
The General Solutions
Method of Solutions

Examples

Chapter 3: Second Order ODE
§3.6 Nonhomogeneous LSODEs

Method of Variation of Parameters

Satya Mandal, KU

21 February 2018

Satya Mandal, KU Chapter 3: Second Order ODE §3.6 Nonhomogeneous LSODEs Method of Variation of Parameters



The General Solutions
Method of Solutions

Examples

SODEs

I Recall, second order DE (SODE) has the form

d2y

dt2 = f

(
t, y ,

dy

dt

)
(1)

This is also written as

y” = f (t, y , y ′)
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Nonhomogeneous LSODE

Now, we consider nonhomogeneous LSODEs.
I A nonhomogeneous 2nd -order linear SODE (LSODE), can

be written as : L(y) = y” + p(t)y ′ + q(t)y = g(t) (2)

where p(t), q(t), g(t) are functions of t.
I As clarified latter, to solve (2), it would be necessary to

solve the the corresponding homogeneous ODE

L(y) = y” + p(t)y ′ + q(t)y = 0 (3)
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I Another form of LSODE (2) is:

L(y) = P(t)y” + Q(t)y ′ + R(t)y = G (t) (4)

and the corresponding homogeneous ODE is:

L(y) = P(t)y” + Q(t)y ′ + R(t)y = 0 (5)

where P(t),Q(t),R(t),G (t) are functions of t.
I The Plan: We only (mostly) consider problems, so that

the corresponding homogeneous ODE (3 or 5) has
constant coefficients. We use §3.2, 3.4, 3.5 to solve the
respective homogeneous ODE (3 or 5).
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Role of the Homogeneous Part

The role of the corresponding homogeneous equation:

I Theorem 3.6.1 Suppose Y1,Y2 are two solutions of the
nonhomogeneous LSODE (2) or (4):

L(y) = g(t) or L(y) = G (t)

Then, Y1 − Y2 is a solution of the homogeneous ODE
L(y) = 0 (3 or 5).

I Proof. L(Y1) = g(t), L(Y2) = g(t) =⇒

L(Y1 − Y2) = L(Y1)− L(Y2) = g(t)− g(t) = 0.
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The General Solution

Theorem 3.6.2 Suppose Y is a solution of the equation
nonhomogeneous LSODE (2) L(y) = g(t) [likewise (4)]. Let
y1, y2 be a fundamental set of solutions of the homogeneous
equation (3) L(y) = 0.
Then, the general solution of (2) [likewise of (4)] is:

y = ϕ(t) = c1y1(t) + c2y2(t) + Y (t) (6)

where c1, c2 are arbitrary constants. Use the notation
yc = c1y1(t) + c2y2(t).
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Method of Solutions

Now, we solve some 2nd -order nonhomogeneous ODEs (2, 4).
We would only (mostly) consider ODE, with homogeneous
part L(y) = 0 with constant coefficients.

By Theorem 3.6.2, two steps would be involved:
I Use methods in §3.2, 3.4, 3.5 to compute a Fundamental

set of solutions y1, y2 of the homogeneous part L(y) = 0.
I Find a particular solution Y (t) of (2, 4). In this section,

we discuss the method of Variation of Parameters, which
is discussed next.
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Theorem 3.6.3: Variation of Parameters

Theorem 3.6.1: Consider the nonhomogeneous LSODE (2):

L(y) = y” + p(t)y ′ + q(t)y = g(t)

Assume p(t), q(t), g(t) are continuous on an open interval I .
Let y1, y2 be a pair of fundamental solutions of the
corresponding homogeneous ODE L(y) = 0.
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Continued

Then: A particular solution of (2) is given by

Y = −y1(t)

∫
y2(t)g(t)dt

W (y1, y2)(t)
+ y2(t)

∫
y1(t)g(t)dt

W (y1, y2)(t)
(7)

where these two integrals denote any antiderivatives.
In particular, for numerical solutions, we can take

Y = −y1(t)

∫ t

t0

y2(s)g(s)ds

W (y1, y2)(s)
+ y2(t)

∫ t

t0

y1(s)g(s)ds

W (y1, y2)(s)
(8)

where t0 is any convenient point in I (Sometimes t0 = 0).
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Continued

I So, by (6), the general solution of (2) is

y = yc + Y = (c1y1 + c2y2) + Y (9)
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Example 1: With a double root
Example 2: With distinct roots
Example 3: With complex roots

Example 1

Find a general solution of the ODE

y” + 8y ′ + 16y = 3e−t (10)
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Step I: Compute Fundamental Set y1, y2

