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Chapter 1

System of Linear Equations

1.1 §1.2 Introduction

No Homework

1.2 Gauss Elimination

1. Consider the system of linear equations:
x1 +3x3 = −2
2x1 +x2 +x3 = 7
−x1 +x2 +3x3 = −1

(a) Write down the augmented matrix.
(b) Reduce the augmented matrix to a row echelon form.
(c) Use Gauss Elimination method or Gauss Jordan elimination to

solve the this system. If the system is inconsistent, say so.

2. Consider the system of linear equations:
2x1 −3x2 +4x3 = 10

2x2 −x3 = 14
7x1 −3x2 −x3 = 20
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6 CHAPTER 1. SYSTEM OF LINEAR EQUATIONS

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.

3. Consider the system of linear equations:
2x1 −3x2 +4x3 = 2
12x1 −12x2 +22x3 = 15
10x1 −9x2 +18x3 = 13

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.

4. Consider the system of linear equations:
x2 −3x3 = 2

x1 −2x3 = 1
3x1 −x2 −3x3 = 1

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.

5. Consider the system of linear equations:{
x1 −x2 −3x3 = 2
−3x1 +3x2 +9x3 = 2

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.
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6. Consider the system of linear equations:{
x1 −x2 −3x3 = 2
−3x1 +3x2 +9x3 = −6

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.

7. Consider the system of linear equations:
x1 +x2 −4x3 = 2
2x1 +2x2 −8x3 = 4
x1 +4x2 −16x3 = 8

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.

8. Consider the system of linear equations:
−x1 −3x2 −x3 +x4 = −7
x1 −4x2 −3x3 −4x4 = −3
x1 +5x2 +2x3 +6x4 = −3

10x1 +4x2 −2x3 −2x4 = 6

(a) Write down the augmented matrix.

(b) Reduce the augmented matrix to a row echelon form.

(c) Use Gauss Elimination method or Gauss Jordan elimination to
solve the this system. If the system is inconsistent, say so.
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Chapter 2

Matrices

2.1 Operations on Matrices

Homework Problems:

1. On Addition and Scalar Multiplication

(a) Consider the matrices:

A =

(
7 1
.5 2

)
, B =

(
1 3
0 1

)
Compute the following. If not defined, say so:
(1) 2A+B, (2) 2A− 2B, (3) πA+B.

(b) Consider the matrices:

A =

 7 1 0
−3 2 1
0 1 1

 , B =

 1 0 −1
−1 0 1
1 7 π


Compute the following. If not defined, say so
(1) 2A+B, (2) 2A− 2B, (3) πA+B.
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10 CHAPTER 2. MATRICES

(c) Consider the matrices:

A =

 7
−3
1

 , B =

 −1
0
π


Compute the following. If not defined, say so
(1) 2A+B, (2) 2A− 2B, (3) πA+B.

(d) Consider the matrices:

A =
(

7 1 −1
)
, B =

(
1 7 π

)
Compute the following. If not defined, say so
(1) 2A+B, (2) 2A− 2B, (3) πA+B.

(e) Consider the matrices:

A =

(
7 1
.5 2

)
, B =

 1 0 −1
−1 0 1
1 7 π


Compute the following. If not defined, say so:
(1) 2A+B, (2) 2A− 2B, (3) πA+B.

(f) Consider the matrices:

A =

(
7 1
.5 2

)
, B =

(
1 0 −1
1 1 1

)
Compute the following. If not defined, say so:
(1) 2A+B, (2) 2A− 2B, (3) πA+B.

2. On Matrix Multiplication

(a) Consider the matrices:

A =

(
7 1
3 2

)
, B =

(
1 0 −1
1 1 1

)
If defined, compute AB, BA. If not defined, say so.
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(b) Consider the matrices:

A =

 7 1 3
0 1 2
0 2 2

 , B =

 1 0 −1
1 1 1
1 0 0


If defined, compute AB, BA. If not defined, say so.

(c) Consider the matrices:

A =

 1 1 1
−1 −1 −1
1 2 3

 , B =

 a b c
u v w
x y z


If defined, compute AB, BA. If not defined, say so.

(d) Consider the matrices:

A =

 −1 −1 −1
0 0 0
1 1 1

 , B =

 a b c
u v w
x y z


If defined, compute AB, BA. If not defined, say so.

(e) Consider the matrices:

A =

 1 1 1
0 1 1
0 0 1

 , B =

 a b c
u v w
x y z


If defined, compute AB, BA. If not defined, say so.

(f) Consider the matrices:

A =

 1 1 1
0 1 1
0 0 1

 , B =

 a b c
0 v w
0 0 z


If defined, compute AB, BA. If not defined, say so.

(g) Consider the matrices:

A =
(

1 1 1
)
, B =

 a
b
c


If defined, compute AB, BA. If not defined, say so.
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(h) Consider the matrix:

A =

 7 1 3
0 1 2
0 2 2


If defined, compute A2, A3.

(i) Consider the matrices:

A =

 1 0 0
0 1 0
0 0 1

 , B =

 a b c
u v w
x y z


If defined, compute AB, BA.

(j) Consider the matrices:

A =

 3 0 0
0 3 0
0 0 3

 , B =

 a b c
u v w
x y z


If not defined, say so.

3. Matrix Equations

(a) Solve the following matrix equation:(
1 1
1 2

)(
x y
z w

)
=

(
0 0
0 0

)
Hint: Multiply out the lefthand side, and equate two sided, entry
wise. You will get four equations, in x, y, z, w. Solve these four
equations.

(b) Solve the following matrix equation:(
1 1
1 2

)(
x y
z w

)
=

(
1 0
0 1

)
Hint: Same as the above.
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2.2 Properties of Matrix Operations

Homework Problems:

1. Soving Equations in Matrix

(a) Suppose A,B are two known matrices, and X is an unknown
matrix. Solve the following equations (in each case, assume the
respective matrix operations are defined):

i. 2X = 3A+B

ii. 3X + A = −B
iii. 3X + 4A = −B
iv. Assume AB is defined, and 3X + AB = −B. Further, if

A =

(
1 1
1 2

)
, B =

(
1 1 −1
1 2 1

)
Then, compute X.

(b) On Algebra of Matrix Multiplication
Let A,B,C be matrices. (In each case, assume the respective
matrix operations are defined.)

i. Simplify: (A+ 2B)C

ii. Simplify: (A+ 2In)C
(here A,C are square marines of order n and In is the identity
matrix).

iii. Simplify: (A+ 2O)C
(here A,C have size m× n and O is the zero matrix).

(c) Let

A =

(
1 1
1 2

)
, B =

(
1 1 −1
1 2 1

)
, C =

 1 1
0 1
0 1


i. Compute the transpose AT , BT , CT .
ii. Compute A(BC)

iii. Compute C(AB)
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iv. Compute CTBTAT . (Hint: Use (1(c)ii).
v. Compute BTATCT . (Hint: Use (1(c)iii).

2. Polynomial Evaluation

(a) Let f(x) = x2 − 2x+ 1. Let

A =

(
1 1
1 2

)
. Compute f(A).

(b) Let f(x) = x3 − 3x2 + 3x+ 1. Let

A =

(
1 1
1 2

)
. Compute f(A).

(c) Let f(x) = x3 − 3x2 + 3x+ 1. Let

A =

 1 1 1
0 1 2
0 0 1

 . Compute f(A).

(d) Let f(x) = x2 − x+ 1. Let

A =

(
1 1
1 2

)
. Compute f(A).

(e) Let f(x) = x2 − x+ 1. Let

A =

 1 1 1
0 1 2
0 0 1

 . Compute f(A).

2.3 Inverse of Matrices

1. On Inverting Matrices, using Gauss-Jordan

(a) Consider the following matrix A. If the inverse of A exists, com-
pute A−1, else say so.

A =

(
1 2
1 3

)
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(b) Consider the following matrix A. If the inverse of A exists, com-
pute A−1, else say so.

A =

(
1 2
0 1

)
(c) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.

A =

(
0 2
0 0

)
(d) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.

A =

 1 2 −2
0 1 1
0 0 1


(e) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.

A =

 1 2 −2
0 0 1
1 2 −1


(f) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.

