Chapter 3: Second Order ODE §3.7 Nonhomogeneous LSODEs Method of Undetermined Coefficients

Satya Mandal, KU

1 March 2018

Goals

We continue to solve some Nonhomogeneous $2^{\text {nd }}$ order linear ODE, with constant coefficients:

$$
\begin{equation*}
\mathcal{L}(y)=a y^{\prime \prime}+b y^{\prime}+c y=g(t) \quad a, b, c \in \mathbb{R} . \tag{1}
\end{equation*}
$$

We dealt with some problems (in Examples and Homework), by the Method of Variation of Parameters, where $g(t)$ looks like, as described in the next frame!

Goals: Form of $g(t)$

$$
g(t)=\left\{\begin{array}{l}
e^{\lambda t} \tag{2}\\
\cos \mu t \\
\sin \mu t \\
\text { A Polynomial } \\
\text { A Product of the above. }
\end{array}\right.
$$

After solving enough of such problems, with the Method of Variation of Parameters, you see a Pattern evolves, regarding Particular solutions.

Goals: The Pattern of the Particular Solution

For example:

- Whenever $g=a e^{\lambda t}$, we saw the particular solution looked like $Y=A e^{\lambda t}$. If we believe this, we could substitute $Y=A e^{\lambda t}$ in the ODE (1), and try our luck in finding A.
- Likewise, when $g(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$, is a polynomial, we may have seen that the particular solution looks like $Y=A_{n} t^{n}+A_{n-1} t^{n-1}+\cdots+A_{1} t+A_{0}$. Again, if we believe this, we could substitute Y in the ODE (1), and try our luck in finding $A_{0}, A_{1}, \ldots, A_{n}$.
- If the fist guess fails, we refine our guess (the pattern).

Goals: The Chart of such Patterns

- Textbooks and Internet are full of such charts for appropriate guess for Y, for a form of $g(t)$, as in (2).
- The students can net search "Method of Undetermined Coefficients" for such a Chart.
- I would add one more theorem in the next frame, which helps to deal with a wider variety of $g(t)$, namely the sum of those given in (2).

Theorem for $g(t)=g_{1}(t)+g_{2}(t)$

Theorem 3.7.1 Let $P(t), Q(t), R(t), g_{1}(t), g_{2}(t)$ be function on an interval I. Consider the following three ODE:

$$
\left\{\begin{array}{l}
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=g_{1}(t) \\
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=g_{2}(t) \\
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=g_{1}(t)+g_{2}(t)
\end{array}\right.
$$

Suppose
$y=Y_{1}(t)$ is a solution of the first ODE, and $y=Y_{2}(t)$ is a solution of the second ODE. Then, $y=Y_{1}(t)+Y_{2}(t)$ is a solution of the third ODE.

Example 1

Give a Particular Solution of the ODE

$$
\begin{equation*}
4 y^{\prime \prime}-20 y^{\prime}+25 y=1+t+t^{2} \tag{3}
\end{equation*}
$$

Also give a general solution.
Solution Here $g(t)=1+t+t^{2}$ is a polynomial of degree two. Our first guess is: $Y=A+B t+C t^{2}$. Its derivatives:

$$
\left\{\begin{array}{l}
Y^{\prime}(t)=B+2 C t \\
Y^{\prime \prime}(t)=2 C
\end{array}\right.
$$

Continued

Substituting in (3):

$$
4(2 C)-20(B+2 C t)+25\left(A+B t+C t^{2}\right)=1+t+t^{2}
$$

Equating coefficient of t^{0}, t, t^{2}, we have

$$
\left\{\begin{array} { l }
{ 2 5 C = 1 } \\
{ - 4 0 C + 2 5 B = 1 } \\
{ 8 C - 2 0 B + 2 5 A = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
C=\frac{1}{25} \\
B=\frac{13}{125} \\
A=\frac{345}{3125}
\end{array}\right.\right.
$$

So, a particular solution is:

$$
Y=A+B t+C t^{2}=\frac{345}{3125}+\frac{13}{125} t+\frac{1}{25} t^{2}
$$

Contingency Plan

Contingency Plan:

- Out First guest $Y=A+B t+C t^{2}$ worked.
- If the first guest did not work, we would try $Y=t\left(A+B t+C t^{2}\right)$.
- If that did not work, we would try
$Y=t^{2}\left(A+B t+C t^{2}\right)$, and so on!

General Solution

- The CE $4 r^{2}-20 r+25=0$ has a double root $r=\frac{5}{2}$.
- So, fundamental set of solutions for the homogeneous ODE is

$$
\left\{\begin{array}{l}
y_{1}=e^{\frac{5}{2} t} \\
y_{2}=t e^{\frac{5}{2} t}
\end{array}\right.
$$

- So, a general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}+Y=c_{1} e^{\frac{5}{2} t}+c_{2} t e^{\frac{5}{2} t}+\left(\frac{345}{3125}+\frac{13}{125} t+\frac{1}{25} t^{2}\right)
$$

Example 2

Give a Particular Solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+8 y=\left(1+t+t^{2}\right) e^{2 t} \tag{4}
\end{equation*}
$$

