## Chapter 5:

## System of $1^{\text {st }}$-Order Linear ODE §5.5 Homogeneous Systems with Constant Coefficients

Satya Mandal, KU

20 March 2018

## Homogeneous System with constant coefficients

- Consider homogeneous linear systems of $n$ Equations, in $n$ variables:
$\mathrm{y}^{\prime}=\mathrm{Ay} \quad \mathbf{A}$ is an $\mathrm{n} \times \mathrm{n}$ matrix with constant entries
- As in $\S 5.4$, solutions of (1) would be denoted by

$$
\mathbf{y}^{(1)}(t)=\left(\begin{array}{c}
y_{11}(t) \\
y_{21}(t) \\
\cdots \\
y_{n 1}(t)
\end{array}\right), \cdots, \mathbf{y}^{(k)}(t)=\left(\begin{array}{c}
y_{1 k}(t) \\
y_{2 k}(t) \\
\cdots \\
y_{n k}(t)
\end{array}\right) .
$$

## Principle of superposition

- Recall from $\S 5.4$ the Principle of superposition and the converse: If $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ are solution of (1), then, any constant linear combination

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+\cdots+c_{n} \mathbf{y}^{(n)} \tag{2}
\end{equation*}
$$

is also a solution of the same system (1).

- The converse is also true, if Wronskian

$$
W(t):=W\left(\mathbf{y}^{(1)}, \cdots, \mathbf{y}^{(n)}\right)(t) \neq 0
$$

## Solutions of (1) and Eigenvectors

- Some of the solutions of (1) are given by

$$
\begin{equation*}
\mathbf{y}=\xi \mathrm{e}^{r t} \quad \text { where } \quad \mathbf{A} \xi=r \xi, \tag{3}
\end{equation*}
$$

which means that $r$ is an eigenvalue of $\boldsymbol{A}$ and $\xi$ is an eigenvector, corresponding to $r$.

- Proof. For $\mathbf{x}=\xi e^{r t}$, we have

$$
\mathbf{y}^{\prime}=(r \xi) e^{r t}=\mathbf{A}\left(\xi e^{r t}\right)=\mathbf{A} \mathbf{y}
$$

## $n$ eigenvalues and vectors

- Suppose $\mathbf{A}$ has $n$ eigenvalues $r_{1}, r_{2}, \ldots, r_{n}$. Pick eigenvectors $\xi_{i}$, corresponding to each $r_{i}$. So, $\mathbf{A} \xi_{i}=r_{i} \xi_{i}$.
- A set of $n$ solutions of (1) is given by

$$
\begin{equation*}
\mathbf{x}^{(1)}=\xi_{1} e^{r_{1} t}, \ldots, \mathbf{x}^{(n)}=\xi_{n} e^{r_{n} t} \tag{4}
\end{equation*}
$$

So, the Wronskian

$$
\begin{gathered}
W:=W\left(\mathbf{y}^{(1)}, \ldots \mathbf{y}^{(n)}\right)=\left\lvert\, \begin{array}{lll}
\mathbf{y}^{(1)} & \cdots & \mathbf{y}^{(n)} \mid \\
=e^{\left(r_{1}+\cdots+r_{n}\right) t}\left|\begin{array}{lll}
\xi_{1} & \cdots & \xi_{n}
\end{array}\right|
\end{array} .\right.
\end{gathered}
$$

## Real and Distinct Eigenvalue

- Assume $r_{1}, r_{2}, \ldots, r_{n}$ are distinct. Then, $\xi_{1}, \ldots, \xi_{n}$ are linearly independent. (It needs a proof). Hence the Wronskian $W \neq 0$.
- Now assume $r_{1}, r_{2}, \ldots, r_{n}$ are real. By $\S 5.4, \mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ form a fundamental set of solutions of (1). In other words, any solution of (1) has the form

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+\cdots+c_{n} \mathbf{y}^{(n)}=c_{1} \xi_{1} e^{r_{1} t}+\cdots+c_{n} \xi_{n} e^{r_{n} t} \tag{5}
\end{equation*}
$$

where $c_{1}, \ldots, c_{n}$ are constants, to be determined by the initial value conditions.

## Computational Tools

It is evident form (5), to solve problems in this section, we would have to compute eigen values and eigen vectors.

Matlab command $[V, D]=\operatorname{eig}(A)$ could be used to find eigenvalues and eigenvectors. Advantage with this is that Matlab can handle complex numbers (see §7.6). However, after experimenting with it, I concluded that it does not work very well. It uses the floating numbers, which make things misleading.

## Use Hand computations and TI-84

- Throughout, the following would be my strategy:
- Compute eigenvalues analytically.
- If an eigenvalue is real, use use TI-84 (rref) to solve and compute eigenvectors.
- If an eigenvalue is complex (in §5.6), compute eigenvectors analytically.


