Chapter 5:
 System of $1^{\text {st }}$-Order Linear ODE §5.8 Nonhomogeneous Linear Systems

Satya Mandal, KU

25 March 2018

Nonhomogeneous Linear Systems

Finally, we consider Nonhomogeneous Linear Systems.

- A nonhomogeneous linear system can be written as:

$$
\begin{equation*}
\mathrm{y}^{\prime}=\mathrm{P}(t) \mathrm{y}+\mathrm{g}(t) \tag{1}
\end{equation*}
$$

where $\mathrm{P}(t)=\left(p_{i j}(t)\right)$ is an $n \times n$-matrix,
$g(t)=\left(\begin{array}{c}g_{1}(t) \\ g_{2}(t) \\ \cdots \\ g_{n}(t)\end{array}\right)$ is a column matrix.

- We assume that $p_{i j}(t), g_{j}(t)$ are all continuous functions on an open interval $I: \alpha<t<\beta$.

General Solutions

- Corresponding to (1), we have the homogeneous system:

$$
\begin{equation*}
y^{\prime}=P(t) y \tag{2}
\end{equation*}
$$

- As in Chapter 3, 4, and in Linear Algebra, a general solution of a nonhomogeneous system (1) has the form:

$$
\begin{equation*}
y=Y+y_{c} \quad \text { where } \tag{3}
\end{equation*}
$$

- $\mathrm{Y}=\mathrm{Y}(t)$ is a particular solution of the system (1),
- y_{c} is the general solution of the homogeneous system (2), which can be computed using methods in §5.5, 5.6, 5.7.

Methods to Find a particular solution Y

The following are some of the possible methods to compute a particular solution Y :

- Diagonalization.
- Method of Undetermined coefficients.
- Variation of parameters.
- Laplace transforms (extension of chapter 6)

We would only discuss the first one. Further, we would only consider the case, when $P(t)=\mathrm{A}$ is a constant matrix.

Diagonalizable system

Consider nonhomogeneous systems:

$$
\begin{equation*}
\text { with constant coefficients } \mathrm{y}^{\prime}=\mathrm{Ay}+\mathrm{g}(t) \tag{4}
\end{equation*}
$$

where A is an $n \times n$-matrix with constant entries, $\mathrm{g}(t)$ is as in (1). The corresponding homogeneous system:

$$
\begin{equation*}
y^{\prime}=A y \tag{5}
\end{equation*}
$$

- Sometimes, the matrix A would be diagonalizable. This means, there is an invertible matrix T such that

$$
\mathrm{T}^{-1} \mathrm{AT}=\left(\begin{array}{cccc}
r_{1} & 0 & \cdots & 0 \tag{6}\\
0 & r_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & r_{n}
\end{array}\right)=: \mathrm{D}
$$

is a diagonal matrix. This would be the case, when A has a set of n linearly independent eigen VECTORS. (In a different sense, symmetric matrices are diagonalizable.)

- It also follows AT = TD
- In this case, $r_{1}, r_{2}, \ldots, r_{n}$ would be the eigenvalues of A and $i^{\text {th }}$-column of T would be the eigenvector for r_{i}.
- Most importantly, we change variables:

$$
\begin{gathered}
\mathrm{z}=\mathrm{T}^{-1} \mathrm{y} \Longrightarrow \mathrm{z}^{\prime}=\mathrm{T}^{-1} \mathrm{y}^{\prime}=\mathrm{T}^{-1}(\mathrm{Ay}+\mathrm{g}(t)) \Longrightarrow \\
\mathrm{z}^{\prime}=\mathrm{T}^{-1} \mathrm{Ay}+\mathrm{T}^{-1} \mathrm{~g}(t)=\mathrm{DT}^{-1} \mathrm{y}+\mathrm{h}(t)=\mathrm{Dz}+\mathrm{h}(t)
\end{gathered}
$$

where $\mathrm{h}(t):=\mathrm{T}^{-1} \mathrm{~g}(t)$ is a column vector of functions.

