Chapter 3: Second Order ODE §3.6 Nonhomogeneous LSODEs
 Method of Variation of Parameters

Satya Mandal, KU

21 February 2018

SODEs

- Recall, second order DE (SODE) has the form

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right) \tag{1}
\end{equation*}
$$

This is also written as

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

Nonhomogeneous LSODE

Now, we consider nonhomogeneous LSODEs.

- A nonhomogeneous $2^{\text {nd }}$-order linear SODE (LSODE), can

$$
\begin{equation*}
\text { be written as: } \mathcal{L}(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{2}
\end{equation*}
$$

where $p(t), q(t), g(t)$ are functions of t.

- As clarified latter, to solve (2), it would be necessary to solve the the corresponding homogeneous ODE

$$
\begin{equation*}
\mathcal{L}(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{3}
\end{equation*}
$$

- Another form of LSODE (2) is:

$$
\begin{equation*}
\mathcal{L}(y)=P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t) \tag{4}
\end{equation*}
$$

and the corresponding homogeneous ODE is:

$$
\begin{equation*}
\mathcal{L}(y)=P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0 \tag{5}
\end{equation*}
$$

where $P(t), Q(t), R(t), G(t)$ are functions of t.

- The Plan: We only (mostly) consider problems, so that the corresponding homogeneous ODE (3 or 5) has constant coefficients. We use $\S 3.2,3.4,3.5$ to solve the respective homogeneous ODE (3 or 5).

Role of the Homogeneous Part

The role of the corresponding homogeneous equation:

- Theorem 3.6.1 Suppose Y_{1}, Y_{2} are two solutions of the nonhomogeneous LSODE (2) or (4):

$$
\mathcal{L}(y)=g(t) \quad \text { or } \quad \mathcal{L}(y)=G(t)
$$

Then, $Y_{1}-Y_{2}$ is a solution of the homogeneous ODE $\mathcal{L}(y)=0$ (3 or 5).

- Proof. $\mathcal{L}\left(Y_{1}\right)=g(t), \quad \mathcal{L}\left(Y_{2}\right)=g(t) \Longrightarrow$

$$
\mathcal{L}\left(Y_{1}-Y_{2}\right)=\mathcal{L}\left(Y_{1}\right)-\mathcal{L}\left(Y_{2}\right)=g(t)-g(t)=0 .
$$

The General Solution

Theorem 3.6.2 Suppose Y is a solution of the equation nonhomogeneous LSODE (2) $\mathcal{L}(y)=g(t)$ [likewise (4)]. Let y_{1}, y_{2} be a fundamental set of solutions of the homogeneous equation (3) $\mathcal{L}(y)=0$.
Then, the general solution of (2) [likewise of (4)] is:

$$
\begin{equation*}
y=\varphi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t) \tag{6}
\end{equation*}
$$

where c_{1}, c_{2} are arbitrary constants. Use the notation $y_{c}=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.

Method of Solutions

Now, we solve some $2^{\text {nd }}$ - order nonhomogeneous $\operatorname{ODEs}(2,4)$. We would only (mostly) consider ODE, with homogeneous part $\mathcal{L}(y)=0$ with constant coefficients.

By Theorem 3.6.2, two steps would be involved:

- Use methods in $\S 3.2,3.4,3.5$ to compute a Fundamental set of solutions y_{1}, y_{2} of the homogeneous part $\mathcal{L}(y)=0$.
- Find a particular solution $Y(t)$ of $(2,4)$. In this section, we discuss the method of Variation of Parameters, which is discussed next.

Theorem 3.6.3: Variation of Parameters

Theorem 3.6.1: Consider the nonhomogeneous LSODE (2):

$$
\mathcal{L}(y)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Assume $p(t), q(t), g(t)$ are continuous on an open interval I. Let y_{1}, y_{2} be a pair of fundamental solutions of the corresponding homogeneous ODE $\mathcal{L}(y)=0$.

Continued

Then: A particular solution of (2) is given by

$$
\begin{equation*}
Y=-y_{1}(t) \int \frac{y_{2}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)}+y_{2}(t) \int \frac{y_{1}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)} \tag{7}
\end{equation*}
$$

where these two integrals denote any antiderivatives. In particular, for numerical solutions, we can take

$$
\begin{equation*}
Y=-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s) d s}{W\left(y_{1}, y_{2}\right)(s)}+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s) d s}{W\left(y_{1}, y_{2}\right)(s)} \tag{8}
\end{equation*}
$$

where t_{0} is any convenient point in I (Sometimes $t_{0}=0$).

Continued

- So, by (6), the general solution of (2) is

$$
\begin{equation*}
y=y_{c}+Y=\left(c_{1} y_{1}+c_{2} y_{2}\right)+Y \tag{9}
\end{equation*}
$$

The General Solutions

Example 1

Find a general solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}+8 y^{\prime}+16 y=3 e^{-t} \tag{10}
\end{equation*}
$$

Step I: Compute Fundamental Set y_{1}, y_{2}

- The corresponding homogeneous DE: $y^{\prime \prime}+8 y^{\prime}+16 y=0$
- The CE: $r^{2}+8 r+16=0$.
- So, the CE has a double root $r=-4$.
- From §3.4 a pair of fundamental solutions are:

$$
\left\{\begin{array}{l}
y_{1}=e^{r t}=e^{-4 t} \\
y_{2}=t y_{1}=t e^{-4 t}
\end{array}\right.
$$

- The Wronskian:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-4 t} & t e^{-4 t} \\
-4 e^{-4 t} & e^{-4 t}-t e^{-4 t}
\end{array}\right|=e^{-8 t}
$$

