Chapter 5:
 System of $1^{\text {st }}$-Order Linear ODE §5.3 Linear Systems and Eigen Values

Satya Mandal, KU

18 March 2018

Systems of Linear Equations

Consider a system of m linear equations, in n (unknown) varibales:

$$
\begin{array}{lllll}
a_{11} x_{1}+ & a_{12} x_{2}+ & a_{13} x_{3}+ & \cdots+ & a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+ & a_{22} x_{2}+ & a_{13} x_{3}+ & \cdots+ & a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+ & a_{32} x_{2}+ & a_{33} x_{3}+ & \cdots+ & a_{3 n} x_{n}=b_{3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & a_{m 3} x_{3}+ & \cdots+ & a_{m n} x_{n}=b_{m} \tag{1}
\end{array}
$$

where $a_{i j}, b_{j}$ are real or complex numbers.

Continued

- Write

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
a_{31} & a_{32} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)
$$

Then, \mathbf{A} is called the coefficient matrix of the system (1). We also write $\mathbf{A}=\left(a_{i j}\right)$.

- In matrix form, the system (1) is written as

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

The Homogeneous Equation

- If $\mathbf{b}=\mathbf{0}$, then the system (2) would be called a homogeneous system. So,

$$
\begin{equation*}
A x=0 \tag{3}
\end{equation*}
$$

is a homogeneous system of linear equation.

- Then, $\mathbf{x}=\mathbf{0}$ is a solution of the homogeneous system (3), to be called the trivial solution.

A system and the homogeneous system

- Suppose $\mathbf{x}=\mathbf{x}^{(0)}$ is a solution of the system (2): $\mathbf{A} \mathbf{x}=\mathbf{b}$.
- Then, any solution of (2): $\mathbf{A} \mathbf{x}=\mathbf{b}$ is of the form

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}^{(0)}+\xi \tag{4}
\end{equation*}
$$

where ξ is a solution of the corresponding homogeneous system $\mathbf{A x}=\mathbf{0}$.

Augmented Matrix

- Corresponding to a system (1), define the augmented matrix

$$
\mathbf{A} \left\lvert\, \mathbf{b}=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{5}\\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
a_{31} & a_{32} & \cdots & a_{3 n} & b_{3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right.
$$

- In deed, the system (1) and the augmented matrix (5) has the same information/data. The Up-shot: the row operations performed on system (1), can be performed on the augmented matrix (5), in stead.

Solving the system (1)

- There are three possibilities:
- The system (1), have no solution.
- The system (1), have a unique solution. For this possibility, we need at least n equations.
- The system (1), have infinitely many solution.
- To solve system (1), we can use Tl-84 (ref, rref). Cosult any TI-84 site for instructions.

$n=m$: System of n equations and n unknown

In this course, we focus on the case when $m=n$.
That means, the number of equations is same as number of unknowns x_{1}, \ldots, x_{n}. Now on, assume $n=m$

- When $n=m$, then the coefficient matrix \mathbf{A} of (1) is a square matrix of size $n \times n$.
- Recall, a square matrix \mathbf{A} is invertible $\Longleftrightarrow|\mathbf{A}| \neq 0$.
- If $|A| \neq 0$, then the unique solution of system (2)

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\mathbf{b} \quad \text { is } \quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{6}
\end{equation*}
$$

Linear Indpendence

- A set $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ of vectors (in \mathbb{R}^{n}) is said to be linearly dependent over \mathbb{R} if there are scalars c_{1}, \ldots, c_{k} in \mathbb{R}, not all zero such that $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=0$.
- Likewise, a set $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ of vectors (in \mathbb{C}^{n}) is said to be linearly dependent over \mathbb{C} if there are scalars c_{1}, \ldots, c_{k} in \mathbb{C}, not all zero such that $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=0$.
- A set $x_{1}, x_{2}, \ldots, x_{k}$ of vectors is said to be linearly independent over \mathbb{R} or \mathbb{C}, if they are not linearly dependent. That means, if

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=\mathbf{0} \Longrightarrow c_{1}=c_{2}=\cdots=c_{k}=0
$$

Continued

- Given a set $x_{1}, x_{2}, \ldots, x_{k}$ (in \mathbb{R}^{n} or \mathbb{C}^{n}) of vectors, we can form an $n \times k$ matrix $\mathrm{X}:=\left(\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{k}\end{array}\right)$.
- Then, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is linearly independent, if $\mathbf{X c}=\mathbf{0} \Longrightarrow \mathbf{c}=\mathbf{0}$. In other words, $\mathbf{X c}=\mathbf{0}$ has no non-trivial solution.
- n such vectors, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ (in \mathbb{R}^{n} or \mathbb{C}^{n}) are linearly independent $\Longleftrightarrow|\mathbf{X}| \neq 0 \Longleftrightarrow X$ is invertible.

