§5.2 Algebra of Matrices

Satya Mandal, KU

13 March 2018

Satya Mandal, KU §5.2 Algebra of Matrices

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Why Matrices?

Algebra of Matrices would be the main tool to study and solve System of 1^{st} -order Linear ODE. So, we provide a background of the Algebra of Matrices.

イロト イポト イヨト イヨト

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Definition

A matrix **A** of size $m \times n$ is defined as an array, with *m* rows and *n* columns:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{13} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}$$
 Also written as $\mathbf{A} = (a_{ij})$.

 a_{ij} s are called entries of **A**.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Continued

- ► A matrix of size m × 1 is called column vector. A matrix of size 1 × n is called row vector.
- Often, in lower level courses only matrices of real numbers are considered. But most of it works in a more generality.
- In this course, we will also consider matrices A = (a_{ij}) where the entries a_{ij} are complex numbers.
- ► Further, we will consider matrices A = (a_{ij}) where the entries a_{ij} = a_{ij}(t) are functions of t.

イロン イヨン イヨン イヨン

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Transpose and conjugate

- ► Given a matrix A = (a_{ij}) the transpose matrix A^T = (a_{ji}) is obtained by writing the columns of A and rows as columns.
- The transpose conjugate matrix A* = A^T is obtained by taking conjugate and then transpose.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Equality and Zero

► Two matrices A = (a_{ij}), B = (b_{ij}) are equal, if they have same size (m × n) and

$$a_{ij} = b_{ij}$$
 for $1 \le i \le m, 1 \le j \le n$.

► The symbol **0** denotes the matrix whose entries are 0.

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Addition

If $A = (a_{ij}), B = (b_{ij})$ are two matrices of equal size $(m \times n)$, then their **sum** is defined to be the $m \times n$ matrix given by

$$A+B=(a_{ij}+b_{ij}).$$

So, the sum is obtained by adding the respective entries. If the sizes of two matrices are different, then the sum is NOT defined.

• • • • • • • • • • • •

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Scalar Multiplication

If $A = (a_{ij})$ is a $m \times n$ matrix and c is a complex number, then the scalar multiplication of A by c is the $m \times n$ matrix given by

$$cA = (ca_{ij}).$$

イロト イポト イヨト イヨト

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Example of scalar multiplication

Let

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 10 & 7 & -3 \end{pmatrix} \Longrightarrow 11A = \begin{pmatrix} 11 & 11 & -33 \\ 110 & 77 & -33 \end{pmatrix}$$

Also,

$$(1-i)A = \left(\begin{array}{ccc} 1-i & 1-i & -3+3i\\ 10-10i & 7-7i & -3+3i \end{array}\right)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Matrix Multiplication

Suppose $A = (a_{ij})$ is a matrix of size $m \times n$ and $B = (b_{ij})$ is a matrix of size $n \times p$. The the **product** AB is an $m \times p$ matrix

$$AB = (c_{ij})$$
 where $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

イロト イポト イヨト イヨト

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Matrix Multiplication

 $\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \cdots & \cdots & \cdots & \cdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix}$ $= \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \cdots & \cdots & \cdots & \cdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{pmatrix} c_{12} = a_{11}b_{12} + a_{12}b_{22} + \cdots + a_{1n}b_{n2}$

・ロト ・部ト ・ヨト ・ヨト … ヨ

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Example of matrix multiplication

Let

$$A = \begin{pmatrix} 1 & 1 & -3 \\ 10 & 7 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 2 & 1 \end{pmatrix},$$

Since number of columns of A and number of rows of B are same, the product AB is defined.

• • • • • • • • • • • •

Matrix of Functions Matrix Multiplication Example	§5.2 Algebra of Matrices Analytic method of computing Inverses Matrix of Functions	
--	--	--

We have

$$AB = \begin{pmatrix} 1*1+1*1+(-3)*2 & 1*1+1*0+(-3)*1\\ 10*1+7*1+(-3)*2 & 10*1+7*0+(-3)*1 \end{pmatrix}$$
$$= \begin{pmatrix} -4 & -2\\ 11 & 7 \end{pmatrix}$$

Remark. *BA* is ALSO defined, which will be a 3×3 matrix.

< □ > < □ > < □ >

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Algebra of Matrices

Let A, B, C be $m \times n$ matrices and c, d be scalars. Then,

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$(cd)A = c(dA)$$

$$c(A + B) = cA + cB$$

$$(c + d)A = cA + dA$$

Commutativity of addition Associativity of addition Associativity of scalar multiplication a Distributive property a Distributive property

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Continued

Let A, B, C be matrices and c is a constant. Assume all the matrix products below are defined. Then

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$(A+B)C = AC + BC$$

$$c(AB) = (cA)B = A(cB)$$

Associativity Matrix Product A Distributive Property Distributive Property

Proofs would be routine checking, which we would skip.