A =

 1 2 −2
2 4 −3
0 1 1


(g) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.  1 1 1
1 2 2
1 1 2


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(h) Consider the following matrix A. If the inverse of A exists, com-
pute A−1, else say so.

A =

 1 a b
0 1 c
0 0 1


(i) Consider the following matrix A. If the inverse of A exists, com-

pute A−1, else say so.

A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


2. Algebra of Inverting Matrices

(a) Suppose A,B are two matrices, with

A−1 =

(
1 3
1 4

)
, B−1 =

(
1 1
1 2

)
Compute (AB)−1, (AT )−1 and ((AB)T )−1.

(b) Suppose A,B are two matrices, with

A−1 =

 1 2 3
0 1 4
1 1 1

 , B−1 =

 1 0 1
2 1 1
3 4 1


Compute (AB)−1, (AT )−1 and ((AB)T )−1.

(c) Suppose A,B are two matrices, with

A−1 =

 1 0 a
0 1 0
1 0 1

 , B−1 =

 1 0 0
0 1 b
0 0 1


Compute (AB)−1, (AT )−1 and ((AB)T )−1.



2.3. INVERSE OF MATRICES 17

(d) Suppose A,B are two matrices, with

A−1 =

 1 0 0
a 1 0
b c 1

 , B−1 =

 1 0 0
1 1 0
1 1 1


Compute (AB)−1, (AT )−1 and ((AB)T )−1.

A−1 =

 1 0 0
a 1 0
b c 1

 , B−1 =

 1 1 1
0 1 1
0 0 1


Compute (AB)−1, (AT )−1 and ((AB)T )−1.

3. On Solving (nonsingular) systems Definition. A linear system
Ax = b is said to be a nonsingular system, if the coefficients matrix is
invertible.

(a) Solve the following nonsingular system of equations{
x +2y = 1
x +3y = −1

Hint: Use (1a).

(b) Solve the following nonsingular system of equations
x1 +2x2 −2x3 = 1
2x1 +4x2 −3x3 = −1

x2 +x3 = 2

Hint: Use (1f).

(c) Solve the following nonsingular system of equations
x1 +x2 +x3 = 1
x1 +2x2 +2x3 = −1
x1 +x2 +2x3 = 2

Hint: Use (1g).
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(d) Let A be the matrix such that

A−1 =

 1 0 1
2 1 1
3 4 1


Solve the system

Ax =

 1
−2
1

 where x =

 x1
x2
x3



2.4 Elementary Matrices

1. On Elementary Operations-to- Matrices

(a) Let

A =

(
1 1 1 1
1 −1 1 −1

)
, B =

(
1 1 1 1
2 0 2 0

)
Write down the elementary matrix E such that EA = B.

(b) Let

A =

(
1 1 1 1
1 −1 1 −1

)
, B =

(
1 −1 1 −1
1 1 1 1

)
Write down the elementary matrix E such that EA = B.

A =

(
1 1 1 1
1 −1 1 −1

)
, B =

(
1 1 1 1
π −π π −π

)
Write down the elementary matrix E such that EA = B.

(c) Let

A =

(
1 1 1 1
1 −1 1 −1

)
, B =

(
3 −1 3 −1
1 −1 1 −1

)
Write down the elementary matrix E such that EA = B.
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(d) Let

A =

 1 1 1 1
1 2 −2 1
1 −1 1 −1

 , B =

 1 −1 1 −1
1 2 −2 1
1 1 1 1


Write down the elementary matrix E such that EA = B.

(e) Let

A =

 1 1 1 1
1 2 −2 1
1 −1 1 −1

 , B =

 1 1 1 1
π 2π −2π π
1 −1 1 −1


Write down the elementary matrix E such that EA = B.

(f) Let

A =

 π π π π
1 2 −2 1

1− π 1− π 1− π 1− π

 , B =

 1 1 1 1
1 2 −2 1

1− π 1− π 1− π 1− π


Write down the elementary matrix E such that EA = B.

(g) Let

A =

 1 1 1 1
1 2 −2 1
1 −1 1 −1

 , B =

 √2
√

2
√

2
√

2
1 2 −2 1
1 −1 1 −1


Write down the elementary matrix E such that EA = B.

(h) Let

A =

 1 1 1 1
1 2 −2 1
1 −1 1 −1

 , B =

 1 1 1 1√
2 2
√

2 −2
√

2
√

2
1 −1 1 −1


Write down the elementary matrix E such that EA = B.

2. On Inverses of Elementary Matrices

(a) Compute the inverse of the elementary matrix

A =

(
1 0
a 1

)
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(b) Compute the inverse of the elementary matrix

A =

(
0 1
1 0

)
(c) Compute the inverse of the elementary matrix

A =

(
1 0
0 c

)
where c 6= 0.

(d) Compute the inverse of the elementary matrix

A =

 1 0 a
0 1 0
0 0 1


(e) Compute the inverse of the elementary matrix

A =

 0 0 1
0 1 0
1 0 0


(f) Compute the inverse of the elementary matrix

A =

 1 0 0
0 0 1
0 1 0


(g) Compute the inverse of the elementary matrix

A =


1 0 0 0
0 1 0 0
0 0 c 0
0 0 0 1

 where c 6= 0.

3. Nonsingular Matrices as product of elementary Matrices

(a) Consider the matrix

A =

 1 a b
0 1 c
0 0 1


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i. Find a sequence of elementary matrices E1, E2, . . . such that
· · ·E2E1A = I3.

ii. Compute A−1, from above.
(b) Consider the matrix

A =

 a 0 0
0 b 0
0 0 c

 where abc 6= 0.

i. Find a sequence of elementary matrices E1, E2, . . . such that
· · ·E2E1A = I3.

ii. Compute A−1, from above.
(c) Consider the matrix

A =

 1 2 3
0 1 4
1 3 4


i. Find a sequence of elementary matrices E1, E2, . . . such that
· · ·E2E1A = I3.

ii. Compute A−1, from above.
(d) Consider the matrix

A =

 1 2 3
0 1 4
−1 −3 −2


i. Find a sequence of elementary matrices E1, E2, . . . such that
· · ·E2E1A = I3.

ii. Compute A−1, from above.
(e) Consider the matrix

A =

 1 2 3
0 1 4
2 4 7


i. Find a sequence of elementary matrices E1, E2, . . . such that
· · ·E2E1A = I3.

ii. Compute A−1, from above.
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Chapter 3

Determinant

3.1 Definitions of Determinant

1. Determinant of 2× 2 matrices

(a) Compute the determinant (by any method) of the matrix

A =

(
1 2
3 4

)
(b) Compute the determinant (by any method) of the matrix

A =

(
π

√
2

−
√

2 2

)
(c) Compute the determinant (by any method) of the matrix

A =

(
x
√

3
1√
3

y

)
(d) Compute the determinant (by any method) of the matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
23
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(e) Compute the determinant (by any method) of the matrix

A =

(
1 tan θ

− tan θ 1

)
2. Determinant of 3× 3 matrices

(a) Use the cofactor method to compute the determinant of the matrix

A =

 8 7 2
1 1 3
9 2 1


(b) Use the cofactor method to compute the determinant of the matrix

A =

 1 π 1
1 1 + π 4
1 π 2


(c) Use the cofactor method to compute the determinant of the matrix

A =

 1 x 1
1 1 + x 4
1 x 2


(d) Use the cofactor method to compute the determinant of the matrix

A =

 x y z
1 1 1
1 1 1


(e) Use the cofactor method to compute the determinant of the matrix

A =

 x y z
1 1 1
1 −1 1


(f) Use the cofactor method to compute the determinant of the matrix

A =

 1 1 1
x y z
x2 y2 z2


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3. Determinant of 4× 4 matrices

(a) Use the cofactor method to compute the determinant of the matrix

A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


(b) Use the cofactor method to compute the determinant of the matrix

A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4



3.2 Computation by Elementary Operation

In this section, reduce the matrix to a triangular matrix, by elementary
operations, to compute the determinant.