Step II: Compute Particular Solution

By (7)

$$
\begin{gathered}
Y=-y_{1}(t) \int \frac{y_{2}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)}+y_{2}(t) \int \frac{y_{1}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)} \\
=-e^{-4 t} \int \frac{t e^{-4 t}\left(3 e^{-t}\right) d t}{e^{-8 t}}+t e^{-4 t} \int \frac{e^{-4 t}\left(3 e^{-t}\right) d t}{e^{-8 t}} \\
=-e^{-4 t} \int 3 t e^{3 t} d t+t e^{-4 t} \int 3 e^{3 t} d t \\
=-e^{-4 t}\left(t e^{3 t}-\frac{e^{3 t}}{3}\right)+t e^{-4 t} e^{3 t}=\frac{e^{-t}}{3}
\end{gathered}
$$

Continued

- So, by (9), the general is

$$
\begin{aligned}
y= & y_{c}+Y=\left(c_{1} y_{1}+c_{2} y_{2}\right)+Y \\
& =c_{1} e^{-4 t}+c_{2} t e^{-4 t}+\frac{e^{-t}}{3}
\end{aligned}
$$

The General Solutions

Example 1: With a double root

Example 2

Find a general solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}-3 y=4 e^{2 t} \tag{11}
\end{equation*}
$$

Step I: Compute a Fundamental Pair y_{1}, y_{2}

- The corresponding homogeneous ODE: $y^{\prime \prime}-2 y^{\prime}-3 y=0$
- The CE: $r^{2}-2 r-3=0$.
- So, $r_{1}=-1, r_{2}=3$
- From §3.1 a pair of fundamental solutions are:

$$
\left\{\begin{array}{l}
y_{1}=e^{-t} \\
y_{2}=e^{3 t}
\end{array}\right.
$$

- The Wronskian:

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-t} & e^{3 t} \\
-e^{-t} & 3 e^{3 t}
\end{array}\right|=4 e^{2 t}
$$

Step II: Compute a Particular Solution

By (7), with $g(t)=4 e^{2 t}$:

$$
\begin{aligned}
& Y=-y_{1}(t) \int \frac{y_{2}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)}+y_{2}(t) \int \frac{y_{1}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)} \\
&=-e^{-t} \int \frac{e^{3 t}\left(4 e^{2 t}\right) d t}{4 e^{2 t}}+e^{3 t} \int \frac{e^{-t}\left(4 e^{2 t}\right) d t}{4 e^{2 t}} \\
&=-e^{-t} \frac{e^{3 t}}{3}+e^{3 t}\left(-e^{-t}\right)=-\frac{4 e^{2 t}}{3}
\end{aligned}
$$

Example 1: With a double root

Continued

- So, by (9), the general is

$$
\begin{aligned}
y= & y_{c}+Y=\left(c_{1} y_{1}+c_{2} y_{2}\right)+Y \\
& =c_{1} e^{-t}+c_{2} e^{3 t}-\frac{4 e^{2 t}}{3}
\end{aligned}
$$

The General Solutions

Example 1: With a double root

Example 3

Find a general solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+5 y=4 \cos 2 t \tag{12}
\end{equation*}
$$

Step I: Compute a Fundamental Pair y_{1}, y_{2}

- The corresponding homogeneous ODE: $y^{\prime \prime}+2 y^{\prime}+y=0$
- The CE: $r^{2}-2 r+5=0$.
- So, $r_{1}=1+2 i, r_{2}=1-2 i$
- From $\S 3.4$ a pair of fundamental solutions are:

$$
\left\{\begin{array}{l}
y_{1}=e^{t} \cos 2 t \\
y_{2}=e^{t} \sin 2 t
\end{array}\right.
$$

Continued

- The Wronskian:

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
=\left|\begin{array}{cc}
e^{t} \cos 2 t & e^{t} \sin 2 t \\
e^{t} \cos 2 t-2 e^{t} \sin 2 t & e^{t} \sin 2 t+2 e^{t} \cos 2 t
\end{array}\right|=2 e^{t}
\end{gathered}
$$

Step II: Compute a Particular Solution

By (7), with $g(t)=4 \cos 2 t$,

$$
\begin{gathered}
Y=-y_{1}(t) \int \frac{y_{2}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)}+y_{2}(t) \int \frac{y_{1}(t) g(t) d t}{W\left(y_{1}, y_{2}\right)(t)} \\
=-e^{t} \cos 2 t \int \frac{e^{t} \sin 2 t[4 \cos 2 t] d t}{2 e^{t}}+e^{t} \sin 2 t \int \frac{e^{t} \cos 2 t[4 \cos 2 t] d t}{2 e^{t}} \\
=-e^{t} \cos 2 t \int 2 \sin 2 t \cos 2 t d t+e^{t} \sin 2 t \int 2 \cos ^{2} 2 t d t \\
=-e^{t} \cos 2 t \int \sin 4 t d t+e^{t} \sin 2 t \int(\cos 4 t+1) d t
\end{gathered}
$$

The General Solutions

Continued

$$
\begin{gathered}
Y=-e^{t} \cos 2 t \frac{-\cos 4 t}{4}+e^{t} \sin 2 t\left(\frac{\sin 4 t}{4}+t\right) \\
=-e^{t}\left(\frac{\cos 6 t}{4}-t \sin 2 t\right)
\end{gathered}
$$

- So, by (9), the general is

$$
\begin{gathered}
y=y_{c}+Y=\left(c_{1} y_{1}+c_{2} y_{2}\right)+Y \\
=c_{1} e^{t} \cos 2 t+c_{2} e^{t} \sin 2 t+-e^{t}\left(\frac{\cos 6 t}{4}-t \sin 2 t\right)
\end{gathered}
$$