► Matrix multiplication is not necessarily commutative. That means, often AB ≠ BA

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Vector Multiplication

- By a vector, we mean a column vector.
- Consider two vectors of (complex) numbers:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

▶ Define a product x^Ty := ∑_{i=1}ⁿ x_iy_i. This is extension of dot product.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Continued

The inner product or scalar product between x, y is defined as

$$(\mathbf{x},\mathbf{y}) := \sum_{i=1}^n x_i \overline{y_i}$$

- If \mathbf{x}, \mathbf{y} are vectors of real numbers, then $\mathbf{x}^T \mathbf{y} = (\mathbf{x}, \mathbf{y})$.
- For another vector \mathbf{z} and $\alpha \in \mathbb{C}$ we have

$$egin{aligned} & (\mathbf{x},\mathbf{y}) = \overline{(\mathbf{y},\mathbf{x})}, \ & (\mathbf{x},\mathbf{y}+\mathbf{z}) = (\mathbf{x},\mathbf{y}) + (\mathbf{x},\mathbf{z}) \ & (lpha\mathbf{x},\mathbf{y}) = lpha(\mathbf{x},\mathbf{y}), \ & (\mathbf{x},lpha\mathbf{y}) = \overline{lpha}(\mathbf{x},\mathbf{y}) \end{aligned}$$

イロト イヨト イヨト イヨト

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Continued

- ▶ Then, $(\mathbf{x}, \mathbf{x}) := \sum_{i=1}^{n} x_i \overline{x_i} = \sum_{i=1}^{n} |x_i|^2$ is a nonnegative real number.
- ► The length or magnitude of x is defined as || x ||:= √(x, x).
- It follows $\| \mathbf{x} \| = 0 \iff \mathbf{x} = \mathbf{0}$.
- We say \mathbf{x}, \mathbf{y} are orthogonal, if $(\mathbf{x}, \mathbf{y}) = 0$.

イロト イヨト イヨト イヨト

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

The Identity Matrix

- For a positive integer, In would denote the square matrix of order n whose main diagonal (left to right) entries are 1 and rest of the entries are zero.
- ► So,

$$\mathbf{I_1} = (1), \quad \mathbf{I_2} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad \mathbf{I_3} = \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

▶ I_n is called the identity matrix of order *n*. Often, we write $I = I_n$.

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Continued

For matrices A, B, we have AI = A and IB = B.

Satya Mandal, KU §5.2 Algebra of Matrices

イロト イヨト イヨト イヨト

æ

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Inverse of a Matrix

- A squate matrix A is said to invertible, if there is a matrix B such that AB = BA = I.
- Such a matrix B is unique, when there is one. In that case, denote A⁻¹ := B. So,

 $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = I.$

An invertible matrix A is also called nonsingular. If a matrix is not invertible, it is said to be a singular matrix.

Definition and Notations Matrix Addition Scalar Multiplication Example Matrix Multiplication Example

Good News

Both TI-84 and Matlab can compute inverses of matrices.

Satya Mandal, KU §5.2 Algebra of Matrices

イロト イヨト イヨト イヨト

臣

Analytic method

- The linear algebra course is not a prerequisite for this course.
- However, to give an analytic method to compute inverses of a matrix, we need to define detertminat of a square matrix. This will be done in a separate note.

Minors, Cofactors and Inverses

- Let $A = (a_{ij})$ be an $n \times n$ -matrix.
- Let C_{ij} denote the cofactor of the the $(i, j)^{ij}$ -entry of A.
- Let $C = (C_{ij})$ be the cofactor matrix of A.
- Let $Adj(A) = C^t$ denote the transpose of C.
- If det(A) \neq 0 then $A^{-1} = \frac{Adj(A)}{det(A)}$

(D) (A) (A) (A)

Matrix of Functions

We also consider matrices whose entries are functions of t and perform usual operation on them.

We write

$${f A}(t)=\left(egin{array}{cccc} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \ \cdots & \cdots & \cdots & \cdots \ a_{m1}(t) & a_{m2}(t) & \cdots & a_{mn}(t) \end{array}
ight)$$

Similary, we write column/row matrices X(t).

Operations on matrices of functions

• Given a matrix of functions $A(t) = (a_{ij}(t))$, define

$$rac{d {f A}(t)}{dt} = {f A}'(t) = \left(rac{d a_{ij}(t)}{dt}
ight)$$

Similarly, define

$$\int \mathbf{A}(t)dt = \left(\int a_{ij}(t)dt\right), \quad \int_a^b \mathbf{A}(t)dt = \left(\int_a^b a_{ij}(t)dt\right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Continued

By routine checking: • $\frac{d(c\mathbf{A})}{dt} = \frac{cd(\mathbf{A})}{dt}$ for any matrix c of constants. • $\frac{d(\mathbf{A}+\mathbf{B})}{dt} = \frac{d\mathbf{A}}{dt} + \frac{d\mathbf{B}}{dt}$ • $\frac{d(\mathbf{AB})}{dt} = \frac{d\mathbf{A}}{dt}\mathbf{B} + \mathbf{A}\frac{d\mathbf{B}}{dt}$

イロト イヨト イヨト イヨト

臣