# §5.2 Algebra of Matrices 

Satya Mandal, KU

## 13 March 2018

§5.2 Algebra of Matrices

## Why Matrices?

Algebra of Matrices would be the main tool to study and solve System of $1^{\text {st }}$-order Linear ODE. So, we provide a background of the Algebra of Matrices.
§5.2 Algebra of Matrices

## Definition

A matrix A of size $m \times n$ is defined as an array, with $m$ rows and $n$ columns:
$\mathbf{A}=\left(\begin{array}{lllll}a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\ a_{21} & a_{22} & a_{13} & \cdots & a_{2 n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}\end{array}\right)$ Also written as $\mathbf{A}=\left(a_{i j}\right)$.
$a_{i j} \mathrm{~s}$ are called entries of $\mathbf{A}$.

## Continued

- A matrix of size $m \times 1$ is called column vector. A matrix of size $1 \times n$ is called row vector.
- Often, in lower level courses only matrices of real numbers are considered. But most of it works in a more generality.
- In this course, we will also consider matrices $\mathbf{A}=\left(a_{i j}\right)$ where the entries $a_{i j}$ are complex numbers.
- Further, we will consider matrices $\mathbf{A}=\left(a_{i j}\right)$ where the entries $a_{i j}=a_{i j}(t)$ are functions of $t$.


## Transpose and conjugate

- Given a matrix $\mathbf{A}=\left(a_{i j}\right)$ the transpose matrix $\mathbf{A}^{T}=\left(a_{j i}\right)$ is obtained by writing the columns of $\mathbf{A}$ and rows as columns.
- If $\boldsymbol{A}=\left(a_{i j}\right)$ is a matrix of complex numbers, then the conjugate matrix $\overline{\mathbf{A}}=\left(\overline{a_{i j}}\right)$ is obtained by replacing each entry $a_{i j}$ by its conjugate $\overline{a_{i j}}$.
- The transpose conjugate matrix $A^{*}=\overline{\mathbf{A}}^{T}$ is obtained by taking conjugate and then transpose.
§5.2 Algebra of Matrices


## Equality and Zero

- Two matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ are equal, if they have same size $(m \times n)$ and

$$
a_{i j}=b_{i j} \quad \text { for } \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

- The symbol 0 denotes the matrix whose entries are 0 .


## Addition

If $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ are two matrices of equal size $(m \times n)$, then their sum is defined to be the $m \times n$ matrix given by

$$
A+B=\left(a_{i j}+b_{i j}\right)
$$

So, the sum is obtained by adding the respective entries. If the sizes of two matrices are different, then the sum is NOT defined.
§5.2 Algebra of Matrices

## Scalar Multiplication

If $A=\left(a_{i j}\right)$ is a $m \times n$ matrix and $c$ is a complex number, then the scalar multiplication of $A$ by $c$ is the $m \times n$ matrix given by

$$
c A=\left(c a_{i j}\right)
$$

## Example of scalar multiplication

Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & -3 \\
10 & 7 & -3
\end{array}\right) \Longrightarrow 11 A=\left(\begin{array}{ccc}
11 & 11 & -33 \\
110 & 77 & -33
\end{array}\right)
$$

Also,

$$
(1-i) A=\left(\begin{array}{ccc}
1-i & 1-i & -3+3 i \\
10-10 i & 7-7 i & -3+3 i
\end{array}\right)
$$

§5.2 Algebra of Matrices

## Matrix Multiplication

Suppose $A=\left(a_{i j}\right)$ is a matrix of size $m \times n$ and $B=\left(b_{i j}\right)$ is a matrix of size $n \times p$. The the product $A B$ is an $m \times p$ matrix

$$
A B=\left(c_{i j}\right) \quad \text { where } c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} .
$$