- It follows $z^{\prime}=\mathrm{Dz}+\mathrm{h}(t) \Longrightarrow$

$$
\left(\begin{array}{c}
z_{1}^{\prime} \tag{7}\\
z_{2}^{\prime} \\
\cdots \\
z_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
r_{1} z_{1}+h_{1}(t) \\
r_{2} z_{2}+h_{2}(t) \\
\cdots \\
r_{n} z_{n}+h_{n}(t)
\end{array}\right)
$$

- For future reference:

$$
\left(\begin{array}{c}
z_{1}^{\prime}-r_{1} z_{1} \tag{8}\\
z_{2}^{\prime}-r_{2} z_{2} \\
\ldots \\
z_{n}^{\prime}-r_{n} z_{n}
\end{array}\right)=\mathrm{T}^{-1} \mathrm{~g}(t)=\left(\begin{array}{c}
h_{1}(t) \\
h_{2}(t) \\
\cdots \\
h_{n}(t)
\end{array}\right)
$$

- So, for $i=1,2, \ldots, n, z_{i}^{\prime}=r_{i} z_{i}+h_{i}(t)$ are $1^{\text {st }}$-order Linear ODE in one variable (see $\S 2.1$ or the Appendix below).
- By see (14) below (from §2.1) the general solution for z_{i} :

$$
z_{i}=e^{r_{i} t}\left[\int e^{-r_{i} t} h_{i}(t)+c_{i}\right]=e^{r_{i} t}\left[\int_{t_{0}}^{t} e^{-r_{i} s} h_{i}(s)+c_{i}\right]
$$

- We need only a solution of (4). So, take $c_{i}=0$:

$$
\begin{equation*}
z_{i}=e^{r_{i} t}\left[\int e^{-r_{i} t} h_{i}(t)\right] \tag{9}
\end{equation*}
$$

- Clarification: The constant c_{i}, will get absorbed in y_{c} term of the general solution $\mathrm{y}=\mathrm{Y}+\mathrm{y}_{c}$ of (4).
- Now, to solve (4), compute $y=T z$.

Compute T

- Compute the eigenvalues $r_{1}, r_{2}, \ldots, r_{n}$ by solving $|A-r l|=0$. Some of these r_{i} may repeat. (Write them in increasing order.)
- Assume A has a set of n linearly independent eigenvectors $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$.
- Let, $\mathrm{T}=\left(\begin{array}{llll}\xi_{1} & \xi_{2} & \cdots & \xi_{n}\end{array}\right)$.
- Compute T^{-1} (Use TI-84, unless it gives clumsy output).
- We would be considering problems, with $n=2,3$. We would also avoid complex eigenvalues.

Example 1

Find the general solution of

$$
y^{\prime}=\left(\begin{array}{cc}
2 & 2 \tag{10}\\
-2 & -3
\end{array}\right) y+\binom{-e^{t}}{-e^{-t}}
$$

- The corresponding homogeneous equation

$$
y^{\prime}=\left(\begin{array}{cc}
2 & 2 \tag{11}\\
-2 & -3
\end{array}\right) y
$$

- We can use the above method, only if there are 2 linearly independent eigenvectors. In particular, if all the eigenvalues are distinct.
- Eigenvalues of A, are given by

$$
\left|\begin{array}{cc}
2-r & 2 \\
-2 & -3-r
\end{array}\right|=0 \Longrightarrow\left\{\begin{array}{l}
(2-r)(-3-r)+4=0 \\
\text { So, } r=-2,1
\end{array}\right.
$$

- Since two eigenvalues are distinct, there will be two linearly independent eigenvectors.

Eigenvectors

- Eigenvectors for $r=-2$ is given by $(\mathrm{A}-r \mathrm{l}) \xi=0$:

$$
\begin{gathered}
\left(\begin{array}{cc}
2+2 & 2 \\
-2 & -3+2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
4 & 2 \\
-2 & -1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left\{\begin{array}{l}
0=0 \\
2 \xi_{1}+\xi_{2}=0
\end{array} \text { With } \xi_{1}=1, \quad \xi^{(1)}=\binom{1}{-2}\right.
\end{gathered}
$$

is an eigenvector for $r=-2$.

