Chapter 5:

System of $1^{\text {st }}$-Order Linear ODE

 §5.7 Repeated EigenvaluesSatya Mandal, KU

24 March 2018

Repeated Eigenvalues

- We continue to consider homogeneous linear systems with constant coefficients:

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{A y} \quad \mathbf{A} \text { is an } \mathrm{n} \times \mathrm{n} \text { matrix with constant entries } \tag{1}
\end{equation*}
$$

- Now, we consider the case, when some of the eigenvalues (real or complex) are repeated.

Two Cases of higher multiplicity

Consider the system (1). Let r be an eigenvalue (real or complex) of \mathbf{A}, with multiplicity $m \geq 2$. Then, corresponding to r

- Either, there are m linearly independent eigenvectors:

$$
\xi^{(1)}, \ldots, \xi^{(m)} \quad \text { of } \mathbf{A} . \quad \text { i.e. } \quad(\mathbf{A}-r l) \xi^{(i)}=\mathbf{0}
$$

- Or, there are fewer than m linearly independent

$$
\text { eigenvectors : } \quad \xi^{(1)}, \ldots, \xi^{\left(m_{1}\right)} \quad \text { of } \mathbf{A} \quad m_{1} \leq m-1
$$

- If r is real, then the eigenvectors $\xi^{(i)}$ are assumed to be real, else they are complex.

If there are m independent eigenvector

Suppose there are m independent eigenvector corresponding to the eigenvalue $r: \xi^{(1)}, \ldots, \xi^{(m)}$

- Then, there are m solutions of (1):

$$
\begin{equation*}
\mathbf{y}^{(1)}=\xi^{(1)} e^{r t}, \ldots, \mathbf{y}^{(m)}=\xi^{(m)} e^{r t} \tag{2}
\end{equation*}
$$

- They are linearly independent for all t.
- They extend to a fundamental set of solutions, with other $n-m$ solutions corresponding to other eigenvalues of \mathbf{A}.

If there are $m_{1} \leq m-1$ independent eigenvector

Suppose there are $m_{1} \leq m-1$ independent eigenvector corresponding to the eigenvalue r : $\xi^{(1)}, \ldots, \xi^{\left(m_{1}\right)}$

- Then, there are m_{1} solutions of (1):

$$
\begin{equation*}
\mathbf{y}^{(1)}=\xi^{(1)} e^{r t}, \ldots, \mathbf{y}^{\left(m_{1}\right)}=\xi^{\left(m_{1}\right)} e^{r t} \tag{3}
\end{equation*}
$$

- They are linearly independent for all t.

Extending to m solutions

- There are algorithms that extends (3) to m solutions:

$$
\begin{equation*}
\mathbf{y}^{(1)}=\xi^{(1)} e^{r t}, \ldots, \mathbf{y}^{\left(m_{1}\right)}=\xi^{\left(m_{1}\right)} e^{r t}, \mathbf{y}^{\left(m_{1}+1\right)}, \ldots, \mathbf{y}^{(m)} \tag{4}
\end{equation*}
$$

which are linearly independent.

- We can say that, these m solutions described in (4) is contributions from the eigenvalue r.
- They (4) extend to a fundamental set of solutions, with other $n-m$ solutions corresponding to other eigenvalues of \mathbf{A}.

Complex Eigen values

If r is a complex eigenvalue of \mathbf{A}, then so is its conjugate \bar{r}. Splitting the m complex solutions (4), in to real and imaginary parts, lead to $2 m$ real solutions of (1), which correspond to the pair of eigenvalues r and \bar{r}.
In other words, the pair of eigenvalues
r and \bar{r}, contribute these $2 m$ solutions.

Algorithms to achieve extension (4)

To keep things simple, we would only consider the case $m=2$. So, be r be a "double" eigenvalue of \mathbf{A}.

- If there are two linearly independent eigen vectors of $\xi^{(1)}$, $\xi^{(2)} \mathbf{A}$, corresponding to r, then by (2),

$$
\mathbf{y}^{(1)}=\xi^{(1)} e^{r t}, \mathbf{y}^{(2)}=\xi^{(2)} e^{r t}
$$

are two solutions of (1), linearly independent, for all t.