§5.2 Algebra of Matrices

## Matrix Multiplication

$$
\begin{aligned}
& \left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{llll}
b_{11} & b_{12} & \cdots & b_{1 p} \\
b_{21} & b_{22} & \cdots & b_{2 p} \\
\cdots & \cdots & \cdots & \cdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n p}
\end{array}\right) \\
& =\left(\begin{array}{llll}
c_{11} & c_{12} & \cdots & c_{1 p} \\
c_{21} & c_{22} & \cdots & c_{2 p} \\
\cdots & \cdots & \cdots & \cdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m p}
\end{array}\right) c_{12}=a_{11} b_{12}+a_{12} b_{22}+\cdots+a_{1 n} b_{n 2}
\end{aligned}
$$

## Example of matrix multiplication

Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & -3 \\
10 & 7 & -3
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
2 & 1
\end{array}\right)
$$

Since number of columns of $A$ and number of rows of $B$ are same, the product $A B$ is defined.

We have

$$
\begin{gathered}
A B=\left(\begin{array}{cc}
1 * 1+1 * 1+(-3) * 2 & 1 * 1+1 * 0+(-3) * 1 \\
10 * 1+7 * 1+(-3) * 2 & 10 * 1+7 * 0+(-3) * 1
\end{array}\right) \\
=\left(\begin{array}{cc}
-4 & -2 \\
11 & 7
\end{array}\right)
\end{gathered}
$$

Remark. BA is ALSO defined, which will be a $3 \times 3$ matrix.
§5.2 Algebra of Matrices

## Algebra of Matrices

Let $A, B, C$ be $m \times n$ matrices and $c, d$ be scalars. Then,

$$
\begin{aligned}
& A+B=B+A \\
& A+(B+C)=(A+B)+C \\
& (c d) A=c(d A) \\
& c(A+B)=c A+c B \\
& (c+d) A=c A+d A
\end{aligned}
$$

Commutativity of addition Associativity of addition Associativity of scalar multiplicatio a Distributive property
a Distributive property

## Continued

Let $A, B, C$ be matrices and $c$ is a constant. Assume all the matrix products below are defined. Then

$$
\begin{array}{ll}
A(B C)=(A B) C & \text { Associativity Matrix Product } \\
A(B+C)=A B+A C & \text { A Distributive Property } \\
(A+B) C=A C+B C & \text { Distributive Property } \\
c(A B)=(c A) B=A(c B) &
\end{array}
$$

Proofs would be routine checking, which we would skip.

- Matrix multiplication is not necessarily commutative. That means, often $A B \neq B A$


## Vector Multiplication

- By a vector, we mean a column vector.
- Consider two vectors of (complex) numbers:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right)
$$

- Define a product $\mathrm{x}^{\top} \mathrm{y}:=\sum_{i=1}^{n} x_{i} y_{y^{\prime}}$. This is extension of dot product.


## Continued

- The inner product or scalar product between $\mathbf{x}, \mathbf{y}$ is defined as

$$
(\mathrm{x}, \mathrm{y}):=\sum_{i=1}^{n} x_{i} \overline{y_{i}}
$$

- If $\mathbf{x}, \mathbf{y}$ are vectors of real numbers, then $\mathbf{x}^{T} \mathbf{y}=(\mathbf{x}, \mathbf{y})$.
- For another vector $\mathbf{z}$ and $\alpha \in \mathbb{C}$ we have

$$
\begin{gathered}
(\mathbf{x}, \mathbf{y})=\overline{(\mathbf{y}, \mathbf{x})}, \quad(\mathbf{x}, \mathbf{y}+\mathbf{z})=(\mathbf{x}, \mathbf{y})+(\mathbf{x}, \mathbf{z}) \\
(\alpha \mathbf{x}, \mathbf{y})=\alpha(\mathbf{x}, \mathbf{y}), \quad(\mathbf{x}, \alpha \mathbf{y})=\bar{\alpha}(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

§5.2 Algebra of Matrices

## Continued

- Then, $(\mathbf{x}, \mathbf{x}):=\sum_{i=1}^{n} x_{i} \overline{x_{i}}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}$ is a nonnegative real number.
- The length or magnitude of x is defined as $\|\mathbf{x}\|:=\sqrt{(\mathbf{x}, \mathrm{x})}$.
- It follows $\|x\|=0 \Longleftrightarrow x=0$.
- We say $\mathbf{x}, \mathbf{y}$ are orthogonal, if $(\mathbf{x}, \mathbf{y})=0$.