## Example 1

Find a general solution of

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ll}
-6 & 8 \\
-3 & 4
\end{array}\right) \mathbf{y}
$$

- First, find the eigenvalues:

$$
\left|\begin{array}{cc}
-6-r & 8 \\
-3 & 4-r
\end{array}\right|=0 \Longrightarrow r^{2}+2 r=0 \Longrightarrow r=0,-2
$$

## Eigenvectors for $r=0$

- Eigenvetors for $r=0$ is given by (use TI-84 "rref"):

$$
\begin{gathered}
\left(\begin{array}{cc}
-6 & 8 \\
-3 & 4
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left(\begin{array}{cc}
0 & 0 \\
1 & -\frac{4}{3}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
\end{gathered}
$$

- Taking $\xi_{2}=1, \xi=\binom{\frac{4}{3}}{1}$ is an eigenvector for $r=0$.
- So, a solution corresponding to $r=0$ is:

$$
\mathbf{y}^{(1)}=\xi e^{r t}=\binom{\frac{4}{3}}{1}
$$

## Eigenvectors for $r=-2$

- Eigenvetors for $r=-2$ is given by (use Tl-84 "rref"):

$$
\begin{gathered}
\left(\begin{array}{cc}
-6-r & 8 \\
-3 & 4-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left(\begin{array}{ll}
-4 & 8 \\
-3 & 6
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
\end{gathered}
$$

- Taking $\xi_{2}=1, \xi=\binom{2}{1}$ is an eigenvector for $r=-2$.


## Continued

- So, a solution corresponding to $r=-2$ is:

$$
\mathbf{y}^{(2)}=\xi e^{r t}=\binom{2}{1} e^{-2 t}
$$

- So, the general solution is:

$$
\begin{equation*}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}=c_{1}\binom{\frac{4}{3}}{1}+c_{2}\binom{2}{1} e^{-2 t} \tag{6}
\end{equation*}
$$

## Example 2

Find a general solution of

$$
y^{\prime}=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right) \mathbf{y}
$$

- First, find the eigenvalues:

$$
\left|\begin{array}{ccc}
2-r & 1 & 1 \\
1 & 1-r & 2 \\
1 & 2 & 1-r
\end{array}\right|=0
$$

## Continued

$$
\begin{gathered}
(2-r)\left|\begin{array}{cc}
1-r & 2 \\
2 & 1-r
\end{array}\right|-\left|\begin{array}{cc}
1 & 2 \\
1 & 1-r
\end{array}\right|+\left|\begin{array}{cc}
1 & 1-r \\
1 & 2
\end{array}\right|=0 \\
-r^{3}+4 r^{2}+r-4=0 \Longrightarrow r^{3}-4 r^{2}-r+4=0 \\
r^{2}(r-1)-3 r(r-1)-4(r-1)=0 \\
(r-1)\left(r^{2}-3 r-4\right)=0 \\
r=-1,1,4
\end{gathered}
$$

## An eigenvector and solution for $r=-1$

- Eigenvectors for $r=-1$ is given by (use Tl-84 "rref"):

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2-r & 1 & 1 \\
1 & 1-r & 2 \\
1 & 2 & 1-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
& \left(\begin{array}{lll}
3 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \text { (use ref) } \\
& \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\xi_{1}=0 \\
\xi_{2}+\xi_{3}=0 \\
0=0
\end{array}\right.
$$

- Taking $\xi_{3}=1, \xi=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$ is an eigenvector for $r=-1$.
- So, a solution corresponding to $r=-1$ is:

$$
\mathbf{y}^{(1)}=\xi e^{r t}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) e^{-t}
$$

## An eigenvector and solution for $r=1$

- Eigenvetors for $r=1$ is given by (use Tl-84 "rref"):

$$
\begin{aligned}
&\left(\begin{array}{ccc}
2-r & 1 & 1 \\
1 & 1-r & 2 \\
1 & 2 & 1-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
&\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\Longrightarrow \text { (use rref }) \\
& \quad\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\xi_{1}+2 \xi_{3}=0 \\
\xi_{2}-\xi_{3}=0 \\
0=0
\end{array}\right.
$$

- Taking $\xi_{3}=1, \xi=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$ is an eigenvector for $r=-1$.
- So, a solution corresponding to $r=1$ is:

$$
\mathbf{y}^{(2)}=\xi e^{r t}=\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) e^{t}
$$

## An eigenvector and solution for $r=4$

- Eigenvetors for $r=4$ is given by (use TI-84 "rref"):

$$
\begin{gathered}
\left(\begin{array}{ccc}
2-r & 1 & 1 \\
1 & 1-r & 2 \\
1 & 2 & 1-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \\
\left.\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -3 & 2 \\
1 & 2 & -3
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow \text { (use rref }\right) \\
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\xi_{1}-\xi_{3}=0 \\
\xi_{2}-\xi_{3}=0 \\
0=0
\end{array}\right.
$$