Continued

Now suppose r is a "double" eigenvalue of \mathbf{A}, and there is only one linearly independent eigenvector ξ for r (i. .e.
$(\mathbf{A}-r I) \xi=0)$.

- Then $\mathbf{y}^{(1)}=\xi e^{r t}$ is a solution of (1).
- Further, the linear algebraic system

$$
\begin{gather*}
\quad(\mathbf{A}-r \mathbf{I}) \eta=\xi \quad \text { has a solution } \tag{5}\\
\text { and } \quad \mathbf{y}^{(2)}=\xi t e^{r t}+\eta \mathrm{e}^{r t} \quad \text { is a solution of }(1) \tag{6}
\end{gather*}
$$

- (It needs a proof that (5) has a solution, which we skip.)
- $\mathbf{y}^{(1)}, \mathbf{y}^{(2)}$ extend to a fundamental set of solutions, with other $n-m=n-2$ solutions corresponding to other eigenvalues of \mathbf{A}.
- It is interesting to note, by multiplying (5) by ($\mathbf{A}-\mathrm{rI}$), we have $(\mathbf{A}-r I)^{2} \eta=0$.
- Subsequently, we ONLY consider problems with eigenvalues with multiplicity two, with only one linearly independent eigenvector.

Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension
Examples

Example 1

Find the general solution of the following system of equations:

$$
y^{\prime}=\left(\begin{array}{ll}
1 & -1 \tag{7}\\
4 & -3
\end{array}\right) y
$$

Computing Eigenvalues

- Eigenvalues of the coef. matrix A, are: given by

$$
\left.\begin{array}{cc}
1-r & -1 \\
4 & -3-r
\end{array} \right\rvert\,=0 \Longrightarrow(r+1)^{2}=0 \Longrightarrow r=-1
$$

Eigenvectors

- Eigenvectors for $r=-1$ is given by $(\mathbf{A}-r l) \xi=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1+1 & -1 \\
4 & -3+1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow\left\{\begin{array}{l}
2 \xi_{1}-\xi_{2}=0 \\
0=0
\end{array}\right.
\end{gathered}
$$

- Taking $\xi_{1}=1$, an eigenvector of $r=-1$ is

$$
\xi=\binom{1}{2}
$$

- Correspondingly, a solution of (7) is:

$$
\mathbf{y}^{(1)}=\xi e^{r t}=\binom{1}{2} e^{-t}
$$

- There is no second linearly independent eigenvector.
- So, use (6) to compute $\mathbf{y}^{(2)}$. We proceed to solve the equation $(\mathbf{A}-r l) \eta=\xi$

Compute η

- Write down the equation $(\mathbf{A}-r l) \eta=\xi$ as follows:

$$
\begin{gathered}
\left(\begin{array}{cc}
1+1 & -1 \\
4 & -3+1
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{2} \\
\left(\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{2} \Longrightarrow\left\{\begin{array}{l}
2 \eta_{1}-\eta_{2}=1 \\
0=0
\end{array}\right.
\end{gathered}
$$

- Taking $\eta_{1}=1$ a choice of η is

$$
\eta=\binom{1}{1}
$$

Answer

- By (6) another solution of (7) is

$$
\mathbf{y}^{(2)}=\xi t e^{r t}+\eta e^{r t}=\binom{1}{2} t e^{-t}+\binom{1}{1} e^{-t}
$$

- So, the general solution is $\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}$, or

$$
\begin{equation*}
\mathbf{x}=c_{1}\binom{1}{2} e^{-t}+c_{2}\left[\binom{1}{2} t e^{-t}+\binom{1}{1} e^{-t}\right] \tag{8}
\end{equation*}
$$

- Remark. While solving for η we could have taken $\eta_{1}=\frac{1}{2}$ (or something else). In that case we would have

$$
\eta=\binom{\frac{1}{2}}{0}
$$

In that case,

- $\mathbf{y}^{(2)}$ would be different.
- The general solution (8), may look different. But it would be the same, by changing the constants c_{1}, c_{2}.

Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension
Examples

Example 2

Find the general solution of the following system of equations:

$$
y^{\prime}=\left(\begin{array}{ccc}
2 & 2 & 2 \tag{9}\\
3 & 3 & -1 \\
1 & -3 & 1
\end{array}\right) \mathbf{y}
$$

Computing Eigenvalues

Eigenvalues of the coef. matrix A, are: given by

$$
\begin{gathered}
\left|\begin{array}{ccc}
2-r & 2 & 2 \\
3 & 3-r & -1 \\
1 & -3 & 1-r
\end{array}\right|=0 \\
(2-r)\left|\begin{array}{cc}
3-r & -1 \\
-3 & 1-r
\end{array}\right|-2\left|\begin{array}{cc}
3 & -1 \\
1 & 1-r
\end{array}\right|+2\left|\begin{array}{cc}
3 & 3-r \\
1 & -3
\end{array}\right|=0 \Longrightarrow \\
-r^{3}+6 r^{2}-32=0 \Longrightarrow-(r+2)(r-4)^{2}=0
\end{gathered}
$$

So, eigenvalues are: $r=4$ with multiplicity 2. $r=-2$

Eigenvectors

Eigenvectors for $r=-2$ is given by $(\mathbf{A}-r I) \xi=\mathbf{0}$:

$$
\begin{aligned}
&\left(\begin{array}{ccc}
2+2 & 2 & 2 \\
3 & 3+2 & -1 \\
1 & -3 & 1+2
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
&\left(\begin{array}{ccc}
4 & 2 & 2 \\
3 & 5 & -1 \\
1 & -3 & 3
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

TI-84 is giving clumsy output. So, I will solve it manually.
Note first row is sum second and third rows. So, above system reduces to

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 0 & 0 \\
3 & 5 & -1 \\
1 & -3 & 3
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 14 & -10 \\
1 & -3 & 3
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
\left\{\begin{array}{l}
14 \xi_{2}-10 \xi_{3}=0 \\
\xi_{1}-3 \xi_{2}+3 \xi_{3}=0
\end{array}\right. \\
\hline\left\{\begin{array}{l}
\xi_{3}=1.4 \xi_{2} \\
\xi_{1}=3 \xi_{2}-3 \xi_{3}
\end{array}\right.
\end{gathered}
$$

With $\xi_{2}=10, \quad \xi_{3}=14, \quad \xi_{1}=-12$

- So, an eigenvector of $r=-2$ is:

$$
\xi=\left(\begin{array}{c}
-12 \\
10 \\
14
\end{array}\right)
$$

- So, a solution to (9), corresponding to $r=-2$ is $\mathbf{x}^{(1)}=\xi \mathrm{e}^{r t}$:

$$
\mathbf{y}^{(1)}=\left(\begin{array}{c}
-12 \\
10 \\
14
\end{array}\right) e^{-2 t}
$$

Eigenvectors for $r=4$

- Eigenvectors for $r=4$ is given by $(\mathbf{A}-r l) \xi=\mathbf{0}$:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2-4 & 2 & 2 \\
3 & 3-4 & -1 \\
1 & -3 & 1-4
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
& \left(\begin{array}{ccc}
-2 & 2 & 2 \\
3 & -1 & -1 \\
1 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
& \text { Use TI84 (rref) }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

- Taking $\xi_{2}=1$ and eigenvector of $r=4$ is:

$$
\xi=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

- Correspondingly, a solution to (9), corresponding to $r=2$ is $\mathbf{y}^{(2)}=\xi e^{r t}$:

$$
\mathbf{y}^{(2)}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) e^{4 t}
$$

- There is no second linearly independent eigenvector.
- So, use (6) to compute another solution $\mathbf{y}^{(3)}$. We proceed to solve the equation $(\mathbf{A}-r l) \eta=\xi$

Compute η

- Write down the equation $(\mathbf{A}-r l) \eta=\xi$ as follows:

$$
\begin{array}{r}
\left(\begin{array}{ccc}
-2 & 2 & 2 \\
3 & -1 & -1 \\
1 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
\text { Use TI84 (rref) }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)
\end{array}
$$