1. Triangular Matrices

(a) Compute the determinant of the triangular matrix:

A =

(
2
√

3
0 3

)
(b) Compute the determinant of the triangular matrix:

A =

(
2 a
0 3

)
(c) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =

(
1 0
a 1

)
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(d) Use the theorem on triangular matrices, to determine the deter-
minant of the matrix (it is a one liner):

A =

(
x 0
a y

)
(e) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =

 2 3 4
0 3 1
0 0 1


(f) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =

 x 3 4
0 y 1
0 0 x


(g) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =

 x a b
0 y c
0 0 x


(h) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


(i) Use the theorem on triangular matrices, to determine the deter-

minant of the matrix (it is a one liner):

A =


a 0 0 0
x b 0 0
y u c 0
z v w d


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2. Use Elementary Operations

(a) Compute the determinant of the matrix A, reducing the matrix to
a simpler matrix (usually triangular), by elementary operations:

A =


1 1 1 1
−3 −2 −2 −2
2 2 4 5
2 2 2 3


(b) Compute the determinant of the matrix A, reducing the matrix to

a simpler matrix (usually triangular), by elementary operations:

A =


0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 1


(c) Compute the determinant of the matrix A, reducing the matrix to

a simpler matrix (usually triangular), by elementary operations:

A =


0 0 0 1
0 1 1 1
0 0 1 1√
2
√

2
√

2
√

2


(d) Compute the determinant of the matrix A, reducing the matrix to

a simpler matrix (usually triangular), by elementary operations:

A =


√

2
√

2
√

2 1 +
√

2
0 1 1 1
0 0 1 1√
2
√

2
√

2
√

2


(e) Compute the determinant of the matrix A, reducing the matrix to

a simpler matrix (usually triangular), by elementary operations:

A =


0 0 0 1
0 π π π
0 0 1 1√
2
√

2
√

2
√

2


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(f) Compute the determinant of the matrix A, reducing the matrix to
a simpler matrix (usually triangular), by elementary operations:

A =


0 0 0 x
0 y y y
0 0 z z
w w w w



3.3 Properties of Determinant

1. On the Product Formula

(a) Let A, B be two n× n matrix. It is given |A| = 12 and |B| = 1
12
.

i. Compute |BA|.
ii. Compute |B−1A|.
iii. Compute |BAT |

(b) Let A, be a 4× 4 matrix and given |A| = 24. Let

B =


1 a b c
0 2 x y
0 0 3 z
0 0 0 4


i. Compute |BA|.
ii. Compute |B−1A|.
iii. Compute |BTA|.

(c) Let A, be a 4× 4 matrix and given |A| = 2.

i. Suppose B is the matrix obtained by multiplying the second
row of A by π. Compute the determinant of B.

ii. Compute |πA|.

2. On Nonsigularity Recall, a square matrix is called nonsingular, if the
matrix is invertible.
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(a) Suppose

A =


1 3 −3 −4
0 2 2 4
1 1 3 4
2 6 2 4


Is A nonsingular?

(b) Suppose

A =


1 3 −3 −4
0 2 x y
0 0 3 z
1 3 −3 0


Is A nonsingular?

(c) Suppose

A =


1 a b c
0 2 x y
0 0 3 z
1 a b 4 + c


Is A nonsingular?

(d) Suppose

A =


0 3 −3 −4
0 2 x y
0 0 3 z
0 0 0 3


Is A nonsingular?

(e) Suppose

A =


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


For what values of a, b, c, d, the matrix A is nonsingular?

3. On nonsigularity and uniqueness of solutions You need not find
the explicit solutions of the following systems! Just answer, if the
system has unique solutions of not?
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4. Consider the linear system
x +3y −3z −4w = 0
x +5y −6z −6w = 0
2x +6y −3z −11w = 0
3x +11y −9z −14w = 0

Does this system have unique solution? (Remark. This system has
the trivial solution. Question is, if that is the only one.)

(a) Consider the linear system
x +3y −3z −4w = 0

2y +2z +4w = −1
x +y +3z +4w = a
2x +6y +2z +4w = −1

Does this system have unique solution? (Hint: Use( 2a))

(b) Consider the linear system
x +3y −3z −4w = 1

2y +λz +µw = 1
3z +νw = 1

x +3y −3z = 1

Does this system have unique solution? (Hint: Use (2b))

3.4 Applications of Determinant

1. On Inverses using cofactor method

(a) Compute the determinant, the cofactors matrix and the inverse
(when exists), of the matrix

A =

 1 −1 1
−1 1 1
1 1 −1


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(b) Compute the determinant, the cofactors matrix and the inverse
(when exists), of the matrix

A =

(
a 1
1 a

)
(c) Compute the determinant, the cofactors matrix and the inverse

(when exists), of the matrix

A =

(
a− 1 a
a a+ 1

)
(d) Compute the determinant, the cofactors matrix and the inverse

(when exists), of the matrix

A =

(
a b
c d

)
(e) Compute the determinant, the cofactors matrix and the inverse

(when exists), of the matrix

A =

 1 x x2

1 y y2

1 z z2


2. Use Cramer’s Rule

(a) Use Cramer’s Rule (when possible) to solve the equation
x −y +z = 8
−x +y +z = −8
2x +2y −2z = 8

(You can leave your answer in determinant form, without expand-
ing.)

(b) Use Cramer’s Rule (when possible) to solve the equation
x +3y −3z −4w = 0
x +5y −6z −6w = 0
2x +6y −3z −11w = 0
3x +11y −9z −14w = 0

If Cramer’s rule does not apply, say so. (You can leave your answer
in determinant form, without expanding.)
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(c) Use Cramer’s Rule (when possible) to solve the equation
x +3y −3z −4w = 0

2y +2z +4w = −1
x +y +3z +4w = a
2x +6y +2z +4w = −1

If Cramer’s rule does not apply, say so. (You can leave your answer
in determinant form, without expanding.)

(d) Use Cramer’s Rule (when possible) to solve the equation
x +3y −3z −4w = 1

2y +λz +µw = 1
3z +νw = 1

x +3y −3z −w = 1

If Cramer’s rule does not apply, say so. (You can leave your answer
in determinant form, without expanding.)

3. On area and volume

(a) Find the area of the triangle passing through the points (−1, 1), (1, 0), (0, 3).
Also determine, if the points are collinear.

(b) Find the area of the triangle passing through the points (−1,−1), (1, 3), (2, 5).
Also determine if the points are collinear.

(c) Find the area of the triangle passing through the points (1, 1), (2, 1), (π,−1).
Also determine if the points are collinear.

(d) Find the area of the triangle passing through the points (1, 1), (2, 4), (3, 9).
Also determine, if the points are collinear.

(e) Find the volume of the tetrahedron passing through the points(−1, 1, 0),
(1, 0, 0), (0, 3, 0), (1, 1, 1). Also determine if the points are copla-
nar.

(f) Find the volume of the tetrahedron passing through the points(−1, 1, 1),
(2, 4, 8), (−2, 4,−8), (3, 9, 27). Also determine if the points are
coplanar.



Chapter 4

Vector Spaces

4.1 Vectors in n Spaces Rn

No Homework

4.2 Vector Spaces

1. The zero and Additive Inverse

(a) In R3, what is the additive inverse of x = (π, π, π).

(b) Consider the vector space V = C(0, 1) of all the continuous func-
tions f : (0, 1) −→ R.
i. Describe the zero vector in V .
ii. Describe the additive inverse of the function f(x) = ex.
iii. Describe the additive inverse of the constant function f(x) =

1.

(c) Let

V =

{(
a b c a+ b+ c
x y z x+ 2y + 3z

)
: a, b, c, x, y, z ∈ R

}
33
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i. Convince yourself that V is a subspace of M2×4, under usual
addition and scalar multiplication.

ii. Describe the zero vector in V .

iii. Describe the additive inverse u =

(
1 −2 1 0
1 −2 1 0

)
.

2. Let

V =

{(
a b c a+ b+ c+ 1
x y z x+ 2y + 3z

)
: a, b, c, x, y, z ∈ R

}
Give a reason, why V is not a vector space?

3. Let L be the set of all solutions of the linear system:{
2x+ y − z = 1
x+ y − z = 0

Give a reason, why L is not a vector space?

4.3 Subspaces

The main clue to determine, if something is a subspace or not, is whether
expressions used are homogeneous linear or not.

