Chapter 5: System of $1^{\text {st }}$-Order Linear ODE §5.1 Introduction

Satya Mandal, KU

13 March 2018

System of ODE

- Like in Linear Algebra, the word "system" refers to a system of more than one unknown variables and, possibly, equations.
- As before t will denote the independent variable and y_{1}, \ldots, y_{n} will denote (unknown) dependent variables.

System of $1^{\text {st }}$-Order ODE

- A system of first order DE looks like:

$$
\left\{\begin{align*}
\frac{d y_{1}}{d t} & =F_{1}\left(t, y_{1}, \ldots, y_{n}\right) \tag{1}\\
\frac{d y_{2}}{d t} & =F_{2}\left(t, y_{1}, \ldots, y_{n}\right) \\
\cdots & \cdots \\
\frac{d y_{m}}{d t} & =F_{m}\left(t, y_{1}, \ldots, y_{n}\right)
\end{align*}\right.
$$

This is a system of m-equations, in n unknown variables. In this course, we only consider systems of n equations in n variables. That means, we would have $m=n$.

- In addition, we may have initial conditions

$$
\begin{equation*}
y_{1}\left(t_{0}\right)=y_{1}^{0}, y_{2}\left(t_{0}\right)=y_{2}^{0}, \cdots, y_{n}\left(t_{0}\right)=y_{n}^{0} \tag{2}
\end{equation*}
$$

Initial Value Problem

Combining (4), (2), a system of $1^{\text {st }}$-order initial value problem (IVP) consist of the following:

$$
\left\{\begin{array} { l }
{ \frac { d y _ { 1 } } { d t } = F _ { 1 } (t , y _ { 1 } , \ldots , y _ { n }) } \tag{3}\\
{ \frac { d y _ { 2 } } { d t } = F _ { 2 } (t , y _ { 1 } , \ldots , y _ { n }) } \\
{ \cdots } \\
{ \cdots } \\
{ \frac { d y _ { n } } { d t } = F _ { n } (t , y _ { 1 } , \ldots , y _ { n }) }
\end{array} \quad \left\{\begin{array}{l}
y_{1}\left(t_{0}\right)=y_{1}^{0} \\
y_{2}\left(t_{0}\right)=y_{2}^{0} \\
\cdots \\
y_{n}\left(t_{0}\right)=y_{n}^{0}
\end{array}\right.\right.
$$

Existence and Uniqueness Theorem

Theorem 5.1.1 Consider the IVP (3). Assume on this region

$$
R=\left\{\left(t, y_{1}, \ldots, y_{n}\right): \begin{array}{c}
a_{0}<t<b_{0} \\
a_{1}<y_{1}<b_{1} \\
a_{2}<y_{2}<b_{2} \\
\cdots \\
a_{n}<y_{n}<b_{n}
\end{array}\right\}
$$

all the partial derivatives $\frac{\partial y_{i}}{\partial y_{j}}$ are continuous, and $\left(y_{1}^{0}, \ldots, y_{n}^{0}\right) \in R$. Then, the IVP (3) has a unique solution $y_{1}=\varphi_{1}(t), \ldots, y_{n}=\varphi_{n}(t)$.

System of $1^{s t}$-order Linear ODE

We would mainly discuss Linear Systems, as follows.
Definition. A system $1^{\text {st }}$-order linear ODE looks like:

$$
\left\{\begin{array}{cccccc}
y_{1}^{\prime} & =p_{11}(t) y_{1} & +p_{12}(t) y_{2} & +\cdots & +p_{1 n}(t) y_{n} & +g_{1}(t) \tag{4}\\
y_{2}^{\prime} & =p_{21}(t) y_{1} & +p_{22}(t) y_{2} & +\cdots & +p_{2 n}(t) y_{n} & +g_{2}(t) \\
\cdots & \cdots & & \cdots & \\
y_{n}^{\prime} & =p_{n 1}(t) y_{1} & +p_{n 2}(t) y_{2} & +\cdots & +p_{n n}(t) y_{n} & +g_{n}(t)
\end{array}\right.
$$

The equation (4) is called Homogeneous, if $g_{1}=g_{2}=\cdots=g_{n}=0$.

Existence and Uniqueness Theorem

We state the Existence and Uniqueness Theorem, for linear systems (4).
Theorem 5.1.2 Consider the system (4). Assume $p_{11}, p_{12}, \ldots, p_{n n} ; g_{1}, \ldots, g_{n}$ are continuous on an open interval $I: \alpha<t<\beta$. Let $t_{0} \in I$. Consider the IVP (4), together with initial condition

$$
y_{1}\left(t_{0}\right)=y_{1}^{0}, y_{2}\left(t_{0}\right)=y_{2}^{0}, \cdots, y_{n}\left(t_{0}\right)=y_{n}^{0}
$$

This IVP has a unique solution on I.
Proof. Follows from Theorem 5.1.1.

- We will work on solving (4) in latter sections.

Reduction of Linear second order ODEs

To motivate use of systems of $1^{\text {st }}$-Order Linear ODE, we reduce a $2^{\text {nd }}$-order Linear ODE to one such.

- Consider a $2^{\text {nd }}$-order linear ODE, with constant coefficients:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \quad a \neq 0 \tag{5}
\end{equation*}
$$

- Write $y_{1}=y, y_{2}=y_{1}^{\prime}$. Then (5) reduces to

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=y_{2} \tag{6}\\
y_{2}^{\prime}=-\frac{c}{a} y_{1} \quad-\frac{b}{a} y_{2} \quad+\frac{g(t)}{a}
\end{array}\right.
$$