Eigenvalues and Eigenvectors

Suppose \mathbf{A} is a square matrix of size $n \times n$.

- A scalar $\lambda \in \mathbb{C}$ is said to be an Eigenvalue of \mathbf{A}, if $|\mathbf{A}-\lambda \mathbf{I}|=0$.
- The following four conditions are equivalent:

1. $\lambda \in \mathbb{C}$ is an Eigenvalue of \mathbf{A}
2. $|\mathbf{A}-\lambda \mathbf{I}|=0$
3. The system $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
4. There are non-zero vectors x such that $A x=\lambda x$.

- Accordingly, a vector $\mathbf{x} \neq \mathbf{0}$ is said to be an eigenvector, for an eigenvalue λ of \mathbf{A}, if $\mathbf{A x}=\lambda \mathbf{x}$.

Continued

- Eigenvalues are also called characteristic roots of A. (The german word "eigen" means "particular" or "peculier".)
- The equation $|\mathbf{A}-\lambda \mathbf{I}|=0$, is a polynomial equation in λ, of degree n, to be called the characteristic equation of \mathbf{A}.
- Counting multiplicity of roots, the characteristic equation $|\mathbf{A}-\lambda \mathbf{I}|=0$, has n complex roots (including real roots).

Computing Eigen Values and vectors

Matlab can be used to compute eigenvalues and eigenvectors. Consult instructions in my site. The commands eig(A), [V,D]=eig(A) will be useful. However, Matlab does not work too well in this case. Eventually, we will use TI-84 to handle all these. Although, TI-84 does not have any direct command to do all these.

- Sometimes, there is no choice but to use analytic methods. This will be the case, when we have to deal with complex eigenvalues.
- Main thrust of this section is to compute eigenvalues and eigenvectors.

Example 1

Find the eigenvalues and the corresponding eigenvector of

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & -2 \\
4 & -1
\end{array}\right) \quad \text { Use Matlab eig }[V, D]
$$

- Analytically: The characteristic equation:

$$
\begin{gathered}
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
1-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right|=0 \\
(1-\lambda)(-1-\lambda)+8=0 \Longleftrightarrow \lambda^{2}+7=0 \\
\text { Eigenvalues are } \quad \lambda= \pm \sqrt{7} i
\end{gathered}
$$

Eigenvectors for $\lambda=\sqrt{7} i$

To compute an eigenvector $\lambda=\sqrt{7} i$, we solve $(\mathbf{A}-\lambda /) \mathbf{x}=0$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1-\sqrt{7} i & -2 \\
4 & -1-\sqrt{7} i
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { l }
{ (1 - \sqrt { 7 } i) x _ { 1 } - 2 x _ { 2 } = 0 } \\
{ 4 x _ { 1 } - (1 + \sqrt { 7 } i) x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
(1-\sqrt{7} i) x_{1}-2 x_{2}=0 \\
0=0
\end{array}\right.\right.
\end{gathered}
$$

Continued

So, $x_{2}=\frac{1-\sqrt{7} i}{2} x_{1}$
Taking $x_{1}=1$, an eigenvector for $\lambda=\sqrt{7} i$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{\frac{1-\sqrt{7} i}{2}} \tag{7}
\end{equation*}
$$

Eigenvectors for $\lambda=-\sqrt{7} i$

- An eigenvectors for $\lambda=-\sqrt{7} i$ can be computed, as in the case of its conjugate $\lambda=\sqrt{7} i$.
- Alternately, An eigenvectors for $\lambda=-\sqrt{7} i$ is the conjugate of (7):