- Corresponding solution for the homogeneous ODE (11):

$$
y^{(1)}=\xi^{(1)} e^{r t}=\binom{1}{-2} e^{-2 t}
$$

Eigenvectors

- Eigenvectors for $r=1$ is given by $(\mathrm{A}-r l) \xi=0$:

$$
\begin{gathered}
\left(\begin{array}{cc}
2-1 & 2 \\
-2 & -3-1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
1 & 2 \\
-2 & -4
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left\{\begin{array}{l}
0=0 \\
\xi_{1}+2 \xi_{2}=0
\end{array} \text { With } \xi_{2}=1, \quad \xi^{(2)}=\binom{-2}{1}\right.
\end{gathered}
$$

is an eigenvector for $r=1$.

- Corresponding solution for the homogeneous ODE (11):

$$
\mathrm{y}^{(2)}=\xi^{(2)} e^{r t}=\binom{-2}{1} e^{t}
$$

The Matrix T

- The matrix T is

$$
\mathrm{T}=\left(\begin{array}{ll}
\xi^{(1)} & \xi^{(2)}
\end{array}\right)=\left(\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right)
$$

- Also

$$
\begin{gathered}
\mathrm{T}^{-1}=\frac{1}{|\mathrm{~T}|}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)=\frac{1}{-3}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \\
=\left(\begin{array}{ll}
-\frac{1}{3} & -\frac{2}{3} \\
-\frac{2}{3} & -\frac{1}{3}
\end{array}\right)
\end{gathered}
$$

Change variable $\mathrm{z}=\mathrm{T}^{-1} \mathrm{y}$

- We change variables $\mathrm{z}=\mathrm{T}^{-1} \mathrm{y}$. By (8)

$$
\begin{gathered}
\binom{z_{1}^{\prime}-r_{1} z_{1}}{z_{2}^{\prime}-r_{2} z_{2}}=\mathrm{T}^{-1} \mathrm{~g}(t)=\left(\begin{array}{ll}
-\frac{1}{3} & -\frac{2}{3} \\
-\frac{3}{3} & -\frac{1}{3}
\end{array}\right) \mathrm{g}(t) \\
\binom{z_{1}^{\prime}+2 z_{1}}{z_{2}^{\prime}-z_{2}}=\left(\begin{array}{cc}
-\frac{1}{3} & -\frac{2}{3} \\
-\frac{2}{3} & -\frac{1}{3}
\end{array}\right)\binom{-e^{t}}{-e^{-t}} \\
\binom{z_{1}^{\prime}+2 z_{1}}{z_{2}^{\prime}-z_{2}}=\binom{\frac{1}{3} e^{t}+\frac{2}{3} e^{-t}}{\frac{2}{3} e^{t}+\frac{1}{3} e^{-t}}
\end{gathered}
$$

Solve for z_{1}

- We have $z_{1}^{\prime}+2 z_{1}=\frac{1}{3} e^{t}+\frac{2}{3} e^{-t}$
- The IF $\mu(t)=\exp \left(\int 2 d t\right)=e^{2 t}$
- By (14) a solution for y_{1} :

$$
\begin{aligned}
& z_{1}=\frac{1}{\mu(t)}\left[\int \mu(t) h_{1}(t) d t\right] \\
= & e^{-2 t}\left[\int e^{2 t}\left(\frac{1}{3} e^{t}+\frac{2}{3} e^{-t}\right) d t\right] \\
= & e^{-2 t}\left[\left(\frac{1}{9} e^{3 t}+\frac{2}{3} e^{t}\right)\right]=\frac{1}{9} e^{t}+\frac{2}{3} e^{-t}
\end{aligned}
$$