Also give a general solution.
Solution Here $g(t)$ is product of $e^{2 t}$ and a polynomial $P(t)=1+t+t^{2}$ is a polynomial of degree two. Our first guess is: $Y=e^{2 t}\left(A+B t+C t^{2}\right)$. Its derivatives:

$$
\left\{\begin{aligned}
Y^{\prime}(t) & =e^{2 t}(B+2 C t)+2 e^{2 t}\left(A+B t+C t^{2}\right) \\
& \left.=e^{2 t}\left((2 A+B)+(2 B+2 C) t+2 C t^{2}\right)\right) \\
Y^{\prime \prime}(t) & =e^{2 t}((2 B+2 C)+4 C t)+2 e^{2 t}(\cdots) \\
& =e^{2 t}\left((4 A+4 B+2 C)+(4 B+8 C) t+4 C t^{2}\right)
\end{aligned}\right.
$$

Continued

Substituting in the ODE (4), we have

$$
\begin{gathered}
{\left[e^{2 t}\left((4 A+4 B+2 C)+(4 B+8 C) t+4 C t^{2}\right)\right]} \\
\left.-4\left[e^{2 t}\left((2 A+B)+(2 B+2 C) t+2 C t^{2}\right)\right)\right] \\
+8\left[e^{2 t}\left(A+B t+C t^{2}\right)\right]=\left(1+t+t^{2}\right) e^{2 t} \\
(4 A+2 C)+4 B t+4 C t^{2}=1+t+t^{2} \Longrightarrow
\end{gathered}
$$

Continued

$$
\left\{\begin{array} { l }
{ 4 A + 2 C = 1 } \\
{ 4 B = 1 } \\
{ 4 C = 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
A=\frac{1}{8} \\
B=\frac{1}{4} \\
C=\frac{1}{4}
\end{array}\right.\right.
$$

So, a particular solution is:

$$
Y=e^{2 t}\left(A+B t+C t^{2}\right)=e^{2 t}\left(\frac{1}{8}+\frac{1}{4} t+\frac{1}{4} t^{2}\right)
$$

Contingency Plan

Contingency Plan:

- Out First guest $Y=e^{2 t}\left(A+B t+C t^{2}\right)$ worked.
- If the first guest did not work, we would try $Y=t e^{2 t}\left(A+B t+C t^{2}\right)$.
- If that did not work, we would try
$Y=t^{2} e^{2 t}\left(A+B t+C t^{2}\right)$, and so on!

General Solution

- The CE $r^{2}-4 r+8=0$ has a double root $r=2 \pm 2 i$.
- So, fundamental set of solutions for the homogeneous ODE is

$$
\left\{\begin{array}{l}
y_{1}=e^{2 t} \cos 2 t \\
y_{2}=e^{2 t} \sin 2 t
\end{array}\right.
$$

- So, a general solution is

$$
\begin{gathered}
y=c_{1} y_{1}+c_{2} y_{2}+Y \\
=c_{1} e^{2 t} \cos 2 t+c_{2} e^{2 t} \sin 2 t+e^{2 t}\left(\frac{1}{8}+\frac{1}{4} t+\frac{1}{4} t^{2}\right)
\end{gathered}
$$

Example 3

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+10 y=37 \sin 3 t \tag{5}
\end{equation*}
$$

Give a general solution.

Solution

Here $g(t)=37 \sin 3 t$. Our first guest is that a particular solution has the form

$$
Y=A_{0} \cos 3 t+B_{0} \sin 3 t .
$$

Continued

Two Derivatives of Y are

$$
\left\{\begin{array}{l}
Y^{\prime}=-3 A_{0} \sin 3 t+3 B_{0} \cos 3 t \\
Y^{\prime \prime}=-9 A_{0} \cos 3 t-9 B_{0} \sin 3 t
\end{array}\right.
$$

Substituting in (5)

$$
\begin{gathered}
\left(-9 A_{0} \cos 3 t-9 B_{0} \sin 3 t\right)-2\left(-3 A_{0} \sin 3 t+3 B_{0} \cos 3 t\right) \\
+10\left(A_{0} \cos 3 t+B_{0} \sin 3 t\right)=37 \sin 3 t \Longrightarrow \\
\cos 3 t\left(-9 A_{0}-6 B_{0}+10 A_{0}\right)+\sin 3 t\left(-9 B_{0}+6 A_{0}+10 B_{0}\right) \\
=37 \sin 3 t
\end{gathered}
$$

So, $\quad\left\{\begin{array}{ll}A_{0} & -6 B_{0}=0 \\ 6 A_{0} & +B_{0}\end{array}=37=\left\{\begin{array}{l}A_{0}=6 \\ B_{0}=1\end{array}\right.\right.$
So, $\quad Y=A_{0} \cos 3 t+B_{0} \sin 3 t=6 \cos 3 t+\sin 3 t$

Continued

The CE $r^{2}-2 r+10=0$ has solutions $r=1 \pm 3 i$. So, a fundamental set of solutions:

$$
\left\{\begin{array}{l}
y_{1}=e^{t} \cos 3 t \\
y_{2}=e^{t} \sin 3 t
\end{array}\right.
$$

So, a general solutions is

$$
y=c_{1} y_{1}+c_{2} y_{2}+Y=c_{1} e^{t} \cos 3 t+c_{2} e^{t} \sin 3 t+(6 \cos 3 t+\sin 3 t)
$$

Contingency Plan

Contingency Plan:

- Out First guest $Y=A_{0} \cos 3 t+B_{0} \sin 3 t$ worked.
- If the first guest did not work, we would have to refine our guess. In this case refinement may be little more complex to state. A student can look at one of the charts available in the net.

