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Algorithms to achieve extension
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Repeated Eigenvalues

I We continue to consider homogeneous linear systems with
constant coefficients:

y′ = Ay A is an n× n matrix with constant entries
(1)

I Now, we consider the case, when some of the eigenvalues
(real or complex) are repeated.
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Case I: When there are m independent eigenvector
Case II: If there are m1 ≤ m− 1 independent eigenvector

Two Cases of higher multiplicity

Consider the system (1). Let r be an eigenvalue (real or
complex) of A, with multiplicity m ≥ 2.Then, corresponding
to r

I Either, there are m linearly independent eigenvectors:

ξ(1), . . . , ξ(m) of A. i .e. (A− rI )ξ(i) = 0.

I Or, there are fewer than m linearly independent

eigenvectors : ξ(1), . . . , ξ(m1) of A m1 ≤ m − 1

I If r is real, then the eigenvectors ξ(i) are assumed to be
real, else they are complex.
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Case I: When there are m independent eigenvector
Case II: If there are m1 ≤ m− 1 independent eigenvector

If there are m independent eigenvector

Suppose there are m independent eigenvector corresponding to
the eigenvalue r : ξ(1), . . . , ξ(m)

I Then, there are m solutions of (1):

y(1) = ξ(1)ert , . . . , y(m) = ξ(m)ert (2)

I They are linearly independent for all t.
I They extend to a fundamental set of solutions, with other

n −m solutions corresponding to other eigenvalues of A.
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Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension
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Case I: When there are m independent eigenvector
Case II: If there are m1 ≤ m− 1 independent eigenvector

If there are m1 ≤ m − 1 independent eigenvector

Suppose there are m1 ≤ m − 1 independent eigenvector
corresponding to the eigenvalue r : ξ(1), . . . , ξ(m1)

I Then, there are m1 solutions of (1):

y(1) = ξ(1)ert , . . . , y(m1) = ξ(m1)ert (3)

I They are linearly independent for all t.
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Case I: When there are m independent eigenvector
Case II: If there are m1 ≤ m− 1 independent eigenvector

Extending to m solutions

I There are algorithms that extends (3) to m solutions:

y(1) = ξ(1)ert , . . . , y(m1) = ξ(m1)ert , y(m1+1), . . . , y(m) (4)

which are linearly independent.
I We can say that, these m solutions described in (4) is

contributions from the eigenvalue r .
I They (4) extend to a fundamental set of solutions, with

other n −m solutions corresponding to other eigenvalues
of A.
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Case I: When there are m independent eigenvector
Case II: If there are m1 ≤ m− 1 independent eigenvector

Complex Eigen values

If r is a complex eigenvalue of A, then so is its conjugate r .
Splitting the m complex solutions (4), in to real and imaginary
parts, lead to 2m real solutions of (1), which correspond to
the pair of eigenvalues r and r .
In other words, the pair of eigenvalues
r and r , contribute these 2m solutions.
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Algorithms to achieve extension (4)

To keep things simple, we would only consider the case m = 2.
So, be r be a "double" eigenvalue of A.

I If there are two linearly independent eigen vectors of ξ(1),
ξ(2) A, corresponding to r , then by (2),

y(1) = ξ(1)ert , y(2) = ξ(2)ert

are two solutions of (1), linearly independent, for all t.
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Continued

Now suppose r is a "double" eigenvalue of A, and there is
only one linearly independent eigenvector ξ for r (i. .e.
(A− r I)ξ = 0).

I Then y(1) = ξert is a solution of (1).
I Further, the linear algebraic system

(A− r I)η = ξ has a solution (5)

and y(2) = ξtert + ηert is a solution of (1). (6)

I (It needs a proof that (5) has a solution, which we skip.)
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I y(1), y(2) extend to a fundamental set of solutions, with
other n −m = n − 2 solutions corresponding to other
eigenvalues of A.

I It is interesting to note, by multiplying (5) by (A− r I),
we have (A− r I)2η = 0.