1. On subspaces of Rn and Mm×n.

(a) Verify, if the set

W = {(x, y, x+ 2y) : x, y ∈ R} is a subspace of R3 or not?

Solution: , Here all three coordinates are homogeneous in x, y.
So, I expect W to be a subspace, which I prove, by checking three
conditions.

i. With x = y = 0, the zero vector 0 = (0, 0, 0) ∈ W .
So, W is nonempty.
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ii. Let u = (x1, y1, z1),v = (x2, y2, z2) ∈ W . So,{
z1 = x1 + 2y1,
z2 = x2 + 2y2

and u+v = (x1+x2, y1+y2, z1+z2).

Now,

z1 + z2 = (x1 + 2y1) + (x2 + 2y2) = (x1 + x2) + 2(y1 + y2)

So, u + v ∈ W . So, W is closed under addition.
iii. Now let u = (x1, y1, z1) ∈ W and c ∈ R. As above, z1 =

x1 + 2y1. Also,

cu = (cx1, cy1, cz1). We have cz1 = (cx1) + 2(cy1)

So, cu ∈ W . So, W is closed under scalar multiplication..

So, W is a subspace.

(b) Verify, if the set

W = {(x+ y, x− y, 0) : x, y ∈ R} is a subspace of R3 or not?

Solution: , Here all three coordinates are homogeneous in x, y.
So, I expect W to be a subspace, which I prove, by checking three
conditions.

i. With x = y = 0, the zero vector 0 = (0, 0, 0) ∈ W .
So, W is nonempty.

ii. Let u = (x1, y1, z1),v = (x2, y2, z2) ∈ W . So,

for some t1, s1 ∈ R


x1 = t1 + s1
y1 = t1 − s1
z1 = 0

and

for some t2, s2 ∈ R


x2 = t2 + s2
y2 = t2 − s2
z2 = 0

Also,
u + v = (x1 + x2, y1 + y2, z1 + z2).
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And, 
x1 + x2 = (t1 + t2) + (s1 + s2)
y1 + y2 = (t1 + t2)− (s1 + s2)
z1 + z2 = 0

So, u + v ∈ W . So, W is closed under addition.
iii. Let u = (x, y, z) ∈ W and c ∈ R. So,

for some t, s ∈ R


x = t+ s
y = t− s
z = 0

Now,

cu = (cx, cy, z) and


cx = ct+ cs
y = ct− cs
z = 0

So, cu ∈ W . So, W is closed under scalar multiplication.

So, W is a subspace.

(c) Verify, if the set

W = {(x, y, x+ πy) : x, y ∈ R} is a subspace of R3 or not?

Solution: Similar to (1a).

(d) Verify, if the set

W = {(x, y, x+ πy + 13) : x, y ∈ R} is a subspace of R3 or not?

Solution: Since the last coordinate is not homogeneous, I do not
expect it to be a subspace. To prove this, not

(x, y, x+ πy + 13) 6= (0, 0, 0) ∀x, y ∈ R

So, the zero vector 0 = (0, 0, 0) /∈ W . So, W is not a subspace.
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(e) Verify, if the set

W = {(y2 + z2, y, z) : y, z ∈ R} is a subspace of R3 or not?

Solution: Note first coordinate is not linear. So, I do not expect
it to be a subspace.
Actually, 0 = (0, 0, 0) ∈ W . So, we have to try something else.
Now, (1, 1, 0) ∈ W . 2(1, , 1, 0) = (2, 2, 0) /∈ W .
So, W is not closed under scalar multiplication. So, W is not a
subspace.

(f) Verify, if the set

W = {(0, y, z) : y, z ∈ R} is a subspace of R3 or not?

(g) Verify, if the set

W =

{(
x y
0 x+ πy

)
: x, y ∈ R

}
is a subspace of M2×2 or not?

Solution: Similar to (1a).

(h) Verify, if the set

W =

{(
x y
0 x+ πy + 13

)
: x, y ∈ R

}
is a subspace of M2×2 or not?

Solution: Similar to (1d).

(i) Verify, if the set

W = {(x, y, z) : x, y, z ∈ R, z is an integer} is a subspace of R3 or not?

Remark. Intuitively, for W to be a subspace, each coordinate should
be a homogenous linear polynomial, in some free variables, like x, y etc.

2. On subspaces of C(−1, 1)

Let V = C(−1, 1) be the vector space of all continuous real valued
functions on on the interval (−1, 1), with usual addition and scalar
multiplication..



38 CHAPTER 4. VECTOR SPACES

Clue: If believe, this is the only example we are doing that does not
have coordinates. For this problem main clue is whether it is defined
by vanishing of functions, on a point or subset. Also, note that the
constant zero function

c0 : (−1, 1)→ R defined by c0(x) = 0 ∀ x ∈ (−1, 1)

is the zero of the vector space V = C(−1, 1).

(a) Verify, if the set

W = {f ∈ V : f(0) = 0} is a subspace of V or not?

Solution: W is defined by vanishing at the point x = 0. So, I
expect that W is a subspace of V .
i. Note c0(0) = 0. So, c0 ∈ W . So, W is nonempty.
ii. Let f, g ∈ W . Then, f(0) = 0 and g(0) = 0.

So, (f + g)(0) = f(0) + g(0) = 0. So, f + g ∈ W .
So, W is closed under addition.

iii. Let f ∈ W and c ∈ R. Then, f(0) = 0.
So, (cf)(0) = cf(0) = 0. So, cf ∈ W .
So, W is closed under scalar multiplication.

So, W is a subspace.

(b) Verify, if the set

W = {f ∈ V : f(0) = 1} is a subspace of V or not?

Solution: W is not defines by vanishing. So, I do not expect it
to be a subspace.
To prove this, note that the zero of V , c0 /∈ W . So, W is not a
subspace.

(c) Verify, if the set

W =

{
f ∈ V : f(x) = 0 ∀ − 1

2
≤ x ≤ 1

2

}
is a subspace of V or not?

Solution: Here W is defined by vanising on the subset
[
−1

2
, 1
2

]
.

So, I expect it to be a subspace.
The proof is exactly similar to (2a).
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(d) Verify, if the set

W =

{
f ∈ V : f(x) = −1 ∀ − 1

2
≤ x ≤ 1

2

}
is a subspace of V or not?

Solution: Note the zero of V , c0 /∈ W . So, W is not a subspace.

3. On subspaces of P

Let P be the vector space of all polynomials, with real coefficients, with
usual addition and scalar multiplication.

(a) Verify, if the set

W = {f ∈ P : f(0) = 0} is a subspace of P or not?

Solution: The proof is exactly similar to (2a).

(b) Verify, if the set

W = {f ∈ P : f(0) = 1} is a subspace of P or not?

4.4 Spanning and Linear Independence

1. On Linear combination

(a) Let S = {(−1,−1)}. Can we write (1, 2) as a linear combination
of the vectors in S?

(b) Let S = {(−1,−1,−1)}. Can we write (1, 2, 0) as a linear combi-
nation of the vectors in S?

(c) Let S = {(1, 1, 1), (−1, 1, 1)}. Can we write (2, 2, 2) as a linear
combination of the vectors in S?

(d) Let S = {(1, 1, 1), (−1, 1, 1)}. Can we write (2, 0, 0) as a linear
combination of the vectors in S?

(e) Let S = {(1, 1, 1), (−1, 1, 1)}. Can we write (2, 0, 0) as a linear
combination of the vectors in S?

(f) Let S = {(1, 1, 1), (−1, 1, 1)}. Can we write (2, 4, 4) as a linear
combination of the vectors in S?
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2. On the spanning set

(a) Let S = {(1, 1, 1), (−1, 1, 1)}. Describe the spanning set of S.
Solution; I will solve this one, for guidance for the next few.:

span(S) = {a(1, 1, 1)+b(−1, 1, 1) : a, b ∈ R} = {(a−b, a+b, a+b) : a, b ∈ R}

(b) Let S = {(1, 1, 1)}. Describe the spanning set of S. (Try to
visualize it, geometrically!)

(c) Let S = {(1, 1, 0), (0, 0, 1)}. Describe the spanning set of S. (Try
to visualize it, geometrically!)

(d) Let S = {(1, 0, 0), (0, 1, 0)}. Describe the spanning set of S. (Try
to visualize it, geometrically!)

