Chapter 5:
 System of $1^{\text {st }}$-Order Linear ODE §5.4 The Theoretical Foundation

Satya Mandal, KU

18 March 2018

System of $1^{\text {st }}$-order Linear ODE

The goal of this section is to establish the basic foundation of the system of $1^{\text {st }}$-Order Linear ODE. This theoretical foundation is fairly intuitive, and analogous to what we have seen in this course before. We discuss this in this section.

System of $1^{\text {st }}$-order Linear ODE

Recall (§5.1), a system $1^{\text {st }}$-order linear ODE looks like:

$$
\left\{\begin{array}{cccccc}
y_{1}^{\prime} & =p_{11}(t) y_{1} & +p_{12}(t) y_{2} & +\cdots & +p_{1 n}(t) y_{n} & +g_{1}(t) \tag{1}\\
y_{2}^{\prime} & =p_{21}(t) y_{1} & +p_{22}(t) y_{2} & +\cdots & +p_{2 n}(t) y_{n} & +g_{2}(t) \\
\cdots & & \cdots & \cdots & \\
y_{n}^{\prime} & =p_{n 1}(t) y_{1} & +p_{n 2}(t) y_{2} & +\cdots & +p_{n n}(t) y_{n} & +g_{n}(t)
\end{array}\right.
$$

This is a system of n Equations, in n unknown variables y_{1}, \ldots, y_{n}.
The system (1) would be called Homogeneous, if $g_{1}=\cdots=g_{n}=0$.

Continued

- Assume, $p_{i j}(t), g_{j}(t)$ are continuous on an interval I : $\alpha<t<\beta$.
- The system (1) can be written in the matrix form

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{P}(t) \mathbf{y}+\mathbf{g}(t) \tag{2}
\end{equation*}
$$

where

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\cdots \\
y_{n}(t)
\end{array}\right), \mathbf{P}=\left(p_{i j}(t)\right), \mathbf{g}=\left(\begin{array}{c}
g_{1}(t) \\
g_{2}(t) \\
\cdots \\
g_{n}(t)
\end{array}\right)
$$

Continued

- Likewise, a homogeneous linear system can be written as

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{P}(t) \mathbf{y} \tag{3}
\end{equation*}
$$

- There may be several solutions of (2) or of (3). They will be denoted by

$$
\mathbf{y}^{(1)}(t)=\left(\begin{array}{c}
y_{11}(t) \\
y_{21}(t) \\
\cdots \\
y_{n 1}(t)
\end{array}\right), \cdots, \mathbf{y}^{(k)}(t)=\left(\begin{array}{c}
y_{1 k}(t) \\
y_{2 k}(t) \\
\ldots \\
y_{n k}(t)
\end{array}\right)
$$

Principle of superposition

- Lemma 5.4.1: Suppose $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(k)}$ are solution of a homogeneous linear system (3). Then, any constant linear combination

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+\cdots+c_{k} \mathbf{y}^{(k)} \tag{4}
\end{equation*}
$$

is also a solution of the same system (3).
The converse of the Principle of superposition is also true, in the sense elaborated subsequently.

Converse of Principle of superposition

Theorem 5.4.2: Suppose $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ are solution of a homogeneous linear system (3). Let
$\mathbf{Y}(t)=\left(\begin{array}{lll}\mathbf{y}^{(1)} & \ldots & \mathbf{y}^{(n)}\end{array}\right)$. Define the Wronskian

$$
\begin{aligned}
& W(t):=W\left(\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}\right)(t)=|\mathbf{Y}(t)| \\
& \text { Assume, } \quad W(t) \neq 0 \quad \forall t \in(\alpha, \beta)
\end{aligned}
$$

(equivalently, $\mathbf{y}^{(1)}(t), \ldots, \mathbf{y}^{(n)}(t)$ are linearly independent)
Let $\mathbf{y}=\varphi(\mathbf{t})$ be any solution of (3). Then,

$$
\mathbf{y}=\varphi(\mathbf{t})=c_{1} \mathbf{y}^{(1)}+\cdots+c_{n} \mathbf{y}^{(n)} \quad \text { for some } c_{1}, \cdots, c_{n} \in \mathbb{R} .
$$

Continued

- Definition. In the above case, we say that

$$
\mathbf{y}^{(1)}(t), \ldots, \mathbf{y}^{(n)}(t)
$$

form a Fundamental Set of Solutions of (3).