I Subsequently, we ONLY consider problems with
eigenvalues with multiplicity two, with only one linearly
independent eigenvector.
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Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension

Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Example 1

Find the general solution of the following system of equations:

y′ =
(

1 −1
4 −3

)
y (7)
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Computing Eigenvalues

I Eigenvalues of the coef. matrix A, are: given by∣∣∣∣ 1− r −1
4 −3− r

∣∣∣∣ = 0 =⇒ (r + 1)2 = 0 =⇒ r = −1

Satya Mandal, KU Chapter 5: System of 1st -Order Linear ODE §5.7 Repeated Eigenvalues



Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension

Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Eigenvectors

I Eigenvectors for r = −1 is given by (A− rI )ξ = 0, which
is (

1+ 1 −1
4 −3+ 1

)(
ξ1
ξ2

)
=

(
0
0

)
(

2 −1
4 −2

)(
ξ1
ξ2

)
=

(
0
0

)
=⇒

{
2ξ1 − ξ2 = 0
0 = 0

I Taking ξ1 = 1, an eigenvector of r = −1 is

ξ =

(
1
2

)
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I Correspondingly, a solution of (7) is:

y(1) = ξert =

(
1
2

)
e−t

I There is no second linearly independent eigenvector.
I So, use (6) to compute y(2). We proceed to solve the

equation (A− rI )η = ξ
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Compute η

I Write down the equation (A− rI )η = ξ as follows:(
1+ 1 −1
4 −3+ 1

)(
η1

η2

)
=

(
1
2

)
(

2 −1
4 −2

)(
η1

η2

)
=

(
1
2

)
=⇒

{
2η1 − η2 = 1
0 = 0

I Taking η1 = 1 a choice of η is

η =

(
1
1

)
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Answer

I By (6) another solution of (7) is

y(2) = ξtert + ηert=

(
1
2

)
te−t +

(
1
1

)
e−t

I So, the general solution is y = c1y(1) + c2y(2), or

x = c1

(
1
2

)
e−t + c2

[(
1
2

)
te−t +

(
1
1

)
e−t
]

(8)
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I Remark. While solving for η we could have taken η1 =
1
2

(or something else). In that case we would have

η =

( 1
2
0

)
In that case,

I y(2) would be different.
I The general solution (8), may look different. But it

would be the same, by changing the constants c1, c2.
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Example 2

Find the general solution of the following system of equations:

y′ =

 2 2 2
3 3 −1
1 −3 1

 y (9)
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Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension

Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Computing Eigenvalues

Eigenvalues of the coef. matrix A, are: given by∣∣∣∣∣∣
2− r 2 2
3 3− r −1
1 −3 1− r

∣∣∣∣∣∣ = 0

(2−r)
∣∣∣∣ 3− r −1
−3 1− r

∣∣∣∣−2 ∣∣∣∣ 3 −1
1 1− r

∣∣∣∣+2
∣∣∣∣ 3 3− r
1 −3

∣∣∣∣ = 0 =⇒

−r 3 + 6r 2 − 32 = 0 =⇒ −(r + 2)(r − 4)2 = 0

So, eigenvalues are: r = 4 with multiplicity 2. r = −2
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Eigenvectors

Eigenvectors for r = −2 is given by (A− rI )ξ = 0: 2+ 2 2 2
3 3+ 2 −1
1 −3 1+ 2

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

 4 2 2
3 5 −1
1 −3 3

 ξ1
ξ2
ξ3

 =

 0
0
0


TI-84 is giving clumsy output. So, I will solve it manually.
Note first row is sum second and third rows. So, above system
reduces to
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 0 0 0
3 5 −1
1 −3 3

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

 0 0 0
0 14 −10
1 −3 3

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

{
14ξ2 − 10ξ3 = 0
ξ1 − 3ξ2 + 3ξ3 = 0 =⇒

{
ξ3 = 1.4ξ2
ξ1 = 3ξ2 − 3ξ3

With ξ2 = 10, ξ3 = 14, ξ1 = −12
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I So, an eigenvector of r = −2 is:

ξ =

 −1210
14


I So, a solution to (9), corresponding to r = −2 is

x(1) = ξert :

y(1) =

 −1210
14

 e−2t
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Eigenvectors for r = 4

I Eigenvectors for r = 4 is given by (A− rI )ξ = 0: 2− 4 2 2
3 3− 4 −1
1 −3 1− 4

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

 −2 2 2
3 −1 −1
1 −3 −3

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

Use TI84 (rref)

 1 0 0
0 1 1
0 0 0

 ξ1
ξ2
ξ3

 =

 0
0
0
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Example 2
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Example 4: IVP

I Taking ξ2 = 1 and eigenvector of r = 4 is:

ξ =

 0
1
−1


I Correspondingly, a solution to (9), corresponding to r = 2

is y(2) = ξert :

y(2) =

 0
1
−1

 e4t

I There is no second linearly independent eigenvector.
I So, use (6) to compute another solution y(3). We proceed

to solve the equation (A− rI )η = ξ
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Compute η
I Write down the equation (A− rI )η = ξ as follows: −2 2 2