- Taking $\xi_{3}=1, \xi=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is an eigenvector for $r=-1$.
- So, a solution corresponding to $r=1$ is:

$$
\mathbf{y}^{(3)}=\xi e^{r t}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{4 t}
$$

## General Solution

- So, the general solution is:

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}+c_{3} \mathbf{y}^{(3)} \\
=c_{1}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) e^{-t}+c_{2}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{4 t}
\end{gathered}
$$

## Example 3

Solve the initial value problem:

$$
y^{\prime}=\left(\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right) \mathbf{y}, \quad y(0)=\binom{-1}{2} .
$$

- First, find the eigenvalues:

$$
\left|\begin{array}{cc}
1-r & 3 \\
-1 & 5-r
\end{array}\right|=0 \Longrightarrow r^{2}-6 r+8 \Longrightarrow r=2,4
$$

## Eigenvectors for $r=2$

- Eigenvetors for $r=2$ is given by

$$
\begin{gathered}
\left(\begin{array}{cc}
1-r & 3 \\
-1 & 5-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left(\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left\{\begin{array}{l}
-\xi_{1}+3 \xi_{2}=0 \\
0=0
\end{array}\right.
\end{gathered}
$$

- Taking $\xi_{2}=1, \xi=\binom{3}{1}$ is an eigenvector for $r=2$.


## A solution corresponding to $r=2$

- So, a solution corresponding to $r=2$ is:

$$
\mathbf{y}^{(1)}=\xi e^{r t}=\binom{3}{1} e^{2 t}
$$

## Eigenvectors for $r=4$

- Eigenvetors for $r=4$ is given by

$$
\begin{gathered}
\left(\begin{array}{cc}
1-r & 3 \\
-1 & 5-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left(\begin{array}{ll}
-3 & 3 \\
-1 & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \\
\left\{\begin{array}{l}
0=0 \\
-\xi_{1}+\xi_{2}=0
\end{array}\right.
\end{gathered}
$$

- Taking $\xi_{1}=1, \xi=\binom{1}{1}$ is an eigenvector for $r=4$.


## A solution corresponding to $r=4$

- So, a solution corresponding to $r=4$ is:

$$
\mathbf{y}^{(2)}=\xi e^{r t}=\binom{1}{1} e^{4 t}
$$

## General Solution

- So, the general solution is:

$$
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}=c_{1}\binom{3}{1} e^{2 t}+c_{2}\binom{1}{1} e^{4 t}
$$

This can be written as

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
3 e^{2 t} & e^{4 t} \\
e^{2 t} & e^{4 t}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

## The Particular Solution

To find the particular solution, use the initial condition:

$$
\begin{gathered}
\mathbf{y}(0)=\binom{-1}{2} \Longrightarrow \\
\left.\left(\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-1}{2} \Longrightarrow \text { (use rref }\right)
\end{gathered}
$$

to the augmented matrix:

$$
c_{1}=-1.5, \quad c_{2}=3.5
$$

## Continued

- So, the particular solution is:

$$
\begin{gathered}
\mathbf{y}=c_{1} \mathbf{y}^{(1)}+c_{2} \mathbf{y}^{(2)}=c_{1}\binom{3}{1} e^{2 t}+c_{2}\binom{1}{1} e^{4 t} \\
=-1.5\binom{1}{3} e^{2 t}+3.5\binom{1}{1} e^{4 t}
\end{gathered}
$$

## Example 4

Solve the Initial Value Problem

$$
y^{\prime}=\left(\begin{array}{ll}
-6 & 8 \\
-3 & 4
\end{array}\right) y \quad y(0)=\binom{1}{-1} .
$$

Solution: This is an extension of an Example above, and general solution was computed (6):

$$
\mathbf{y}=c_{1}\binom{\frac{4}{3}}{1}+c_{2}\binom{2}{1} e^{-2 t}=\left(\begin{array}{cc}
\frac{4}{3} & 2 e^{-2 t} \\
1 & e^{-2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

## The Particular Solution

To find the particular solution, use the initial condition:

$$
\begin{gathered}
\mathbf{y}(0)=\binom{1}{-1} \Longrightarrow \\
\left.\left(\begin{array}{cc}
\frac{4}{3} & 2 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{1}{-1} \Longrightarrow \text { (use rref }\right)
\end{gathered}
$$

to the augmented matrix:

$$
c_{1}=-4.5, \quad c_{2}=3.5
$$

## Answer

So, the particular solution is:

$$
\mathbf{y}=\left(\begin{array}{cc}
\frac{4}{3} & 2 e^{-2 t} \\
1 & e^{-2 t}
\end{array}\right)\binom{-4.5}{3.5}=\binom{6+7 e^{-2 t}}{-4.5+3.5 e^{-2 t}}
$$

