Chapter 5:

System of $1^{\text {st }}$-Order Linear ODE §5.6 Complex Eigenvalues

Satya Mandal, KU

20 March 2018

Complex Eigenvalues

- We continue to consider homogeneous linear systems with constant coefficients:

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{A y} \quad \mathbf{A} \text { is an } \mathrm{n} \times \mathrm{n} \text { matrix with constant entries } \tag{1}
\end{equation*}
$$

- In $\S 5.5$, we considered the situation when all the eigenvalues of \mathbf{A}, were real and distinct. In this section, we consider when some of the eigen values are complex.
- As in $\S 5.4$, solutions of (1) will be denoted by

$$
\mathbf{y}^{(1)}(t), \cdots, \mathbf{y}^{(n)}(t)
$$

Principle of superposition

- Recall the Principle of superposition and the converse (§5.4): IF $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ are solution of (1), then, any constant linear combination

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+\cdots+c_{n} \mathbf{y}^{(n)} \tag{2}
\end{equation*}
$$

is also a solution of the same system (1).

- The converse is also true, if Wronskian $W \neq 0$.
- Further, if r is an eigenvalue of \mathbf{A} and ξ is an eigenvector of A, corresponding to r, then

$$
\begin{equation*}
\mathbf{y}=\xi e^{r t} \quad \text { is a solution of }(1) \tag{3}
\end{equation*}
$$

Complex eigenvalues and vectors

- Now, suppose \mathbf{A} has a complex eigenvalue $r_{1}=\lambda+i \mu$ and $\xi^{(1)}$ is an eigenvector, for r_{1}. That means

$$
\begin{equation*}
(\mathbf{A}-(\lambda+i \mu) /) \xi^{(1)}=0 . \tag{4}
\end{equation*}
$$

- Apply conjugation to (4):

$$
(A-(\lambda-i \mu) I) \overline{\xi^{(1)}}=0 \quad \text { This means : }
$$

- $r_{2}=\overline{r_{1}}=\lambda-i \mu$ an eigenvalue of \mathbf{A}. And,
- $\xi^{(2)}=\overline{\xi^{(1)}}$ is an eigenvector of \mathbf{A}, corresponding to r_{2}.

Continued: Two conjugate complex Solutions

- Two eigen values $r_{1}, r_{2}=\overline{r_{1}}$ and the corresponding eigenvalues gives two solutions of (1):

$$
\begin{equation*}
\mathbf{y}^{(1)}=\xi^{(1)} e^{r_{1} t}, \quad \mathbf{y}^{(2)}=\xi^{(2)} e^{r_{2} t} \tag{5}
\end{equation*}
$$

- Write $\xi^{(1)}=\mathbf{a}+i \mathbf{b}$, where \mathbf{a}, \mathbf{b} real real vectors. Then,

$$
\begin{gathered}
\mathbf{y}^{(1)}=(\mathbf{a}+i \mathbf{b}) e^{(\lambda+i \mu) t}=(\mathbf{a}+i \mathbf{b})\left[e^{\lambda t}(\cos \mu t+i \sin \mu t)\right] \\
=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{gathered}
$$

Continued: Two Real Solutions

- Both real and imaginary part of $\mathbf{y}^{(1)}$ are solutions of (1), as follows:

$$
\left\{\begin{array}{l}
\mathbf{u}=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \tag{6}\\
\mathbf{v}=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{array}\right.
$$

- These real solutions \mathbf{u}, \mathbf{v} fit in very well as a part of a fundamental set of n solutions. There will be too many cases to make this statement precise, in complete details. However, we make a statement in the following frame.
- Often, we will consider systems of 2 or 3 equations. So, following statement will suffice, in most cases.

As part of Fundamental set

Theorem 5.6.1 Consider the homogenous linear system (1):
$\mathbf{y}^{\prime}=A \mathbf{y}$, where A is an $n \times n$ matrix, with real entries.