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{\frac{1+\sqrt{7} i}{2}}
$$

Example 2

Find the eigenvalues and the corresponding eigenvector of

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right) . \quad \text { Use Matlab eig }[V, D]
$$

- The characteristic equation:

$$
\begin{gathered}
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
1-\lambda & 3 \\
-1 & 5-\lambda
\end{array}\right|=0 \\
(1-\lambda)(5-\lambda)+3=0 \Longleftrightarrow \lambda^{2}-6 \lambda+8=0
\end{gathered}
$$

Eigenvalues are $\quad \lambda=2,4$

Eigenvectors for $\lambda=2$

For $\lambda=2$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1-2 & 3 \\
-1 & 5-2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left(\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { l }
{ - x _ { 1 } + 3 x _ { 2 } = 0 } \\
{ - x _ { 1 } + 3 x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x_{1}=3 x_{2} \\
0=0
\end{array}\right.\right.
\end{gathered}
$$

Continued

Taking $x_{2}=1$, an eigenvector for $\lambda=2$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{3}{1} \tag{8}
\end{equation*}
$$

- Since $\lambda=2$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda=2$.

Eigenvectors for $\lambda=4$

For $\lambda=4$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=0$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1-4 & 3 \\
-1 & 5-4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left(\begin{array}{ll}
-3 & 3 \\
-1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { c }
{ - 3 x _ { 1 } + 3 x _ { 2 } = 0 } \\
{ - x _ { 1 } + x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
0=0 \\
-x_{1}+x_{2}=0
\end{array}\right.\right.
\end{gathered}
$$

Continued

Taking $x_{1}=1$, an eigenvector for $\lambda=4$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{1} \tag{9}
\end{equation*}
$$

- Since $\lambda=2$ or $\lambda=4$ has multiplicity one, we expect only one linearly independent eigenvector for, for each.

Example 3

Let

$$
A=\left(\begin{array}{ccc}
-5 & 0 & 0 \\
-1 & 7 & 0 \\
-1 & 1 & 3
\end{array}\right)
$$

(a) Find the characteristic equation of A, (b) Find all the eigenvalues of A, (c) Corresponding to each eigenvalue, compute an eigen vector.

Solution

Solution: The characteristic polynomial is

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{rrr}
\lambda+5 & 0 & 0 \\
1 & \lambda-7 & 0 \\
1 & -1 & \lambda-3
\end{array}\right|=(\lambda+5)(\lambda-7)(\lambda-3)
$$

So, the characteristic equation is

$$
(\lambda+5)(\lambda-7)(\lambda-3)=0 .
$$

Therefore, the eigenvalues are $\lambda=-5,7,3$.

Continued

To find an eigenvector corresponding to $\lambda=-5$, solve $(-5 I-A) x=0$ or

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -12 & 0 \\
1 & -1 & -8
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Solving, we get

$$
x=t, \quad y=\frac{1}{12} t \quad z=\frac{1}{8} x-\frac{1}{8} y=\frac{11}{96} t
$$

Continued

So, taking $t=1$, an eigen vector for $\lambda=-5$ is

$$
x=\left(\begin{array}{c}
1 \\
\frac{1}{12} \\
\frac{11}{96}
\end{array}\right)
$$

Continued

To find an eigenvector corresponding to $\lambda=7$, we have to solve $(7 I-A) x=0$ or

$$
\left(\begin{array}{rrr}
12 & 0 & 0 \\
1 & 0 & 0 \\
1 & -1 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving, we get

$$
x=0 \quad y=t \quad z=\frac{1}{4}(y-x)=\frac{1}{4} t
$$

Continued

With $t=1,\left(\begin{array}{c}0 \\ 1 \\ \frac{1}{4}\end{array}\right)$ is an eigenvector of A, for eigenvalue $\lambda=7$.

Continued

To find an eigenvector corresponding to $\lambda=3$, wehave to solve $(3 I-A) x=\mathbf{0}$ or

$$
\begin{gathered}
\left(\begin{array}{rrr}
8 & 0 & 0 \\
1 & -4 & 0 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\text { So, } x=0 \quad y=\frac{1}{4} x=0 \quad z=t .
\end{gathered}
$$

With $t=1$, an eigenvector, for eigenvalue $\lambda=3$, is

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

