Chapter 3: Second Order ODE §3.7 Nonhomogeneous LSODEs Method of Undetermined Coefficients

Satya Mandal, KU

1 March 2018

Satya Mandal, KU Chapter 3: Second Order ODE §3.7 Nonhomogeneous LSOI

(日本) (日本) (

Goals

We continue to solve some Nonhomogeneous 2^{nd} order linear ODE, with constant coefficients:

$$\mathcal{L}(y) = ay'' + by' + cy = g(t)$$
 $a, b, c \in \mathbb{R}.$ (1)

We dealt with some problems (in Examples and Homework), by the Method of Variation of Parameters, where g(t) looks like, as described in the next frame!

▲□→ ▲ □→ ▲ □→ -

Goals: Form of g(t)

$$g(t) = \begin{cases} e^{\lambda t} \\ \cos \mu t \\ \sin \mu t \\ \text{A Polynomial} \\ \text{A Product of the above.} \end{cases}$$
(2)

After solving enough of such problems, with the Method of Variation of Parameters, you see a Pattern evolves, regarding Particular solutions.

Goals: The Pattern of the Particular Solution

For example:

- Whenever g = ae^{λt}, we saw the particular solution looked like Y = Ae^{λt}. If we believe this, we could substitute Y = Ae^{λt} in the ODE (1), and try our luck in finding A.
- Likewise, when g(t) = a_ntⁿ + a_{n-1}tⁿ⁻¹ + ··· + a₁t + a₀, is a polynomial, we may have seen that the particular solution looks like Y = A_ntⁿ + A_{n-1}tⁿ⁻¹ + ··· + A₁t + A₀. Again, if we believe this, we could substitute Y in the ODE (1), and try our luck in finding A₀, A₁, ..., A_n.
- ► If the fist guess fails, we refine our guess (the pattern).

Goals: The Chart of such Patterns

- Textbooks and Internet are full of such charts for appropriate guess for Y, for a form of g(t), as in (2).
- The students can net search "Method of Undetermined Coefficients" for such a Chart.
- I would add one more theorem in the next frame, which helps to deal with a wider variety of g(t), namely the sum of those given in (2).

Theorem for $g(t) = g_1(t) + g_2(t)$

Theorem 3.7.1 Let P(t), Q(t), R(t), $g_1(t)$, $g_2(t)$ be function on an interval *I*. Consider the following three ODE:

$$\begin{cases} P(t)y'' + Q(t)y' + R(t)y = g_1(t) \\ P(t)y'' + Q(t)y' + R(t)y = g_2(t) \\ P(t)y'' + Q(t)y' + R(t)y = g_1(t) + g_2(t) \end{cases}$$

Suppose

 $y = Y_1(t)$ is a solution of the first ODE, and $y = Y_2(t)$ is a solution of the second ODE. Then, $y = Y_1(t) + Y_2(t)$ is a solution of the third ODE.

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Example 1

Give a Particular Solution of the ODE

$$4y'' - 20y' + 25y = 1 + t + t^2$$
(3)

Also give a general solution.

Solution Here $g(t) = 1 + t + t^2$ is a polynomial of degree two. Our first guess is: $Y = A + Bt + Ct^2$. Its derivatives:

$$\begin{cases} Y'(t) = B + 2Ct \\ Y''(t) = 2C \end{cases}$$

・ロン ・四と ・ヨン ・ヨン

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Continued

Substituting in (3):

 $4(2C) - 20(B + 2Ct) + 25(A + Bt + Ct^{2}) = 1 + t + t^{2}$

Equating coefficient of t^0, t, t^2 , we have

$$\begin{cases} 25C = 1 \\ -40C + 25B = 1 \\ 8C - 20B + 25A = 1 \end{cases} \implies \begin{cases} C = \frac{1}{25} \\ B = \frac{13}{125} \\ A = \frac{345}{3125} \end{cases}$$

So, a particular solution is:

$$Y = A + Bt + Ct^{2} = \frac{345}{3125} + \frac{13}{125}t + \frac{1}{25}t^{2}$$
Satva Mandal, KU
Chapter 3: Second Order ODE \$3.7 Nonhomogeneous LSO

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:

- Out First guest $Y = A + Bt + Ct^2$ worked.
- If the first guest did not work, we would try $Y = t(A + Bt + Ct^2)$.
- If that did not work, we would try Y = t²(A + Bt + Ct²), and so on!

・ロト ・回ト ・ヨト ・ヨト

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

General Solution

- The CE $4r^2 20r + 25 = 0$ has a double root $r = \frac{5}{2}$.
- So, fundamental set of solutions for the homogeneous ODE is

$$\begin{cases} y_1 = e^{\frac{5}{2}t} \\ y_2 = t e^{\frac{5}{2}t} \end{cases}$$

So, a general solution is

$$y = c_1 y_1 + c_2 y_2 + Y = c_1 e^{\frac{5}{2}t} + c_2 t e^{\frac{5}{2}t} + \left(\frac{345}{3125} + \frac{13}{125}t + \frac{1}{25}t^2\right)$$

イロト 不得下 イヨト イヨト

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Example 2

Give a Particular Solution of the ODE

$$y'' - 4y' + 8y = (1 + t + t^2)e^{2t}$$
 (4)

Also give a general solution.

