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Why Matrices?

Algebra of Matrices would be the main tool to study and solve
System of 1st-order Linear ODE. So, we provide a background
of the Algebra of Matrices.
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Definition

A matrix A of size m × n is defined as an array, with m rows
and n columns:

A =


a11 a12 a13 · · · a1n

a21 a22 a13 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · · · · · · · · · ·
am1 am2 am3 · · · amn

 Also written as A = (aij).

aijs are called entries of A.
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Continued

I A matrix of size m × 1 is called column vector. A matrix
of size 1× n is called row vector.

I Often, in lower level courses only matrices of real numbers
are considered. But most of it works in a more generality.

I In this course, we will also consider matrices A = (aij)
where the entries aij are complex numbers.

I Further, we will consider matrices A = (aij) where the
entries aij = aij(t) are functions of t.
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Transpose and conjugate

I Given a matrix A = (aij) the transpose matrix AT = (aji)
is obtained by writing the columns of A and rows as
columns.

I If A = (aij) is a matrix of complex numbers, then the
conjugate matrix A = (aij) is obtained by replacing each
entry aij by its conjugate aij .

I The transpose conjugate matrix A∗ = A
T
is obtained by

taking conjugate and then transpose.
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Equality and Zero

I Two matrices A = (aij),B = (bij) are equal, if they have
same size (m × n) and

aij = bij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

I The symbol 0 denotes the matrix whose entries are 0.
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Addition

If A = (aij),B = (bij) are two matrices of equal size (m × n),
then their sum is defined to be the m × n matrix given by

A+ B = (aij + bij).

So, the sum is obtained by adding the respective entries.
If the sizes of two matrices are different, then the sum is NOT
defined.
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Scalar Multiplication

If A = (aij) is a m× n matrix and c is a complex number, then
the scalar multiplication of A by c is the m × n matrix
given by

cA = (caij).
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Example of scalar multiplication

Let

A =

(
1 1 −3
10 7 −3

)
=⇒ 11A =

(
11 11 −33
110 77 −33

)
Also,

(1− i)A =

(
1− i 1− i −3+ 3i

10− 10i 7− 7i −3+ 3i

)
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Matrix Multiplication

Suppose A = (aij) is a matrix of size m × n and B = (bij) is a
matrix of size n × p. The the product AB is an m × p matrix

AB = (cij) where cij =
n∑

k=1

aikbkj = ai1b1j+ai2b2j+· · ·+ainbnj .
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Matrix Multiplication


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




b11 b12 · · · b1p

b21 b22 · · · b2p

· · · · · · · · · · · ·
bn1 bn2 · · · bnp



=


c11 c12 · · · c1p

c21 c22 · · · c2p

· · · · · · · · · · · ·
cm1 cm2 · · · cmp

 c12 = a11b12+a12b22+· · ·+a1nbn2
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Example of matrix multiplication

Let

A =

(
1 1 −3
10 7 −3

)
, B =

 1 1
1 0
2 1

 ,

Since number of columns of A and number of rows of B are
same, the product AB is defined.
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We have

AB =

(
1 ∗ 1+ 1 ∗ 1+ (−3) ∗ 2 1 ∗ 1+ 1 ∗ 0+ (−3) ∗ 1
10 ∗ 1+ 7 ∗ 1+ (−3) ∗ 2 10 ∗ 1+ 7 ∗ 0+ (−3) ∗ 1

)

=

(
−4 −2
11 7

)
Remark. BA is ALSO defined, which will be a 3× 3 matrix.
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Algebra of Matrices

Let A,B ,C be m × n matrices and c , d be scalars. Then,

A+ B = B + A Commutativity of addition
A+ (B + C ) = (A+ B) + C Associativity of addition
(cd)A = c(dA) Associativity of scalar multiplication
c(A+ B) = cA+ cB a Distributive property
(c + d)A = cA+ dA a Distributive property
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Continued

Let A,B ,C be matrices and c is a constant. Assume all the
matrix products below are defined. Then

A(BC ) = (AB)C Associativity Matrix Product
A(B + C ) = AB + AC A Distributive Property
(A+ B)C = AC + BC Distributive Property
c(AB) = (cA)B = A(cB)

Proofs would be routine checking, which we would skip.
I Matrix multiplication is not necessarily commutative.

That means, often AB 6= BA
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Vector Multiplication

I By a vector, we mean a column vector.
I Consider two vectors of (complex) numbers:

x =


x1

x2

· · ·
xn

 and y =


y1

y2

· · ·
yn


I Define a product xTy :=

∑n
i=1 xiyi . This is extension of

dot product.
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Continued

I The inner product or scalar product between x, y is
defined as

(x, y) :=
n∑

i=1

xiyi

I If x, y are vectors of real numbers, then xTy = (x, y).
I For another vector z and α ∈ C we have

(x, y) = (y, x), (x, y + z) = (x, y) + (x, z)

(αx, y) = α(x, y), (x, αy) = α(x, y)
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Continued

I Then, (x, x) :=
∑n

i=1 xixi =
∑n

i=1 |xi |2 is a nonnegative
real number.

I The length or magnitude of x is defined as
‖ x ‖:=

√
(x, x).

I It follows ‖ x ‖= 0⇐⇒ x = 0.
I We say x, y are orthogonal, if (x, y) = 0.
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The Identity Matrix

I For a positive integer, In would denote the square matrix
of order n whose main diagonal (left to right) entries are
1 and rest of the entries are zero.

I So,

I1 = (1), I2 =

(
1 0
0 1

)
, I3 =

 1 0 0
0 1 0
0 0 1


I In is called the identity matrix of order n. Often, we write

I = In.
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Continued

I For matrices A,B, we have AI = A and IB = B.
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Inverse of a Matrix

I A squate matrix A is said to invertible, if there is a matrix
B such that AB = BA = I .

I Such a matrix B is unique, when there is one. In that
case, denote A−1 := B. So,

A−1A = AA−1 = I .

I An invertible matrix A is also called nonsingular. If a
matrix is not invertible, it is said to be a singular matrix.
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Good News

I Both TI-84 and Matlab can compute inverses of matrices.
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I The linear algebra course is not a prerequisite for this
course.

I However, to give an analytic method to compute inverses
of a matrix, we need to define detertminat of a square
matrix. This will be done in a separate note.
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Minors, Cofactors and Inverses

I Let A = (aij) be an n × n-matrix.
I Let Cij denote the cofactor of the the (i , j)ij -entry of A.
I Let C = (Cij) be the cofactor matrix of A.
I Let Adj(A) = C t denote the transpose of C .
I If det(A) 6= 0 then A−1 = Adj(A)

det(A)
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We also consider matrices whose entries are functions of t and
perform usual operation on them.

I We write

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
· · · · · · · · · · · ·
am1(t) am2(t) · · · amn(t)


I Similiary, we write column/row matrices X(t).
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I Given a matrix of functions A(t) = (aij(t)), define

dA(t)

dt
= A′(t) =

(
daij(t)

dt

)
I Similarly, define∫

A(t)dt =

(∫
aij(t)dt

)
,

∫ b

a

A(t)dt =

(∫ b

a

aij(t)dt

)
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By routine checking:
I

d(cA)
dt

= cd(A)
dt

for any matrix c of constants.

I
d(A+B)

dt
= dA

dt
+ dB

dt

I
d(AB)
dt

= dA
dt

B + AdB
dt
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