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Goals

We continue to solve some Nonhomogeneous 2" order linear
ODE, with constant coefficients:

L(y) = ay" + by’ + cy = g(t) abceR (1)

We dealt with some problems (in Examples and Homework),
by the Method of Variation of Parameters, where g(t) looks
like, as described in the next framel!
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Goals: Form of g(t)

e/\t

cos ut

g(t) = { sinut (2)
A Polynomial
A Product of the above.

After solving enough of such problems, with the Method of
Variation of Parameters, you see a Pattern evolves, regarding
Particular solutions.
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Goals: The Pattern of the Particular Solution

For example:

» Whenever g = ae’, we saw the particular solution looked

like Y = Ae*t. If we believe this, we could substitute

Y = Ae* in the ODE (1), and try our luck in finding A.
» Likewise, when g(t) = a,t" + a,_1t" * + - + ayt + ao,

is a polynomial, we may have seen that the particular

solution looks like Y = A, t" + A,_1t" 1+ -+ At + Ao.

Again, if we believe this, we could substitute Y in the

ODE (1), and try our luck in finding Ao, A1, ..., A,.

» If the fist guess fails, we refine our guess (the pattern).
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Goals: The Chart of such Patterns

» Textbooks and Internet are full of such charts for
appropriate guess for Y, for a form of g(t), as in (2).

» The students can net search "Method of Undetermined
Coefficients" for such a Chart.

» | would add one more theorem in the next frame, which
helps to deal with a wider variety of g(t), namely the sum
of those given in (2).
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Theorem for g(t) = g1(t) + go(t)

Theorem 3.7.1 Let P(t), Q(t), R(t), g1(t), g&(t) be function
on an interval /. Consider the following three ODE:

{ P(t)y” + Q(t)y’ + R(t)y = gi(t)
P(t)y" + Q(t)y' + R(t)y = g&f(t)
P(t)y" + Q(t)y" + R(t)y = &u(t) + g2(t)

Suppose

y = Yi(t) is a solution of the first ODE, and

y = Ya(t) is a solution of the second ODE. Then,
y = Yi1(t) + Ya(t) is a solution of the third ODE.
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HOES P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Example 1

Give a Particular Solution of the ODE
4y" — 20y’ +25y = 1+t + t2 (3)

Also give a general solution.

Solution Here g(t) = 1+ t + t? is a polynomial of degree
two. Our first guess is: Y = A+ Bt + Ct2. lts derivatives:

{ Y'(t) = B+2Ct
Y'(t) = 2C
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g(t) = P(t) is a Polynomial
Examples g(t)=e

“P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Continued

Substituting in (3):

4(2C) —20(B +2Ct) +25(A+ Bt + Ct?) = 1 + t + ¢

Equating coefficient of t°, t, t2, we have

25C =1 C:%
—40C+25B =1 = B=5
8C —-20B+25A=1 A=325

So, a particular solution is:

4 1 1
Y = A+ Bt + Ct? 345 3

_ - b T g2
3125 + 125t+ 25t
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HOES P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:
» Out First guest Y = A+ Bt + Ct? worked.

» If the first guest did not work, we would try
Y = t(A+ Bt + Ct?).

» If that did not work, we would try
Y = t*(A+ Bt + Ct?),
and so on!
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HOES P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

General Solution

» The CE 4r? — 20r + 25 = 0 has a double root r = 2.

» So, fundamental set of solutions for the homogeneous
ODE is
3¢
yl —= €2
3¢
{ y2 = tez
» So, a general solution is

5 5 345 13 1
— Y = qexftoter’+ | - + —t+ _t°
y = ayitoy+ ce? +ctez "‘(3125 + 125 * 25
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g(t) P(t) is a Polynomial
Examples g(t) = e P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Example 2

Give a Particular Solution of the ODE
y' =4y +8y = (1+t+ %)™ (4)

Also give a general solution.

Solution Here g(t) is product of €** and a polynomial
P(t) =1+ t+ t?is a polynomial of degree two. Our first
guess is: Y = (A + Bt + Ct?). Its derivatives:

Y'(t) = e*(B+2Ct)+ 2e*(A+ Bt + Ct?)

= e’ ((2A+ B) + (2B +2C)t + 2Ct?))
Y'(t) = e**((2B +2C) +4Ct) + 2e*(--)

= e’ ((4A+ 4B +2C) + (4B +8C)t + 4Ct?)
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g(t) = P(t) is a Polynomial
Examples g(t) = e P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Continued

Substituting in the ODE (4), we have
[€** ((4A+4B +2C) + (4B +8C)t + 4Ct?)]

—4[e* ((2A+ B) + (2B + 2C)t + 2Ct?))]
+8 [e*(A+ Bt + Ct?)] = (L + t + t°)e*
(4A+2C) + 4Bt +4C2 =1+t +t* =
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g(t) P(t) is a Polynomial

g(t) = e P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Examples

Continued

4A+2C=1 A=1
4B =1 —({ B=1
4C =1 C=:

So, a particular solution is:

1 1 1
Y = (A+ Bt + Ct?) = &** <— +ot+ —t2>
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g(t) = P(t) is a Polynomial
Examples g(t) = e P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:

» Out First guest Y = e* (A + Bt + Ct?) worked.

» If the first guest did not work, we would try
Y = te’* (A + Bt + Ct?).

» If that did not work, we would try
Y = t?e®* (A + Bt + Ct?),
and so on!
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g(t) = P(t) is a Polynomial
Examples g(t) = e P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

General Solution

» The CE r? — 4r + 8 = 0 has a double root r = 2 + 2j.

» So, fundamental set of solutions for the homogeneous
ODE is
y1 = €%t cos 2t
yo = e?tsin 2t

» So, a general solution is

y=an-+apr+yY

1 1 1
= c1e’t cos 2t + ce®tsin 2t + €%t (§ + Zt + ZtZ)
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g(t) = P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Example 3

Consider the ODE
y" —2y'+ 10y = 37sin3t (5)
Give a general solution.

Solution
Here g(t) = 37sin3t. Our first guest is that a particular
solution has the form

Y = Agcos 3t + Bysin 3t.
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g(t) = P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Continued

Two Derivatives of Y are

Y’ = —3Agsin 3t + 3B, cos 3t
Y" = —9Aycos 3t — 9B, sin 3t

Substituting in (5)
(—9Ao cos 3t — 9By sin 3t) — 2(—3Ag sin 3t + 3B, cos 3t)

+10(A cos 3t + Bysin3t) = 37sin3t —
Cos 3t(—9A0 — 6Bo + 1OA0) + sin 3t(—9Bo -+ 6A0 + 1080)
= 37sin 3t
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g(t) = P(t) is a Polynomial
Examples g(t)=e \rP(r) is product of Polynomial and exponential

g(t) is a Trigonometric Function

Ah —6B, =0 Ao =6
SO, { 6AO +BO _ 37 — { Bo — 1 (6)

So, Y = Apcos3t + Bysin3t = 6 cos3t + sin 3t
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g(t) = P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Continued

The CE r? — 2r + 10 = 0 has solutions r =1+ 3i. So, a
fundamental set of solutions:

y1 = et cos3t
y> = e'sin3t

So, a general solutions is

y = ant+ay,+Y = cef cos3t+cye sin3t+(6 cos 3t + sin 3t)
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g(t) = P(t) is a Polynomial
Examples g(t) = e""P(t) is product of Polynomial and exponential
g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:
» Out First guest Y = Ag cos 3t + By sin 3t worked.

» If the first guest did not work, we would have to refine
our guess. In this case refinement may be little more
complex to state. A student can look at one of the charts
available in the net.
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