Solution Here g(t) is product of e^{2t} and a polynomial $P(t) = 1 + t + t^2$ is a polynomial of degree two. Our first guess is: $Y = e^{2t}(A + Bt + Ct^2)$. Its derivatives:

$$\begin{cases}
Y'(t) = e^{2t}(B + 2Ct) + 2e^{2t}(A + Bt + Ct^2) \\
= e^{2t}((2A + B) + (2B + 2C)t + 2Ct^2)) \\
Y''(t) = e^{2t}((2B + 2C) + 4Ct) + 2e^{2t}(\cdots) \\
= e^{2t}((4A + 4B + 2C) + (4B + 8C)t + 4Ct^2)
\end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

 $g(t)=\mathcal{P}(t)$ is a Polynomial $g(t)=e^{\lambda t}\mathcal{P}(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Continued

Substituting in the ODE (4), we have

$$\begin{bmatrix} e^{2t} \left((4A + 4B + 2C) + (4B + 8C)t + 4Ct^2 \right) \end{bmatrix} \\ -4 \left[e^{2t} \left((2A + B) + (2B + 2C)t + 2Ct^2 \right) \right] \\ +8 \left[e^{2t} (A + Bt + Ct^2) \right] = (1 + t + t^2)e^{2t} \\ (4A + 2C) + 4Bt + 4Ct^2 = 1 + t + t^2 \Longrightarrow$$

イロン イヨン イヨン イヨン

æ

 $g(t)=\mathcal{P}(t)$ is a Polynomial $g(t)=e^{\lambda t}\mathcal{P}(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Continued

$$\begin{cases} 4A + 2C = 1\\ 4B = 1\\ 4C = 1 \end{cases} \implies \begin{cases} A = \frac{1}{8}\\ B = \frac{1}{4}\\ C = \frac{1}{4} \end{cases}$$

So, a particular solution is:

$$Y = e^{2t}(A + Bt + Ct^2) = e^{2t}\left(\frac{1}{8} + \frac{1}{4}t + \frac{1}{4}t^2\right)$$

イロン イヨン イヨン イヨン

臣

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:

- Out First guest $Y = e^{2t} (A + Bt + Ct^2)$ worked.
- ► If the first guest did not work, we would try $Y = te^{2t} (A + Bt + Ct^2).$
- If that did not work, we would try $Y = t^2 e^{2t} (A + Bt + Ct^2),$ and so on!

 $g(t) = \mathcal{P}(t)$ is a Polynomial $g(t) = e^{\lambda t} \mathcal{P}(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

General Solution

- The CE $r^2 4r + 8 = 0$ has a double root $r = 2 \pm 2i$.
- So, fundamental set of solutions for the homogeneous ODE is

$$\begin{cases} y_1 = e^{2t} \cos 2t \\ y_2 = e^{2t} \sin 2t \end{cases}$$

So, a general solution is

$$y = c_1 y_1 + c_2 y_2 + Y$$
$$= c_1 e^{2t} \cos 2t + c_2 e^{2t} \sin 2t + e^{2t} \left(\frac{1}{8} + \frac{1}{4}t + \frac{1}{4}t^2\right)$$

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Example 3

Consider the ODE

$$y'' - 2y' + 10y = 37\sin 3t \tag{5}$$

Give a general solution.

Solution

Here $g(t) = 37 \sin 3t$. Our first guest is that a particular solution has the form

$$Y = A_0 \cos 3t + B_0 \sin 3t.$$

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Continued

Two Derivatives of Y are

$$\begin{cases} Y' = -3A_0 \sin 3t + 3B_0 \cos 3t \\ Y'' = -9A_0 \cos 3t - 9B_0 \sin 3t \end{cases}$$

Substituting in (5)

$$(-9A_0\cos 3t - 9B_0\sin 3t) - 2(-3A_0\sin 3t + 3B_0\cos 3t)$$

$$+10(A_0 \cos 3t + B_0 \sin 3t) = 37 \sin 3t \implies$$

$$\cos 3t(-9A_0 - 6B_0 + 10A_0) + \sin 3t(-9B_0 + 6A_0 + 10B_0)$$

$$= 37 \sin 3t$$

イロン イヨン イヨン イヨン

æ

So,
$$\begin{cases} A_0 & -6B_0 = 0\\ 6A_0 & +B_0 = 37 \end{cases} \implies \begin{cases} A_0 = 6\\ B_0 = 1 \end{cases}$$
(6)
So,
$$Y = A_0 \cos 3t + B_0 \sin 3t = 6 \cos 3t + \sin 3t$$

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Continued

The CE $r^2 - 2r + 10 = 0$ has solutions $r = 1 \pm 3i$. So, a fundamental set of solutions:

$$\begin{cases} y_1 = e^t \cos 3t \\ y_2 = e^t \sin 3t \end{cases}$$

So, a general solutions is

$$y = c_1 y_1 + c_2 y_2 + Y = c_1 e^t \cos 3t + c_2 e^t \sin 3t + (6 \cos 3t + \sin 3t)$$

イロト イヨト イヨト イヨト

э

g(t) = P(t) is a Polynomial $g(t) = e^{\lambda t} P(t)$ is product of Polynomial and exponential g(t) is a Trigonometric Function

Contingency Plan

Contingency Plan:

- Out First guest $Y = A_0 \cos 3t + B_0 \sin 3t$ worked.
- If the first guest did not work, we would have to refine our guess. In this case refinement may be little more complex to state. A student can look at one of the charts available in the net.