I The corresponding homogeneous DE: y” + 8y ′ + 16y = 0
I The CE: r 2 + 8r + 16 = 0.
I So, the CE has a double root r = −4.
I From §3.4 a pair of fundamental solutions are:{

y1 = ert = e−4t

y2 = ty1 = te−4t

I The Wronskian:

W (y1, y2) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ e−4t te−4t

−4e−4t e−4t − te−4t

∣∣∣∣ = e−8t .
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Step II: Compute Particular Solution

By (7)

Y = −y1(t)

∫
y2(t)g(t)dt

W (y1, y2)(t)
+ y2(t)

∫
y1(t)g(t)dt

W (y1, y2)(t)

= −e−4t
∫

te−4t(3e−t)dt
e−8t + te−4t

∫
e−4t(3e−t)dt

e−8t

= −e−4t
∫

3te3tdt + te−4t
∫

3e3tdt

= −e−4t
(
te3t − e3t

3

)
+ te−4te3t =

e−t

3
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Continued

I So, by (9), the general is

y = yc + Y = (c1y1 + c2y2) + Y

= c1e
−4t + c2te

−4t +
e−t

3

Satya Mandal, KU Chapter 3: Second Order ODE §3.6 Nonhomogeneous LSODEs Method of Variation of Parameters



The General Solutions
Method of Solutions

Examples

Example 1: With a double root
Example 2: With distinct roots
Example 3: With complex roots

Example 2

Find a general solution of the ODE

y”− 2y ′ − 3y = 4e2t (11)
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Step I: Compute a Fundamental Pair y1, y2

I The corresponding homogeneous ODE: y”− 2y ′− 3y = 0
I The CE: r 2 − 2r − 3 = 0.
I So, r1 = −1, r2 = 3
I From §3.1 a pair of fundamental solutions are:{

y1 = e−t

y2 = e3t

I The Wronskian:

W (y1, y2) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ = ∣∣∣∣ e−t e3t

−e−t 3e3t

∣∣∣∣ = 4e2t .
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Step II: Compute a Particular Solution

By (7), with g(t) = 4e2t :

Y = −y1(t)

∫
y2(t)g(t)dt

W (y1, y2)(t)
+ y2(t)

∫
y1(t)g(t)dt

W (y1, y2)(t)

= −e−t
∫

e3t(4e2t)dt

4e2t + e3t
∫

e−t(4e2t)dt

4e2t

= −e−t e
3t

3
+ e3t(−e−t) = −4e2t

3
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Continued

I So, by (9), the general is

y = yc + Y = (c1y1 + c2y2) + Y

= c1e
−t + c2e

3t − 4e2t

3
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Example 1: With a double root
Example 2: With distinct roots
Example 3: With complex roots

Example 3

Find a general solution of the ODE

y”− 2y ′ + 5y = 4 cos 2t (12)
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Example 1: With a double root
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Example 3: With complex roots

Step I: Compute a Fundamental Pair y1, y2

I The corresponding homogeneous ODE: y” + 2y ′ + y = 0
I The CE: r 2 − 2r + 5 = 0.
I So, r1 = 1+ 2i , r2 = 1− 2i
I From §3.4 a pair of fundamental solutions are:{

y1 = et cos 2t
y2 = et sin 2t
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Continued

I The Wronskian:

W (y1, y2) =

∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣
=

∣∣∣∣ et cos 2t et sin 2t
et cos 2t − 2et sin 2t et sin 2t + 2et cos 2t

∣∣∣∣ = 2et .
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Step II: Compute a Particular Solution

By (7), with g(t) = 4 cos 2t,

Y = −y1(t)

∫
y2(t)g(t)dt

W (y1, y2)(t)
+ y2(t)

∫
y1(t)g(t)dt

W (y1, y2)(t)

= −et cos 2t
∫

et sin 2t[4 cos 2t]dt
2et

+et sin 2t
∫

et cos 2t[4 cos 2t]dt
2et

= −et cos 2t
∫

2 sin 2t cos 2t dt + et sin 2t
∫

2 cos2 2t dt

= −et cos 2t
∫

sin 4t dt + et sin 2t
∫

(cos 4t + 1) dt
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Continued

Y = −et cos 2t− cos 4t
4

+ et sin 2t
(
sin 4t
4

+ t

)
= −et

(
cos 6t
4
− t sin 2t

)
I So, by (9), the general is

y = yc + Y = (c1y1 + c2y2) + Y

= c1e
t cos 2t + c2e

t sin 2t +−et
(
cos 6t
4
− t sin 2t

)
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