- Taking $\eta_{2}=\frac{1}{2}$ a choice of η is

$$
\eta=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)
$$

Answer

- By (6) another solution of (9) is

$$
\mathbf{y}^{(3)}=\xi t e^{r t}+\eta e^{r t}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) t e^{4 t}+\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right) e^{4 t}
$$

- So, the general solution is $\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}+c_{3} \mathbf{y}^{(2)}$, or

$$
\begin{aligned}
\mathbf{x} & =c_{1}\left(\begin{array}{c}
-12 \\
10 \\
14
\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) e^{4 t} \\
& +c_{3}\left[\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) t e^{4 t}+\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right) e^{4 t}\right]
\end{aligned}
$$

Example 3

Find a general solution of

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
3 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right) \mathbf{y}
$$

- First, find the eigenvalues:

$$
\left|\begin{array}{ccc}
3-r & 0 & -1 \\
0 & 2-r & 0 \\
-1 & 0 & 3-r
\end{array}\right|=0
$$

Continued

$$
\begin{gathered}
(r-2)\left(r^{2}-6 r+8\right)=0 \\
(r-2)^{2}(r-4)=0 \\
r=2,2,4
\end{gathered}
$$

An eigenvector and solution for $r=2$

The eigen value $r=2$ has multiplicity two. So, we expect two linearly independent eigen vectors.

- Eigenvetors for $r=2$ is given by (use TI-84 "rref"):

$$
\begin{gathered}
\left(\begin{array}{ccc}
3-r & 0 & -1 \\
0 & 2-r & 0 \\
-1 & 0 & 3-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \text { (use rref) } \\
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\xi_{1}-\xi_{3}=0=0 \\
0=0 \\
0=0
\end{array}\right.
$$

- Expect two linearly independent eigen vectors for $r=2$. They are:

1. Taking $\xi_{2}=1, \xi_{3}=0, \xi^{(1)}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
2. Likewise, taking $\xi_{2}=0, \xi_{3}=1, \xi^{(2)}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$

Continued: $r=2$

- This gives two solutions, corresponding to $r=2$ is:

An eigenvector and solution for $r=4$

- Eigenvectors for $r=4$ is given by (use TI-84 "ref"):

$$
\begin{gathered}
\left(\begin{array}{ccc}
3-r & 0 & -1 \\
0 & 2-r & 0 \\
-1 & 0 & 3-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
\left(\begin{array}{ccc}
-1 & 0 & -1 \\
0 & -2 & 0 \\
-1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow(\text { use pref }) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\xi_{1}=0 \\
\xi_{2}=0 \\
0=0
\end{array}\right.
$$

- Expect two linearly independent eigen vectors for $r=2$. They are: Taking $\xi_{3}=1, \xi^{(3)}=\binom{0}{1}$
- This gives a solution, corresponding to $r=4$:

$$
\mathbf{y}^{(3)}=\xi^{(3)} e^{r t}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{4 t}
$$

General Solution

- So, the general solution is:

$$
\begin{gather*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}+c_{3} \mathbf{y}^{(3)} \\
=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{4 t} \tag{10}
\end{gather*}
$$

Example 4

Solve the initial value problems

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
3 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

Solution

This is an extension of an example above, and the general solutions was (10):

$$
\begin{gathered}
\mathbf{y}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{4 t} \\
=\left(\begin{array}{ccc}
0 & e^{2 t} & 0 \\
e^{2 t} & 0 & 0 \\
0 & 0 & e^{4 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
\end{gathered}
$$

Continued

Using the initial condition:

$$
\begin{gathered}
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \Longrightarrow \\
c_{1}=-1, \quad c_{2}=1, \quad c_{3}=1
\end{gathered}
$$

Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension
Examples

The Answer

$$
\mathbf{y}=\left(\begin{array}{ccc}
0 & e^{2 t} & 0 \\
e^{2 t} & 0 & 0 \\
0 & 0 & e^{4 t}
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
e^{2 t} \\
-e^{2 t} \\
e^{4 t}
\end{array}\right)
$$