(e) Let S = {(1, 1, 0), (1,−1, 0)}. Describe the spanning set of S.
(Try to visualize it, geometrically!)

3. On the spanning Rn

(a) Let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Does S span R3.

(b) Let S = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1), (0, 0, 0, 1)}. Does S span
R4.

(c) Let S = {(1, 1, 1), (1,−1, 1), (1, 1,−1)}. Does S span R3.

(d) Let S = {(1, 0, 1), (1, 2, 1), (1, 2, 2), (13, 17, 19)}. Does S span R3.

(e) Let S = {(1, 1, 1), (1, 2, 1), (0, 1, 0), (3, 4, 3)}. Does S span R3.

4. On the spanning Mm×n

(a) Let

S =

{
e1 :=

(
1 0
0 0

)
, e2 :=

(
0 1
0 0

)
, e3 :=

(
0 0
1 0

)
, e4 :=

(
0 0
0 1

)}
Does S span M2×2?

(b) Let

S =

{
e1 :=

(
1 0
0 0

)
, e2 :=

(
0 1
0 0

)
, e3 :=

(
0 0
1 0

)
, e4 :=

(
1 −1
1 0

)}
Does S span M2×2?
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5. On the spanning Pn

Let P2 denote the vector space of all polynomials, of degree ≤ 2.

(a) Let S = {x2, x, 1}. Does S span P2.
Solution: A polynomial f(x) ∈ P2 has the form
f(x) = ax2 + bx+ c.
Any such polynomial is a linear combination of elements in S =
{x2, x, 1}. So, S spans P2.

(b) Let S = {(x2, x, 1, x2 + x+ 1}. Does S span P2.
Solution: A polynomial f(x) ∈ P2 has the form
f(x) = ax2 + bx+ c.
Question is whether we can write such a polynomial

f(x) = ax2 + bx+ c = α(x2) + β(x) + γ(1) + δ(x2 + x+ 1)

In this case, it is easier than other problems, because we can take

α = a, β = b, γ = x, δ = 0

So, S spans P2.

(c) Let S = {x2 + x+ 1, x2 − x+ 1, x2 + x− 1}. Does S span P2.
Solution: A polynomial f(x) ∈ P2 has the form
f(x) = ax2 + bx+ c.
Question is whether we can write such a polynomial

f(x) = ax2+bx+c = α(x2+x+1)+β(x2−x+1)+γ(x2+x−1)=⇒

ax2 + bx+ c = (α + β + γ)x2 + (α− β + γ)x+ (α + β − γ)=⇒ α + β + γ
α− β + γ
α + β − γ

 =

 a
b
c

⇐⇒
 1 1 1

1 −1 1
1 1 −1

 α
β
γ

 =

 a
b
c


The system has a solution for any a, b, c. So, S spans P2.

(d) Let S = {x2 + 1, x2 + 2x+ 1, x2 + 2x+ 2, 13x2 + 17x+ 19)}. Does
S span P2.
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Solution: A polynomial f(x) ∈ P2 has the form
f(x) = ax2 + bx+ c.
Question is whether we can write such a polynomial
f(x) = ax2 + bx+ c

= α(x2+1)+β(x2+2x+1)+γ(x2+2x+2)+δ(13x2+17x+19)=⇒ α + β + γ + 13δ
2β + 2γ + 17δ
α + β + 2γ + 19δ

 =

 a
b
c

=⇒

 1 1 1 13
0 2 2 17
1 1 2 19




α
β
γ
δ

 =

 a
b
c


Do row Echelon to the augmented matrix: 1 1 1 13 a

0 2 2 17 b
1 1 2 19 c

=⇒

 1 1 1 13 a
0 2 2 17 b
0 0 1 6 c− a


Now, we see that the system has a solution for any a, b, c. So, S
spans P2.

(e) Let S = {x2 + x + 1, x2 + 2x + 1, x, 3x2 + 4x + 3}. Does S span
P2.
Solution: A polynomial f(x) ∈ P2 has the form
f(x) = ax2 + bx+ c.
Question is whether we can write such a polynomial
f(x) = ax2 + bx+ c

= α(x2 + x+ 1) + β(x2 + 2x+ 1) + γ(x) + δ(3x2 + 4x+ 3)=⇒ α + β + 3δ
α + 2β + γ + 4δ
α + β + +3δ

 =

 a
b
c

=⇒

 1 1 0 3
1 2 1 4
1 1 0 3




α
β
γ
δ

 =

 a
b
c


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Consider the augmented matrix: 1 1 0 3 a
1 2 1 4 b
1 1 0 3 c


Reduce it to row Echelon: 1 1 0 3 a

0 1 1 1 b− a
0 0 0 0 c− a


The system does not have solution, if c − a 6= 0. So, S does not
span P2.

6. On Linear Independence vectors in Rn

(a) Let S = {(1, 1), (π, π)}. Is S linearly independent of not?

(b) Let S = {(1, 1), (π, 0)}. Is S linearly independent of not?

(c) Let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Is S linearly independent of
not?

(d) Let S = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1), (0, 0, 0, 1)}. Is S linearly
independent of not?

(e) Let S = {(1, 1, 1), (1,−1, 1), (1, 1,−1)}. Is S linearly independent
of not?

(f) Let S = {(1, 0, 1), (1, 2, 1), (1, 2, 2), (13, 17, 19)}. Is S linearly in-
dependent of not?

(g) Let S = {(1, 1, 1), (1, 2, 1), (0, 1, 0), (3, 4, 3)}. Is S linearly inde-
pendent of not?

7. On Linear Independence of vectors in Mm×n

(a) Let

S =

{
e1 :=

(
1 0
0 0

)
, e2 :=

(
0 1
0 0

)
, e3 :=

(
0 0
1 0

)
, e4 :=

(
0 0
0 1

)}
Is S linearly independent of not?
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(b) Let

S =

{
e1 :=

(
1 0
0 0

)
, e2 :=

(
0 1
0 0

)
, e3 :=

(
0 0
1 0

)
, e4 :=

(
1 −1
1 0

)}
Is S linearly independent of not?

8. On Linear Independence of vectors in Pn

Let P2 denote the vector space of all polynomials, of degree ≤ 2.

(a) Let S = {x2, x, 1}. Is S linearly independent of not?
Solution: For a, b, c ∈ R, we have

ax2 + bx+ c(1) = 0=⇒ ax2 + bx+ c = 0=⇒ a = b = c = 0

So, they are linearly independent.

(b) Let S = {(x2, x, 1, x2 + x+ 1}.Is S linearly independent of not?
Solution: In this case, we can write down the last vector x2+x+1,
as linear combination of the otheres:

x2 + x+ 1 = 1(x2) + 1(x) + 1(1)

So, they are linearly dependent

(c) Let S = {x2+x+1, x2−x+1, x2+x−1}. Is S linearly independent
of not?
Solution: For a, b, c ∈ R, we have

a(x2 + x+ 1) + b(x2 − x+ 1) + c(x2 + x− 1) = 0=⇒

(a+ b+ c)x2 + (a− b+ c)x+ (a+ b− c) = 0=⇒ a+ b+ c
a− b+ c
a+ b− c

 =

 0
0
0

=⇒ a = b = c = 0

So, they are linearly independent.

(d) Let S = {x2 + 1, x2 + 2x+ 1, x2 + 2x+ 2, 13x2 + 17x+ 19}. Is S
linearly independent of not?
Solution: For a, b, c, d ∈ R, we have

a(x2+1)+b(x2+2x+1)+c(x2+2x+2)+d(13x2+17x+19) = 0 =⇒
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(a+b+c+13d)x2 +(2b+2c+17d)x+(a+b+2c+19d) = 0 =⇒ a+ b+ c+ 13d
2b+ 2c+ 17d
a+ b+ 2c+ 19d

 =

 0
0
0


This system has nonzero solutions for a, b, c, d. So, the are lin-
early dependent.