Solve for z_{2}

- We have $z_{2}^{\prime}-z_{2}=\frac{2}{3} e^{t}+\frac{1}{3} e^{-t}$
- The IF $\mu(t)=\exp \left(\int-d t\right)=e^{-t}$
- By (14), a solution z_{2} :

$$
\begin{aligned}
& z_{2}=\frac{1}{\mu(t)}\left[\int \mu(t) h_{2}(t) d t\right] \\
= & e^{t}\left[\int e^{-t}\left(\frac{2}{3} e^{t}+\frac{1}{3} e^{-t}\right) d t\right] \\
= & e^{t}\left[\left(\frac{2}{3} t-\frac{1}{6} e^{-2 t}\right)\right]=\frac{2}{3} t e^{t}-\frac{1}{6} e^{-t}
\end{aligned}
$$

A solution Y of (10)

- So,

$$
z=\binom{z_{1}}{z_{2}}=\binom{\frac{1}{9} e^{t}+\frac{2}{3} e^{-t}}{\frac{2}{3} t e^{t}-\frac{1}{6} e^{-t}}
$$

- Finally, a particular solution of (10):

$$
\mathrm{Y}=\mathrm{Tz}=\left(\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right)\binom{\frac{1}{9} e^{t}+\frac{2}{3} e^{-t}}{\frac{2}{3} t e^{t}-\frac{1}{6} e^{-t}}
$$

(I would leave it in this matrix form.)

The general solution of (10):

- The general solution (10):

$$
\mathrm{y}=\mathrm{Y}+\mathrm{y}_{c}=\mathrm{Y}+c_{1} \mathrm{y}^{(1)}+c_{2} \mathrm{y}^{(2)}
$$

(Again, I would leave it in this matrix form, where Y, $\mathrm{y}^{(1)}, \mathrm{y}^{(2)}$ are given above.)

Example 2

Find the general solution of

$$
y^{\prime}=\left(\begin{array}{ll}
1 & 4 \tag{12}\\
1 & 1
\end{array}\right) y+\binom{-e^{t}}{2 e^{t}}
$$

- The corresponding homogeneous equation

$$
y^{\prime}=\left(\begin{array}{ll}
1 & 4 \tag{13}\\
1 & 1
\end{array}\right) y
$$

- Eigenvalues of A, are given by

$$
\left.\begin{array}{cc}
1-r & 4 \\
1 & 1-r
\end{array} \right\rvert\,=0 \Longrightarrow r^{2}-2 r-3=0 \Longrightarrow r=-1,3
$$

- Since the eigenvalues are distinct, the corresponding eigen vectors would be linearly independent. So, we can use the method above.

Eigenvectors

- Eigenvectors for $r=-1$ is given by $(\mathrm{A}-r \mathrm{l}) \xi=0$:

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left\{\begin{array}{c}
0=0 \\
\xi_{1}+2 \xi_{2}=0
\end{array} \text { With } \xi_{2}=1, \quad \xi^{(1)}=\binom{-2}{1}\right.
\end{gathered}
$$

is an eigenvector for $r=-1$.

- Corresponding solution for the homogeneous ODE (13):

$$
y^{(1)}=\xi^{(1)} e^{r t}=\binom{-2}{1} e^{-t}
$$

Eigenvectors

- Eigenvectors for $r=3$ is given by $(\mathrm{A}-r) \xi=0$:

$$
\begin{gathered}
\left(\begin{array}{cc}
1-3 & 4 \\
1 & 1-3
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
-2 & 4 \\
1 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
\end{gathered}
$$

The second row is a multiple of the first row. It follows:

$$
\left\{\begin{array}{l}
0=0 \\
\xi_{1}-2 \xi_{2}=0
\end{array} \quad \text { With } \xi_{2}=1, \quad \xi^{(2)}=\binom{2}{1}\right.
$$

is an eigenvector for $r=3$.

- Corresponding solution for the homogeneous ODE (13):

$$
y^{(2)}=\xi^{(2)} e^{r t}=\binom{2}{1} e^{3 t}
$$

The Matrix T

- The matrix T is

$$
\mathrm{T}=\left(\begin{array}{ll}
\xi^{(1)} & \xi^{(2)}
\end{array}\right)=\left(\begin{array}{cc}
-2 & 2 \\
1 & 1
\end{array}\right)
$$

- Also
$\mathrm{T}^{-1}=\frac{1}{|\mathrm{~T}|}\left(\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right)=-\frac{1}{4}\left(\begin{array}{cc}1 & -2 \\ -1 & -2\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2}\end{array}\right)$
(I am OK with terminating decimal numbers, because there is no rounding involved.)