## The Identity Matrix

- For a positive integer, $\mathbf{I}_{\mathbf{n}}$ would denote the square matrix of order $n$ whose main diagonal (left to right) entries are 1 and rest of the entries are zero.
- So,

$$
\mathbf{I}_{1}=(1), \quad \mathbf{I}_{\mathbf{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{I}_{\mathbf{3}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- $I_{n}$ is called the identity matrix of order $n$. Often, we write $I=I_{n}$.
§5.2 Algebra of Matrices


## Continued

- For matrices $A, B$, we have $A I=A$ and $I B=B$.


## Inverse of a Matrix

- A squate matrix $\mathbf{A}$ is said to invertible, if there is a matrix $B$ such that $A B=B A=l$.
- Such a matrix $B$ is unique, when there is one. In that case, denote $A^{-1}:=B$. So,

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=I
$$

- An invertible matrix $\mathbf{A}$ is also called nonsingular. If a matrix is not invertible, it is said to be a singular matrix.
§5.2 Algebra of Matrices
Analytic method of computing Inverses Matrix of Functions


## Good News

- Both TI-84 and Matlab can compute inverses of matrices.


## Analytic method

- The linear algebra course is not a prerequisite for this course.
- However, to give an analytic method to compute inverses of a matrix, we need to define detertminat of a square matrix. This will be done in a separate note.


## Minors, Cofactors and Inverses

- Let $A=\left(a_{i j}\right)$ be an $n \times n$-matrix.
- Let $C_{i j}$ denote the cofactor of the the $(i, j)^{i j}$-entry of $A$.
- Let $C=\left(C_{i j}\right)$ be the cofactor matrix of $A$.
- Let $\operatorname{Adj}(A)=C^{t}$ denote the transpose of $C$.
- If $\operatorname{det}(A) \neq 0$ then $A^{-1}=\frac{\operatorname{Adj}(A)}{\operatorname{det}(A)}$


## Matrix of Functions

We also consider matrices whose entries are functions of $t$ and perform usual operation on them.

- We write

$$
\mathbf{A}(t)=\left(\begin{array}{llll}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1}(t) & a_{m 2}(t) & \cdots & a_{m n}(t)
\end{array}\right)
$$

- Similiary, we write column/row matrices $\mathbf{X}(t)$.


## Operations on matrices of functions

- Given a matrix of functions $\mathbf{A}(t)=\left(a_{i j}(t)\right)$, define

$$
\frac{d \mathbf{A}(t)}{d t}=\mathbf{A}^{\prime}(t)=\left(\frac{d a_{i j}(t)}{d t}\right)
$$

- Similarly, define

$$
\int \mathbf{A}(t) d t=\left(\int a_{i j}(t) d t\right), \quad \int_{a}^{b} \mathbf{A}(t) d t=\left(\int_{a}^{b} a_{i j}(t) d t\right)
$$

## Continued

By routine checking:

- $\frac{d(c \mathbf{A})}{d t}=\frac{c d(\mathbf{A})}{d t}$ for any matrix $c$ of constants.
- $\frac{d(\mathbf{A}+\mathbf{B})}{d t}=\frac{d \mathbf{A}}{d t}+\frac{d \mathbf{B}}{d t}$
- $\frac{d(\mathbf{A B})}{d t}=\frac{d \mathbf{A}}{d t} \mathbf{B}+\mathbf{A} \frac{d \mathbf{B}}{d t}$