(e) Let S = {x2 + x + 1, x2 + 2x + 1, x, 3x2 + 4x + 3}. Is S linearly
independent of not?
Solution: For a, b, c, d ∈ R, we have

a(x2 + x+ 1) + b(x2 + 2x+ 1) + c(x) + d(3x2 + 4x+ 3) = 0 =⇒

(a+ b+ 3d)x2 + (a+ 2b+ c+ 4d)x+ (a+ b+ 3d) = 0 =⇒ a+ b+ 3d
a+ 2b+ c+ 4d
a+ b+ 3d

 =

 0
0
0


This system has nonzero solutions for a, b, c, d. So, the are lin-
early dependent.

9. On Linearly Dependent of vectors

(a) Let S = {(1, 2), (2, 1), (2, 2)}. We know, S is a linearly dependent
set. By Theorem 4.2.2, one of the vectors, is linear combination
of the rest. Write down, one as linear combination of the rest.
Solution: Actually,

(2, 2) = (2/3)(1, 2) + (2/3)(2, 1)

They are dependent, because one of them is linear combination of
the others.

(b) Let S = {(1, 1, 1), (1,−1, 1), (1, 1,−1), (6, 2, 0)}. We know, S is a
linearly dependent set. By Theorem 4.2.2, one of the vectors, is
linear combination of the rest. Write down, one as linear combi-
nation of the rest.
Solution: Actually,

(6, 2, 0) = (1, 1, 1) + 2(1,−1, 1) + 3(1, 1,−1)

They are dependent, because one of them is linear combination of
the others.
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(c) Let S = {(1, 1, 0), (1, 0, 1), (0, 1,−1), (6, 6, 0)}. We know, S is a
linearly dependent set. By Theorem 4.2.2, one of the vectors, is
linear combination of the rest. Write down, one as linear combi-
nation of the rest.
Solution: Actually,

(6, 6, 0) = 3(1, 1, 0) + 3(1, 0, 1) + 3(0, 1,−1)

They are dependent, because one of them is linear combination of
the others.

4.5 Basis and Dimension

1. On failure to be a basis

Answer for these should exactly one sentence. Assume a, b, c ∈ R.

(a) Consider the subset S = {(1, 1, 0), (17, 113, 120), (0, 1,
√

7), (a, 2, c))} ⊆
R3. Give a reason, why S is not a basis of R3.
Solution: dimR3 = 3.

(b) Consider the subset S = {(π, e,
√

7), (a, 2, c))} ⊆ R3. Give a rea-
son, why S is not a basis of R3.
Solution: dimR3 = 3.

(c) Consider the subset S = {(1, 0, 0, 0), (0, 1, 0, 0, ), (0, 1, 0, 0)} ⊆ R4.
Give a reason, why S is not a basis of R4.
Solution: dimR4 = 4.

(d) Consider the subset
S = {(1, π, π2, π3), (1, e, e2, e3, ), (1, 2, 4, 8), (1, 3, 9, 27), (1,−1, 1,−1)} ⊆
R4. Give a reason, why S is not linearly independent?

(e) Consider the subset
S = {(1, π, π2, π3), (1, e, e2, e3, ), (1, 2, 4, 8)} ⊆ R4. Give a reason,
why S does not span R4?

(f) Let P3 be the vector space of all the polynomials, with real coef-
ficients, of degree ≤ 3. Consider the subset
S = {x + x3, 17 + 13x + 10x3, 1 +

√
7x + ax3, x2 + x3, x3} ⊆ P3.

Give a reason, why S is not a basis of P3.
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Solution: dimP3 = 4.

(g) Let P3 be the vector space of all the polynomials, with real co-
efficients, of degree ≤ 3. Consider the subset S = {x + x3, x2 +
x3, x3} ⊆ P3. Give a reason, why S is not a basis of P3.
Solution: dimP3 = 4.

(h) Let M2×3 be the vector space of all matrices of size 2 × 3, with
real coefficients. Consider the subset

S =

{(
1 1 1 1
1 −1 1 −1

)
,

(
1 0 1 0
1 0 1 0

)}
⊆M2×3

Give a reason, why S is not a basis of M2×3.
Solution: dimM2×3 = 6.

2. Determine, if the set is a basis

In the following problems, the dimension of the vector space and the
cardinality of S would match. One way to get the answer is to check
the determinant of the matrix formed by them.

(a) Let S = {(1,−1, 1), (1,
√

2, 2), (1,
√

3, 3)} ⊂ R3. Is S a basis of R3?
Solution: We have ∣∣∣∣∣∣

1 −1 1

1
√

2 2

1
√

3 3

∣∣∣∣∣∣ = 2.096 6= 0

So, S is a basis of R3.

(b) Let S = {(1,−1, 1,−1), (1, 1, 1, 1), (1,
√

2, 2, 2
√

2), (1,
√

3, 3, 3
√

3)} ⊂
R4. Is S a basis of R4?
Solution: We have∣∣∣∣∣∣∣∣

1 −1 1 −1
1 1 1 1

1
√

2 2 2
√

2

1
√

3 3 3
√

3

∣∣∣∣∣∣∣∣ = 1.27 6= 0

3. Span and Dimension
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(a) Let S = {(1, 1, 1)} and V = span(S) ⊆ R3. Find dim(V ), and
give basis of V .
Solution: A basis of V is given by {(1, 1, 1)}. So, dimV = 1.

(b) Let S = {(1, 1, 1), (1,−1, 1), (1, 0, 1)} and V = span(S) ⊆ R3.
Find dim(V ), and give basis of V .
Solution: Form the matrix 1 1 1

1 −1 1
1 0 1

 Do Row Echelon (ref) =⇒

 1 1 1
0 1 0
0 0 0


So, a basis of Span(S) = {(1, 1, 1), (0, 1, 0)} and dimSpan(S) = 2.

(c) Let S = {(1, 1, 1), (1,−1, 1), (π, 0, π)} and V = span(S) ⊆ R3.
Find dim(V ), and give basis of V .
Solution: Form the matrix 1 1 1

1 −1 1
π 0 π

 Do Row Echelon (ref) =⇒

 1 1 1
0 1 0
0 0 0


So, a basis of Span(S) = {(1, 1, 1), (0, 1, 0)} and dimSpan(S) = 2.

(d) Let S = {(1, 1, 1, 1), (1,−1, 1,−1), (1, 0, 1, 0), (0, 1, 0, 1)} and V =
span(S) ⊆ R4. Find dim(V ), and give basis of V .

(e) Let S = {(1,−1, 1,−1), (1, 1, 1, 1), (1, 2, 4, 8), (1, 3, 9, 27)} and V =
span(S) ⊆ R4. Find dim(V ), and give basis of V .

(f) With a, b, c ∈ R and let S = {(1, a, a, a), (0, 1, b, b), (0, 0, 1, c)} and
V = span(S) ⊆ R4. Find dim(V ), and give basis of V .
Solution: Here a, b, c are given real numbers. Form the matrix 1 a a a

0 1 b b
0 0 1 c


The matrix is, already, in row Echelon form. So, a basis of
span(S) = {(1, a, a, a), (0, 1, b, b), (0, 0, 1, c)} and dimSpan(S) =
3.
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4.6 Rank and Nullity

There is, essentially, one type of problems in the section.

1. Let

A =

 −7 3 2
12 2 3
5 5 5


(a) Give a basis of the row space of A

(b) Find rank(A)

(c) Find nullity(A).

(d) Give a basis of the null space N(A).

(e) Give basis of the column space of A

(f) Give a basis of the null space N(AT ).

Solution: Reduce the matrix to essentially row Echelon form: −7 3 2
5 5 5
12 2 3

=⇒

 −7 3 2
5 5 5
0 0 0

=⇒

 −7 3 2
1 1 1
0 0 0


 1 1 1
−7 3 2
0 0 0

=⇒

 1 1 1
0 10 9
0 0 0


(a) Give a basis of the row space of A

A basis is
{(1, 1, 1), (0, 10, 9)}

(b) Find rank(A) = 2

(c) Find nullity(A) = 3 = 2 = 1.