- Suppose $r_{1}=\lambda+i \mu, r_{1}=\lambda-i \mu$ are two conjugate eigenvalues of \mathbf{A}. As above, let $\xi^{(1)}=\mathrm{a}+i \mathrm{~b}$ is an eigenvector of r_{1}. Accordingly, the conjugate $\xi^{(2)}=\mathbf{a}+i \mathbf{b}$ is an eigenvector of r_{2}.
- Let \mathbf{u}, \mathbf{v} be as in (6).

Then, there are (real) solutions $\mathbf{y}^{(3)}, \ldots, \mathbf{y}^{(n)}$ of (1), such that $\mathbf{u}, \mathbf{v}, \mathbf{y}^{(3)}, \ldots, \mathbf{y}^{(n)}$ forms a fundamental set of solutions of (1).

Continued

Further, the solutions $\mathbf{y}^{(3)}, \ldots, \mathbf{y}^{(n)}$ are determined by the eigenvalues $r_{1}, r_{2}, r_{3}, \ldots, r_{n}$, (real or complex) and their multiplicities.

Hence, any solution x has the form (2):

$$
\begin{equation*}
\mathbf{x}=c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{y}^{(3)}+\cdots+c_{n} \mathbf{y}^{(n)} \tag{7}
\end{equation*}
$$

Example 1

Find the general solution (real valued) of the equation:

$$
y^{\prime}=\left(\begin{array}{ll}
-3 & 5 \tag{8}\\
-1 & 1
\end{array}\right) y
$$

- Eigenvalues of the coef. matrix A, are: given by

$$
\left|\begin{array}{cc}
-3-r & 5 \\
-1 & 1-r
\end{array}\right|=0 \quad r=-1+i,-1-i
$$

Eigenvectors

Analytically, eigenvectors for $r=-1+i$ is given by $(\mathbf{A}-r l) \xi=\mathbf{0}$, which is

$$
\left(\begin{array}{cc}
-3-(-1+i) & 5 \\
-1 & 1-(-1+i)
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

The second row is $2+i$-times the first row. It follows:

$$
\left(\begin{array}{cc}
-2-i & 5 \\
-1 & 2-i
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow
$$

Continued

$$
\left(\begin{array}{cc}
0 & 0 \\
-1 & 2-i
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow
$$

With $\xi_{2}=1$, an eigenvector of $r=-1+i$ is

$$
\xi^{(1)}=\binom{2-i}{1}=\binom{2}{1}+i\binom{-1}{0}
$$

The solution

- So, the real and the imaginary part of $\xi^{(1)}$ are:

$$
\mathbf{a}=\binom{2}{1}, \quad \mathbf{b}=\binom{-1}{0}
$$

- With $r=-1+i$, we have $\lambda=-1, \mu=1$. By (6),

$$
\left\{\begin{array}{l}
\mathbf{u}=e^{-t}\left(\binom{2}{1} \cos t-\binom{-1}{0} \sin t\right) \\
\mathbf{v}=e^{-t}\left(\binom{2}{1} \sin t+\binom{-1}{0} \cos t\right)
\end{array}\right.
$$

Continued

So, the general solution of (8)

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{u}+c_{2} \mathbf{v} \\
=c_{1} e^{-t}\left(\binom{2}{1} \cos t-\binom{-1}{0} \sin t\right)+ \\
c_{2} e^{-t}\left(\binom{2}{1} \sin t+\binom{-1}{0} \cos t\right)
\end{gathered}
$$

Continued

- $y=$

$$
c_{1} e^{-t}\binom{2 \cos t+\sin t}{\cos t}+c_{2} e^{-t}\binom{2 \sin t-\cos t}{\sin t}
$$

Example 2

Find the general solution (real valued) of the equation:

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
1 & 2 & 3 \tag{9}\\
-2 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) \mathbf{y}
$$

- Eigenvalues of the coef. matrix A, are:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1-r & 2 & 3 \\
-2 & 1-r & 2 \\
0 & 0 & 1-r
\end{array}\right|=0 \\
& (1-r)\left|\begin{array}{cc}
1-r & 2 \\
-2 & 1-r
\end{array}\right|=0
\end{aligned}
$$

