "Damped" is a also justified by the
solution of (9), as was dealt with in Section 3.5, as
explained in the next frame.

» The qualification "Harmonic", corresponds to the
assumption, 72 — 4ax < 0. This leads to complex roots of
the CE, and hence a periodic component of the solution.
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Damped Harmonic Motion

DHM: Example

A Spring-Mass System described above, assumes the ideal
condtion that the rail was friction less. However, in reality, the
rail would provide some resistance. A model of the
Sprint-Mass System would be a damped harmonic motion, if

1. The model incorporates the resistance due to friction.
2. It assumes, that the resistance is proportional to velocity.
3. The resistance is small enough, so that 42 — 4ax < 0.
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Damped Harmonic Motion

DHM: Solution

» The CE of the ODE (9) and its roots:

Aok — 2
T VIR,

2

b Ep—
With A= —, w= Y170 g
2a 2a

» So, a fundamental pair of solutions of the DHM (9) is

y1 = e Mcoswt
y1 = e Msinwt
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Damped Harmonic Motion

DHM: The General Solution

So, the general solutions is (with A, B constants):

y = Ay1 + By, = e (Acoswt + sin wt)

A= Rcosd
With { B = Rsind y = Re™*cos(wt —4) (10)
R— VAT B
One can compute R and ¢, from initial conditions. Also, as in
the case of Simple Harmonic motion, we could write

y = Re™* cos (wt — §) = Re *sin (wt -0+ g)

So, we have choices of both cos or sin.
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Damped Harmonic Motion

DHM: The Limit

Note A = 2 > 0. So,
lim y = lim (Re ™ cos(wt —4)) =0

t—o0 t—00

This, again, justifies the qualification "Damped".

Satya Mandal, KU Chapter 3: Second Order ODE §3.8 Elements of Particle D



Damped Harmonic Motion

DHM: The Typical Graph

A Typical Graph of Damped Harmonic Motion (10):

; Damped Harmonic: y=e*°® " ‘cos(r t)
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Damped Harmonic Motion

DHM: The Typical Graph

The same graph, of (10), with 0 < t < 50 range:

Damped Harmonic: y=e*°® " ‘cos(r t)
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Unsteady Harmonic Motion

Unsteady Harmonic Motion: Definition

As opposed to Damped harmonic motion and in analogy to the
terminology "unsteady Oscillation" in Section 3.5, we discuss
Unsteady Harmonic Motion. Again, refer back to the Equation
3, and it represents the motion of particle, of mass m = a.

Definition. The motion of a particle, as in (3), is referred to
as Unsteady Harmonic Motion (UHM), if

g(t)=0, a>0b<0,c>0 and b*—4ac<0
Changing notations, a UHM is given by

d?y dy a>0,v>0k>0
BF—’YE—F/@/—O {and V2 —4dak <0 (11)
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Unsteady Harmonic Motion

UHM: Solution

Repeat the steps above, to get a solutions of the ODE (11):
» The CE of the ODE (11) and its roots:

4ak — 7?2

ar’ —yr+k=0 = r:%i#i
b dar — ~?

With A= —, w= Y170 x4

2a 2a
» So, a fundamental pair of solutions of the DHM (9) is

A

y1 = eMcoswt
y1 = e sinwt
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Unsteady Harmonic Motion

DHM: The General Solution

So, the general solutions is (with A, B constants):

y = Ay + By, = eM (Acoswt + sinwt)
A = Rcosd
With ¢ B = Rsind y = Re*cos (wt —d)  (12)

R= VAT B

One can compute R and ¢, from initial conditions. Also, as
before, we could write

y = Re* cos (wt — §) = Re M sin (wt -0+ %)

So, we have choices of both cos or sin.
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Unsteady Harmonic Motion

DHM: The Limit

Note A = 2 > 0. So,

lim y = lim (Re cos(wt — §)) = DNE

t—o0 t—o00

The Exponential part e’ keeps blowing up the periodic part
R cos (wt — §).
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Unsteady Harmonic Motion

DHM: The Typical Graph
A Typical Graph of Unsteady Harmonic Motion (12):

Unstable Harmonic: y=e"% " 'sin(r t)
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Unforced Motion

Unforced and Forced Motions Forced Motion

Unforced and Forced Motions

Again, refer to the ODE (3):

d?y dy
F—l—ba—i—cy:g(t) with a,b,ceR, a>0 (13)

This represents the motion of a particle, with mass m := a.

Definition. We have two defintion:
» The ODE (13) is said to represents an Unforced Motion,
if g(t) =0.
» The ODE (13) is said to represents an Forced Motion, if
g(t) # 0.
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Unforced Motion

Unforced and Forced Motions Forced Motion

Unforced Motion

We comment:

» According to the defintion, an unforced motion is
represented by a Homogeneous Linear Equation, with
constant coefficients:

d? d
dt)2/+bdy+cy—0 with a,b,c€R, a>0 (14)
This was dealt with in Section 3.2, 3.4, 3.5.
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Unforced Motion
Unforced and Forced Motions Forced Motion

Hormonic Motion

We considered Three Types of Unforced ODEs:
» Simple Harmonic Motion.
» Dampled Harmonic Motion.
» Unsteady Harmonic Motion.

The common denominator, among these three Harmonic

Motions, was that the CE of (14) had complex roots. That
means,

b?> —4ac <0

The complex root, imposes a periodic oscillation to the
solution. The case of complex roots was dealt with in § 3.5.
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Unforced Motion

Unforced and Forced Motions Forced Motion

Classification Hormonic Motion

Let (14) represent a Harmonic Motion. So, b* — 4ac < 0.
The real part of the roots of the CE is

A= —2—ba. Also, a > 0. Therefore,

» If b=0, (14) represents a Simple Harmonic Motion.
» If b> 0, (14) represents a Damped Harmonic Motion.
» If b <0, (14) represents a Unsteady Harmonic Motion.
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Unforced Motion

Unforced and Forced Motions Forced Motion

Forced Motion

According to the definition, an unforced motion is represented
by a Homogeneous Linear Equation, with constant coefficients:

d2y dy .
dt2+bd +cy =g(t) #0 with a,b,c€R, a>0 (15)

This was dealt with in Section 3.6, 3.7
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Unforced Motion

Unforced and Forced Motions Forced Motion

Literature on Forced Motion

There is some discussions in the literature (Textbooks and
Internet), regarding Forced Motion. Many consider, following
two cases of (15):

=+ b -+ cy = Fycoswot

with a,b,ce R, a>0
dtz +b * +cy = Fysinwot

(This wq should not be mixed up with the notation w, used
above for periodicity.) We solve some such problems in §3.6,
3.7.
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The Problem Set and Homework

The Problem Set and Homework

» | expect you to read this section carefully and be able to
derive some of what discussed above, in the Takehome
part of the exams.

» We would refrain from the customary practice, of adding
a set of examples or problems, at the end of this section.
We would do likewise, regarding Homework on this
section. As is mentioned above, we solved or assigned
problems on these concepts, in §3.5, 3.6, 3.7.
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The Problem Set and Homework

Continued

» The reason for this departure from the customary practice
is two fold. The problem sets on this topic in the
literature appears a little artificial, to me. Some of
problems are, essentially same as those in §3.5, 3.6, 3.7,
encased within a story on Mechanics. Other set of
problems, ask to compute Amplitude, Periodicity etc.,
which may belong in the Mechanics classes.
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