(d) Give a basis of the null space N(A).
The Null space

N(A) =


 x1

x2
x3

 :

 1 1 1
0 10 9
0 0 0

 x1
x2
x3

 =

 0
0
0


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N(A) =


 − 1

10
t

− 9
10
t

t

 : t ∈ R


With t = 1, a basis for N(A) is

 − 1
10

− 9
10

1


(e) Give basis of the column space of A

Do the same calculation with

B = AT =

 −7 12 5
3 2 5
2 3 5

=⇒

 −1 16 15
3 2 5
2 3 5

=⇒

 −1 16 15
0 50 50
0 35 35

=⇒

 −1 16 15
0 1 1
0 1 1

=⇒

 −1 16 15
0 1 1
0 0 0


. So, the basis of the column space:{

(−1, 16, 15)T , (0, 1, 1)T
}

(f) Give a basis of the null space N(AT ).
The N(AT ) is given by −1 16 15

0 1 1
0 0 0

 x1
x2
x3

 =

 0
0
0


So,

N(AT ) =


 −t−t

t


With t = 1, a basis for N(AT ) is

 −1
−1
1


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2. Let

A =

 1 1 1 1
5 5 4 2
−7 3 2 0


(a) Give a basis of the row space of A

(b) Find rank(A)

(c) Find nullity(A).

(d) Give a basis of the null space N(A).

(e) Give basis of the column space of A

(f) Give a basis of the null space N(AT ).

Solution: (I do not mind using TI Calculator, unless it give nonter-
minating decimals that I cannot read.) We do essential row Echelon
to A:  1 1 1 1

0 0 −1 −3
0 10 9 7

=⇒

 1 1 1 1
0 10 9 7
0 0 −1 −3


(a) A Basis of the row space is:

{(1, 1, 1, 1), (0, 10, 9, 7), (0, 0,−1,−3)}

(b) rank(A) = 3

(c) nullity(A) = 4− 3 = 1.

(d) The null space N(A) is given by

 1 1 1 1
0 10 9 7
0 0 −1 −3




x1
x2
x3
x4

 =

 0
0
0



So, N(A) =




27
10
t

2
10
t

−3t
t

 : t ∈ R


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With t = 1, a basis of N(A) is


27
10
2
10

−3
1




(e) Regarding column space of A, we do that same with

B = AT =


1 5 −7
1 5 3
1 4 2
1 2 0


We reduce it to essential row Echelon:

1 2 0
1 5 −7
1 5 3
1 4 2

=⇒


1 2 0
0 3 −7
0 3 3
0 2 2

=⇒


1 2 0
0 3 −7
0 1 1
0 1 1

=⇒


1 2 0
0 3 −7
0 1 1
0 0 0

=⇒


1 2 0
0 1 1
0 3 −7
0 0 0

=⇒


1 2 0
0 1 1
0 0 −10
0 0 0

=⇒


1 2 0
0 1 1
0 0 1
0 0 0


So, a basis of the row space of AT is these three nonzero rows. So,
a basis of the column space is

 1
2
0

 ,

 0
1
1

 ,

 0
0
1


(f) For basis of the null space N(AT ), we solve

1 2 0
0 1 1
0 0 1
0 0 0


 x1

x2
x3

 =


0
0
0
0


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So,

N(AT ) =


 0

0
0


So, the zero vector space N(AT ) has empty basis.

3. Let

A =


3 15 −1
1 4 2
1 2 0
1 5 3


(a) Give a basis of the row space of A

(b) Find rank(A)

(c) Find nullity(A).

(d) Give a basis of the null space N(A).

(e) Give basis of the column space of A

(f) Give a basis of the null space N(AT ).

4. Let

A =


2 1 1 1 1
0 1 1 1 1
0 0 1 1 1
4 3 3 3 3
4 3 1 1 1


(a) Give a basis of the row space of A

(b) Find rank(A)

(c) Find nullity(A).

(d) Give a basis of the null space N(A).

(e) Give basis of the column space of A

(f) Give a basis of the null space N(AT ).
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Chapter 5

Eigenvalues and Eigenvectors

5.1 Eigen Values and Eigen Vectors

1. Let
A =

(
1 −1
−1 1

)
(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.

(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

Solution: The characteristic polynomial is

det(λI − A) =

∣∣∣∣ λ− 1 1
1 λ− 1

∣∣∣∣ = λ2 − 2λ

So, the characteristic equation is λ2 − 2λ = 0 and the eigen values are
λ = 0, 2.

(a) Eigen vectors of λ = 2 is given by

(λI − A)

(
x
y

)
=

(
1 1
1 1

)(
x
y

)
=

(
0
0

)
55
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Solving we get
{
x = t
y = −x = −t So, the Eigen space

E(2) =

{(
−t
t

)
: t ∈ R

}

Taking t = 1, a basis of E(2) is
{(
−1
1

)}
. So, dimE(2) = 1.

(b) Eigen vectors of λ = 0 is given by

(λI − A)

(
x
y

)
=

(
−1 1
1 −1

)(
x
y

)
=

(
0
0

)

Solving we get
{
x = t
y = x = t

So, the Eigen space

E(0) =

{(
t
t

)
: t ∈ R

}

Taking t = 1, a basis of E(0) is
{(

1
1

)}
. So, dimE(0) = 1.

2. Let

A =

 3 0 −1
0 2 0
−1 0 3


(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.

(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

Solution: The characteristic polynomial is det(λI − A) =∣∣∣∣∣∣
λ− 3 0 1

0 λ− 2 0
1 0 λ− 3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
0 λ− 2 0

λ− 3 0 1
1 0 λ− 3

∣∣∣∣∣∣ = (λ− 2)2(λ− 4)

So, the characteristic equation is (λ − 2)2(λ − 4) = 0 and the eigen
values are λ = 2, 4.
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(a) Eigen vectors of λ = 2 is given by

(λI − A)

 x
y
z

 =

 −1 0 1
0 0 0
1 0 −1

 x
y
z

 =

 0
0
0


Solving we get


x = t
z = x = t
y = s

So, the Eigen space

E(2) =


 t

s
t

 : t, s ∈ R


Taking t = 1, s = 0 and t = 0, s = 1, respectively, a basis of E(2)
is 

 1
0
1

 ,

 0
1
0

 and dimE(2) = 2

Remark. Note the eigenvalue λ = 2 has multiplicity 2. So,
dimE(2) ≤ 2 (which we did not prove). In this case, we did get
two independent basis. It would be possible to have dimE(2) = 1,
in other problems.

(b) Eigen vectors of λ = 4 is given by

(λI − A)

 x
y
z

 =

 1 0 1
0 2 0
1 0 1

 x
y
z

 =

 0
0
0


Solving we get


x = t
z = −x = −t
y = 0

So, the Eigen space

E(4) =


 t

0
−t

 : t ∈ R


Taking t = 1, a basis of E(4) is

 1
0
−1

 and dimE(4) = 1
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3. Let

A =

 1 2 −1
0 2 0
−1 2 1


(a) Write down the characteristic equation of A
(b) Find all the eigenvalues of A.
(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of

E(λ), and dim(E(λ)).

Solution: The characteristic polynomial is det(λI − A) =∣∣∣∣∣∣
λ− 1 −2 1

0 λ− 2 0
1 −2 λ− 1

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
0 λ− 2 0

λ− 1 −2 1
1 −2 λ− 1

∣∣∣∣∣∣ = λ(λ− 2)2

So, the characteristic equation is λ(λ − 2)2 = 0 and the eigen values
are λ = 0, 2.

(a) Eigen vectors of λ = 2 is given by

(λI − A)

 x
y
z

 =

 1 −2 1
0 0 0
1 −2 1

 x
y
z

 =

 0
0
0


Solving we get


x = t
y = s
z = 2y − x = 2s− t

So, the Eigen space

E(2) =


 t

s
2s− t

 : t, s ∈ R


Taking t = 1, s = 0 and t = 0, s = 1, respectively, a basis of E(2)
is 

 1
0
−1

 ,

 0
1
2

 and dimE(2) = 2

Remark. Note the eigenvalue λ = 2 has multiplicity 2. So,
dimE(2) ≤ 2 (which we did not prove). In this case, we did get
two independent basis. It would be possible to have dimE(2) = 1,
in other problems.
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(b) Eigen vectors of λ = 0 is given by

(λI − A)

 x
y
z

 =

 −1 −2 1
0 −2 0
1 −2 −1

 x
y
z

 =

 0
0
0


Solving we get


x = t
y = 0
z = x+ 2y = t

So, the Eigen space

E(0) =


 t

0
t

 : t ∈ R


Taking t = 1, a basis of E(0) is

 1
0
1

 and dimE(0) = 1

4. Let

A =

 1 2 −6
−2 5 −6
−2 2 −3


(a) Write down the characteristic equation of A
(b) Find all the eigenvalues of A.
(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of

E(λ), and dim(E(λ)).