So, $r=1,1 \pm 2 i$

Eigenvectors

- Eigenvectors for $r=1$ is given by $(\mathbf{A}-r l) \mathbf{x}=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{ccc}
1-1 & 2 & 3 \\
-2 & 1-1 & 2 \\
0 & 0 & 1-1
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & 2 & 3 \\
-2 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Use TI-84 (rref):

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1.5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

With $\xi_{3}=2$, an eigenvector of $r=1$ is: $\xi^{(1)}=\left(\begin{array}{c}2 \\ -3 \\ 2\end{array}\right)$.
The corresponding solution $\mathbf{y}^{(1)}=\xi^{(1)} e^{r t}=\left(\begin{array}{c}2 \\ -3 \\ 2\end{array}\right) e^{t}$

Eigenvectors

- Eigenvectors for $r=1+2 i$ is given by $(\mathbf{A}-r l) \xi=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{ccc}
1-(1+2 i) & 2 & 3 \\
-2 & 1-(1+2 i) & 2 \\
0 & 0 & 1-(1+2 i)
\end{array}\right) \xi=0 \\
\left(\begin{array}{ccc}
-2 i & 2 & 3 \\
-2 & -2 i & 2 \\
0 & 0 & -2 i
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

So,

$$
\left\{\begin{array} { l }
{ - 2 i \xi _ { 1 } + 2 \xi _ { 2 } + 3 \xi _ { 3 } = 0 } \\
{ - 2 \xi _ { 1 } - 2 i \xi _ { 2 } + 2 \xi _ { 3 } = 0 } \\
{ - 2 i \xi _ { 3 } = 0 }
\end{array} \left\{\begin{array} { l }
{ - 2 i \xi _ { 1 } + 2 \xi _ { 2 } = 0 } \\
{ - 2 \xi _ { 1 } - 2 i \xi _ { 2 } = 0 } \\
{ \xi _ { 3 } = 0 }
\end{array} \left\{\begin{array}{l}
-i \xi_{1}+\xi_{2}=0 \\
0=0 \\
\xi_{3}=0
\end{array}\right.\right.\right.
$$

With $\xi_{1}=1$, an eigenvector of $r=1+2 i$ is:

$$
\xi^{(2)}=\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) i
$$

Solutions corresponding to $r=1 \pm 2 i$

By (6) two real solutions, corresponding to $r=1 \pm 2 i$ are:

$$
\left\{\begin{array}{l}
\mathbf{u}=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
\mathbf{v}=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\mathbf{u}=e^{t}\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \cos 2 t-\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \sin 2 t\right)=e^{t}\left(\begin{array}{c}
\cos 2 t \\
-\sin 2 t \\
0
\end{array}\right) \\
\mathbf{v}=e^{t}\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \sin 2 t+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cos 2 t\right)=e^{t}\left(\begin{array}{c}
\sin 2 t \\
\cos 2 t \\
0
\end{array}\right)
\end{array}\right.
$$

The general solution

Combining $\mathbf{y}^{(1)}, \mathbf{u}, \mathbf{v}$, by (7), the general solution of (9) is

$$
\begin{gathered}
\mathbf{x}=c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{u}+c_{3} \mathbf{v} \\
=c_{1}\left(\begin{array}{c}
2 \\
-3 \\
2
\end{array}\right) e^{t}+c_{2} e^{t}\left(\begin{array}{c}
\cos 2 t \\
-\sin 2 t \\
0
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}
\sin 2 t \\
\cos 2 t \\
0
\end{array}\right)
\end{gathered}
$$

EtitleExample 3 Solve the IVP

$$
y^{\prime}=\left(\begin{array}{cc}
1 & -3 \tag{10}\\
2 & 3
\end{array}\right) \mathbf{y}, \quad y(0)=\binom{1}{1}
$$