3 −1 −1
1 −3 −3

 η1

η2

η3

 =

 0
1
−1


Use TI84 (rref)

 1 0 0
0 1 1
0 0 0

 η1

η2

η3

 =

 1
2
1
2
0


I Taking η2 =

1
2 a choice of η is

η =

 1
2
1
2
0
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Answer

I By (6) another solution of (9) is

y(3) = ξtert + ηert=

 0
1
−1

 te4t +

 1
2
1
2
0

 e4t

I So, the general solution is y = c1y(1) + c2y(2) + c3y(2), or

x = c1

 −1210
14

 e−2t + c2

 0
1
−1

 e4t

+c3

 0
1
−1

 te4t +

 1
2
1
2
0

 e4t
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Example 3

Find a general solution of

y′ =

 3 0 −1
0 2 0
−1 0 3

 y

I First, find the eigenvalues:∣∣∣∣∣∣
3− r 0 −1
0 2− r 0
−1 0 3− r

∣∣∣∣∣∣ = 0
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Continued

(r − 2)(r 2 − 6r + 8) = 0

(r − 2)2(r − 4) = 0

r = 2, 2, 4
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

An eigenvector and solution for r = 2
The eigen value r = 2 has multiplicity two. So, we expect two
linearly independent eigen vectors.

I Eigenvetors for r = 2 is given by (use TI-84 "rref"): 3− r 0 −1
0 2− r 0
−1 0 3− r

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

 1 0 −1
0 0 0
−1 0 1

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒ (use rref)

 1 0 −1
0 0 0
0 0 0

 ξ1
ξ2
ξ3

 =

 0
0
0


Satya Mandal, KU Chapter 5: System of 1st -Order Linear ODE §5.7 Repeated Eigenvalues



Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension

Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

I 
ξ1 − ξ3 = 0 = 0
0 = 0
0 = 0

I Expect two linearly independent eigen vectors for r = 2.
They are:

1. Taking ξ2 = 1, ξ3 = 0, ξ(1) =

 0
1
0


2. Likewise, taking ξ2 = 0, ξ3 = 1, ξ(2) =

 1
0
1
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Continued: r = 2

I This gives two solutions, corresponding to r = 2 is:
y(1) = ξ(1)ert =

 0
1
0

 e2t ,

y(2) = ξ(2)ert =

 1
0
1

 e2t
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Two Cases of an eigenvalue, with higher multiplicity
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

An eigenvector and solution for r = 4

I Eigenvetors for r = 4 is given by (use TI-84 "rref"): 3− r 0 −1
0 2− r 0
−1 0 3− r

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒

 −1 0 −1
0 −2 0
−1 0 −1

 ξ1
ξ2
ξ3

 =

 0
0
0

 =⇒ (use rref)

 1 0 0
0 1 0
0 0 0

 ξ1
ξ2
ξ3

 =

 0
0
0
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Two Cases of an eigenvalue, with higher multiplicity
Algorithms to achieve extension

Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

I 
ξ1 = 0
ξ2 = 0
0 = 0

I Expect two linearly independent eigen vectors for r = 2.

They are: Taking ξ3 = 1, ξ(3) =

 0
0
1


I This gives a solution, corresponding to r = 4:

y(3) = ξ(3)ert =

 0
0
1

 e4t
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Two Cases of an eigenvalue, with higher multiplicity
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Examples

Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

General Solution

I So, the general solution is:

y = c1y(1) + c2y(2) + c3y(3)

= c1

 0
1
0

 e2t + c2

 1
0
1

 e2t + c3

 0
0
1

 e4t (10)
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Example 4

Solve the initial value problems

y′ =

 3 0 −1
0 2 0
−1 0 3

 y, y =

 1
−1
1
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Example 1
Example 2
Example 3: With Enough Eigenvectors
Example 4: IVP

Solution

This is an extension of an example above, and the general
solutions was (10):

y = c1

 0
1
0

 e2t + c2

 1
0
1

 e2t + c3

 0
0
1

 e4t

=

 0 e2t 0
e2t 0 0
0 0 e4t

 c1

c2

c3
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Example 3: With Enough Eigenvectors
Example 4: IVP

Continued

Using the initial condition: 0 1 0
1 0 0
0 0 1

 c1

c2

c3

 =

 1
−1
1

 =⇒

c1 = −1, c2 = 1, c3 = 1
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The Answer

y =

 0 e2t 0
e2t 0 0
0 0 e4t

 −11
1

 =

 e2t

−e2t

e4t
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