Change variable $z=T^{-1} y$

- We change variables $\mathrm{z}=\mathrm{T}^{-1} \mathrm{y}$. By (8)

$$
\begin{gathered}
\binom{z_{1}^{\prime}-r_{1} z_{1}}{z_{2}^{\prime}-r_{2} z_{2}}=\mathrm{T}^{-1} \mathrm{~g}(t)=\left(\begin{array}{cc}
-\frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right) \mathrm{g}(t) \\
\binom{z_{1}^{\prime}+z_{1}}{z_{2}^{\prime}-3 z_{2}}=\left(\begin{array}{cc}
-\frac{1}{4} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right)\binom{-e^{t}}{2 e^{t}}=\binom{\frac{5}{4} e^{t}}{\frac{3}{4} e^{t}}
\end{gathered}
$$

Solve for z_{1}

- We have $z_{1}^{\prime}+z_{1}=\frac{5}{4} e^{t}$
- The IF $\mu(t)=\exp \left(\int d t\right)=e^{t}$
- By (14) a solution for z_{1} :

$$
\begin{aligned}
z_{1}= & \frac{1}{\mu(t)}\left[\int \mu(t) h_{1}(t) d t\right]=e^{-t}\left[\int e^{t}\left(\frac{5}{4} e^{t}\right) d t\right] \\
& =e^{-t}\left[\frac{5}{4} \int e^{2 t} d t\right]=e^{-t}\left[\frac{5}{4} \frac{e^{2 t}}{2}\right]=\frac{5}{8} e^{t}
\end{aligned}
$$

Solve for z_{2}

- We have $z_{2}-3 z_{2}=\frac{3}{4} e^{t}$
- The IF $\mu(t)=\exp \left(\int-3 d t\right)=e^{-3 t}$
- By (14), a solution z_{2} :

$$
\begin{gathered}
z_{2}=\frac{1}{\mu(t)}\left[\int \mu(t) h_{2}(t) d t\right]=e^{3 t}\left[\int e^{-3 t}\left(\frac{3}{4} e^{t}\right) d t\right] \\
=e^{3 t}\left[\frac{3}{4} \int e^{-2 t} d t\right]=\frac{3}{4} e^{3 t} \frac{e^{-2 t}}{-2}=-\frac{3}{8} e^{t}
\end{gathered}
$$

A Particualr solution Y of (12)

- So,

$$
z=\binom{z_{1}}{z_{2}}=\binom{\frac{5}{8} e^{t}}{-\frac{3}{8} e^{t}}
$$

- Finally, a particular solution of (12):

$$
\mathrm{Y}=\mathrm{Tz}=\left(\begin{array}{cc}
-2 & 2 \\
1 & 1
\end{array}\right)\binom{\frac{5}{8} e^{t}}{-\frac{3}{8} e^{t}}=\binom{-2 e^{t}}{\frac{1}{4} e^{t}}
$$

The general solution of (12):

- The general solution (12):

$$
\mathrm{y}=\mathrm{Y}+\mathrm{y}_{c}=\mathrm{Y}+c_{1} \mathrm{y}^{(1)}+c_{2} \mathrm{y}^{(2)}
$$

where $Y, \mathrm{y}^{(1)}, \mathrm{y}^{(2)}$ are given above.

The Solution of FOLE

- Recall a $1^{\text {st }}$-order Linear ODE had the form

$$
y^{\prime}+p(t) y=g(t)
$$

- The integrating factor: $\mu(t)=\exp \left(\int p(t) d t\right)$
- The general solution:

$$
y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t+c\right]
$$

- Witn $c=0$, a solution for y is:

$$
\begin{equation*}
y=\frac{1}{\mu(t)}\left[\int \mu(t) g(t) d t\right] \tag{14}
\end{equation*}
$$