- Eigenvalues of the coef. matrix A, are: given by

$$
\left.\begin{array}{cc}
1-r & -3 \\
2 & 3-r
\end{array} \right\rvert\,=0 \Longrightarrow(1-r)(3-r)+6=0
$$

So,

$$
r^{2}-4 r+9=0 \Longrightarrow r=\frac{4 \pm \sqrt{16-36}}{2}
$$

So,

$$
r=2 \pm \sqrt{5} i
$$

Eigenvectors

Analytically, eigenvectors for $r=2+\sqrt{5} i$ is given by $(\mathbf{A}-r l) \xi=\mathbf{0}$, which is

$$
\left(\begin{array}{cc}
1-(2+\sqrt{5} i) & -3 \\
2 & 3-(2+\sqrt{5} i)
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

It follows:

$$
\left(\begin{array}{cc}
-1-\sqrt{5} i & -3 \\
2 & 1-\sqrt{5} i
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow
$$

Continued

$$
\left(\begin{array}{cc}
0 & 0 \\
2 & 1-\sqrt{5} i
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

Taking $\xi_{2}=2$, an eigen vector is

$$
\xi^{(1)}=\binom{-(1-\sqrt{5} i)}{2}=\binom{-1}{2}+i\binom{\sqrt{5}}{0}
$$

Two Real Solutions

With $r=2+\sqrt{5} i$, we have $\lambda=2, \mu=\sqrt{5}$. By (6), we have tow real solutions:

$$
\left\{\begin{array}{l}
\mathbf{u}=e^{2 t}\left(\binom{-1}{2} \cos \sqrt{5} t-\binom{\sqrt{5}}{0} \sin \sqrt{5} t\right) \\
\mathbf{v}=e^{2 t}\left(\binom{-1}{2} \sin \sqrt{5} t+\binom{\sqrt{5}}{0} \cos \sqrt{5} t\right)
\end{array}\right.
$$

Continued

We simplify:

$$
\left\{\begin{array}{c}
\mathbf{u}=e^{2 t}\binom{-\cos \sqrt{5} t-\sqrt{5} \sin \sqrt{5} t}{2 \cos \sqrt{5} t} \\
\mathbf{v}=e^{2 t}\binom{-\sin \sqrt{5} t+\sqrt{5} \cos \sqrt{5} t}{2 \sin \sqrt{5} t}
\end{array}\right.
$$

The General solution

So, the general solutions is $\mathbf{y}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$

$$
\begin{aligned}
& =c_{1} e^{2 t}\binom{-\cos \sqrt{5} t-\sqrt{5} \sin \sqrt{5} t}{2 \cos \sqrt{5} t} \\
& +c_{2} e^{2 t}\binom{-\sin \sqrt{5} t+\sqrt{5} \cos \sqrt{5} t}{2 \sin \sqrt{5} t}=
\end{aligned}
$$

$e^{2 t}\left(\begin{array}{cc}-\cos \sqrt{5} t-\sqrt{5} \sin \sqrt{5} t & -\sin \sqrt{5} t+\sqrt{5} \cos \sqrt{5} t \\ 2 \cos \sqrt{5} t & 2 \sin \sqrt{5} t\end{array}\right)\binom{c_{1}}{c_{2}}$

Use Initial Values

Using initial conditions:

$$
\left(\begin{array}{cc}
-1 & \sqrt{5} \\
2 & 0
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{1}
$$

So, $c_{1}=\frac{1}{2}, c_{2}=\frac{3}{2 \sqrt{5}}$

Answer

The particular solutions is: $\mathbf{y}=$

$$
e^{2 t}\left(\begin{array}{cc}
-\cos \sqrt{5} t-\sqrt{5} \sin \sqrt{5} t & -\sin \sqrt{5} t+\sqrt{5} \cos \sqrt{5} t \\
2 \cos \sqrt{5} t & 2 \sin \sqrt{5} t
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} \\
\frac{3}{2 \sqrt{5}}
\end{array}\right.
$$

