Chapter 5: System of 1st-Order Linear ODE §5.4 The Theoretical Foundation

Satya Mandal, KU

18 March 2018

Satya Mandal, KU Chapter 5: System of 1st-Order Linear ODE §5.4 The Theorem

・ロト ・聞ト ・ヨト ・ヨト

System of 1st-order Linear ODE

The goal of this section is to establish the basic foundation of the system of 1^{st} -Order Linear ODE. This theoretical foundation is fairly intuitive, and analogous to what we have seen in this course before. We discuss this in this section.

(母) (王) (王) (王)

System of 1st-order Linear ODE

Recall (§5.1), a system 1st-order linear ODE looks like:

$$\begin{cases} y_1' = p_{11}(t)y_1 + p_{12}(t)y_2 + \cdots + p_{1n}(t)y_n + g_1(t) \\ y_2' = p_{21}(t)y_1 + p_{22}(t)y_2 + \cdots + p_{2n}(t)y_n + g_2(t) \\ \cdots & \cdots & \cdots \\ y_n' = p_{n1}(t)y_1 + p_{n2}(t)y_2 + \cdots + p_{nn}(t)y_n + g_n(t) \\ & (1) \end{cases}$$

This is a system of *n* Equations, in *n* unknown variables y_1, \ldots, y_n . The system (1) would be called Homogeneous, if $g_1 = \cdots = g_n = 0$.

< □→ < 注→ < 注→ = 注

Continued

- Assume, p_{ij}(t), g_j(t) are continuous on an interval
 I : α < t < β.
- ▶ The system (1) can be written in the matrix form

$$\mathbf{y}' = \mathbf{P}(t)\mathbf{y} + \mathbf{g}(t) \tag{2}$$

where

$$\mathbf{y} = \left(egin{array}{c} y_1(t) \ y_2(t) \ \dots \ y_n(t) \end{array}
ight), \ \mathbf{P} = (p_{ij}(t)), \ \mathbf{g} = \left(egin{array}{c} g_1(t) \ g_2(t) \ \dots \ g_n(t) \end{array}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Continued

Likewise, a homogeneous linear system can be written as

$$\mathbf{y}' = \mathbf{P}(t)\mathbf{y} \tag{3}$$

•

æ

There may be several solutions of (2) or of (3). They will be denoted by

$$\mathbf{y}^{(1)}(t) = \begin{pmatrix} y_{11}(t) \\ y_{21}(t) \\ \cdots \\ y_{n1}(t) \end{pmatrix}, \cdots, \mathbf{y}^{(k)}(t) = \begin{pmatrix} y_{1k}(t) \\ y_{2k}(t) \\ \cdots \\ y_{nk}(t) \end{pmatrix}$$

◆ロ → ◆御 → ◆臣 → ◆臣 →

Principle of superposition

 Lemma 5.4.1: Suppose y⁽¹⁾,..., y^(k) are solution of a homogeneous linear system (3). Then, any constant linear combination

$$\mathbf{y} = c_1 \mathbf{y}^{(1)} + \dots + c_k \mathbf{y}^{(k)} \tag{4}$$

is also a solution of the same system (3).

The converse of the Principle of superposition is also true, in the sense elaborated subsequently.

((月)) (日) (日) (日)

Converse of Principle of superposition

Theorem 5.4.2: Suppose $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ are solution of a homogeneous linear system (3). Let $\mathbf{Y}(t) = (\mathbf{y}^{(1)} \dots \mathbf{y}^{(n)})$. Define the Wronskian $W(t) := W(\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)})(t) = |\mathbf{Y}(t)|$ Assume, $W(t) \neq 0$ $\forall t \in (\alpha, \beta)$ (equivalently, $\mathbf{y}^{(1)}(t), \dots, \mathbf{y}^{(n)}(t)$ are linearly independent) Let $\mathbf{y} = \varphi(\mathbf{t})$ be any solution of (3). Then, $\mathbf{v} = \boldsymbol{\omega}(\mathbf{t}) = c_1 \mathbf{v}^{(1)} + \cdots + c_n \mathbf{v}^{(n)}$ for some $c_1, \cdots, c_n \in \mathbb{R}$.

Continued

Definition. In the above case, we say that

$$\mathbf{y}^{(1)}(t),\ldots,\mathbf{y}^{(n)}(t)$$

form a Fundamental Set of Solutions of (3).

・ロト ・西ト ・ヨト ・ヨト

3