Solution: The characteristic polynomial is det(λI − A) =∣∣∣∣∣∣
λ− 1 −2 6

2 λ− 5 6
2 −2 λ+ 3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
λ− 1 −2 6

2 λ− 5 6
0 3− λ λ− 3

∣∣∣∣∣∣ = (λ−3)

∣∣∣∣∣∣
λ− 1 −2 6

2 λ− 5 6
0 −1 1

∣∣∣∣∣∣
= (λ−3)

∣∣∣∣∣∣
λ− 1 4 6

2 λ+ 1 6
0 0 1

∣∣∣∣∣∣ = (λ−3)

∣∣∣∣ λ− 1 4
2 λ+ 1

∣∣∣∣ = (λ−3)2(λ+3)

So, the characteristic equation is (λ − 3)2(λ + 3) = 0 and the eigen
values are λ = 3,−3
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5. Let

A =

 −1 2 2
4 1 −2
−4 2 5


(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.

(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

6. Let

A =

 2 1 −3
0 −1 1
0 1 −1


(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.

(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

7. Let

A =

 4 3 −5
0 −1 3
0 3 −1


(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.

(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

8. Let

A =


4 3 −5 1
0 −1 3 1
0 0 −1 −1
0 0 0 1


(a) Write down the characteristic equation of A

(b) Find all the eigenvalues of A.
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(c) For each eigenvalue λ, compute the eigenspace E(λ), a basis of
E(λ), and dim(E(λ)).

Solution: The characteristic polynomial is det(λI − A) =∣∣∣∣∣∣∣∣
λ− 4 −3 5 −1

0 λ+ 1 −3 −1
0 0 λ+ 1 1
0 0 0 λ− 1

∣∣∣∣∣∣∣∣ = (λ− 4)(λ+ 1)2(λ− 1)

So, the characteristic equation is (λ − 4)(λ + 1)2(λ − 1) = 0 and the
eigen values are λ = −1, 1, 4.

(a) Eigen vectors of λ = −1 is given by

(λI − A)


x
y
z
w

 =


−5 −3 5 −1
0 0 −3 −1
0 0 0 1
0 0 0 −2




x
y
z
w

 =


0
0
0
0



Solving we get


x = t
y = −3

5
t

z = 0
w = 0

So, the Eigen space

E(−1) =




t
−5

3
t

0
0

 : t ∈ R


Taking t = 1, a basis of E(−1) is


1
−5

3

0
0


 and dimE(−1) = 1

Remark. Note, although the eigenvalue λ = −1 has multiplicity
two, dimE(−1) = 1.



62 CHAPTER 5. EIGENVALUES AND EIGENVECTORS

(b) Eigen vectors of λ = 1 is given by

(λI − A)


x
y
z
w

 =


−3 −3 5 −1
0 2 −3 −1
0 0 2 1
0 0 0 0




x
y
z
w

 =


0
0
0
0



Solving we get


x = 0
y = 0
z = 0
w = t

So, the Eigen space

E(1) =




0
0
0
t

 : t ∈ R


Taking t = 1, a basis of E(1) is


0
0
0
t

 ,

 and dimE(1) = 1

(c) Eigen vectors of λ = 1 is given by

(λI − A)


x
y
z
w

 =


0 −3 5 −1
0 5 −3 −1
0 0 5 1
0 0 0 3




x
y
z
w

 =


0
0
0
0



Solving we get


x = t
y = 0
z = 0
w = 0

So, the Eigen space

E(4) =




t
0
0
0

 : t ∈ R


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Taking t = 1, a basis of E(1) is


1
0
0
0

 ,

 and dimE(4) = 1

5.2 Diagonalization

1. Diagonalize:
We did two theorems on dagonalization: Theorem 5.2.2 and Theorem
5.2.3. I will work out one of them.

(a) Let

A =

 3 0 −1
0 2 0
−1 0 3


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:§5.1, Exercise 2 may be helpful.)
Solution: From §5.1, Exercise 2, we know that the characteristic
equation is (λ− 2)2(λ− 2) = 0.

i. So, λ = 2, 4 is are the eigenvalues. (Clue: Since λ = 2 has
multiplicity two, we would expect that the E(2) would have
dimension two, or less. If not, then A is unlikely to be diag-
onalizable.)

ii. (We are repeating) To compute the eigen space E(2), we solve −1 0 1
0 0 0
1 0 −1

 x
y
z

 =

 0
0
0


{
−x+ z = 0
x− z = 0

=⇒
{
x = z = s
y = t

where s, t ∈ R.

So, E(2) =


 s

t
s

 : s, t ∈ R


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Substituting s = 1, t = 0 and then s = 0, t = 1, a basis of
E(2) is given by:

 1
0
1

 ,

 0
1
0

 So, dimE(2) = 2

iii. To compute the eigenspace E(4), we solve 1 0 1
0 2 0
1 0 1

 x
y
z

 =

 0
0
0


{
x+ z = 0
2y = 0

=⇒
{
x = −z = t
y = 0

So, E(4) =


 t

0
−t

 : t ∈ R


So, a basis of E(4) is

 1
0
−1

 So, dimE(4) = 1

iv. Finally, dim(E(2)) + dim(E(4)) = 3. So, we conclude that A
is diagonalizable.

v. We form the matrix of the basis eigenvectors.

P =

 1 0 1
0 1 0
1 0 −1

 . Then P−1AP =

 2 0 0
0 2 0
0 0 4


(b) Let

A =

(
1 −1
−1 1

)
Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:Exercise 1 may be helpful.)
Solution: For §5.1, Exercise 1, A has two distinct eigenvalues,
λ = 0, 2. Since A has two distinct eigenvalues, we conclude by



5.2. DIAGONALIZATION 65

Theorem 5.2.3, A is diagonalizable.

Now a basis E(2) is
{(
−1
1

)}
.

And a basis of E(0) is
{(

1
1

)}
.

Write

P =

(
−1 1
1 1

)
Then

P−1AP =

(
2 0
0 0

)
(c) Let

A =

 1 2 −1
0 2 0
−1 2 1


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:§5.1, Exercise 3 may be helpful.)
Solution: From §5.1, Exercise 3 , A has two eigenvalues, λ = 0, 2.
A basis for E(2) is

 1
0
−1

 ,

 0
1
2

 and dimE(2) = 2

A basis of E(0) is
 1

0
1

 and dimE(0) = 1

Since dimE(2) + dimE(0) = 3, A is diagonalizable.
Write

P =

 1 0 1
0 1 0
−1 2 1

 . Then, P−1AP =

 2 0 0
0 2 0
0 0 0


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(d) Let

A =

 1 2 −6
−2 5 −6
−2 2 −3


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:Exercise 4 may be helpful.)

(e) Let

A =

 −1 2 2
4 1 −2
−4 2 5


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:Exercise 5 may be helpful.)

(f) Let

A =

 2 1 −3
0 −1 1
0 1 −1


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:Exercise 6 may be helpful.)

(g) Let

A =

 4 3 −5
0 −1 3
0 3 −1


Is A diagonalizable? If yes, write down P such that P−1AP is a
diagonal matrix. (Hint:Exercise 7 may be helpful.)

2. Prove they are not diagonalizable

(a) Prove that the matrix

A =

(
1 3
0 1

)
is not diagonalizable.
Solution: The characteristic polynomial of A is∣∣∣∣ λ− 1 −3

0 λ− 1

∣∣∣∣ = (λ− 1)2
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So, A has one eigenvalue λ = 1. To compute E(1), we solve(
1− 1 −3

0 1− 1

)(
x
y

)
=

(
0
0

)
=⇒ x = t, y = 0

So,

E(1) =

{(
t
0

)
: t ∈ R

}
So, a basis of E(1) is{(

1
0

)}
And, dimE(1) = 1

Since dimE(1) = 1 6= 2, A is not diagonalizable.

(b) Prove that the matrix

A =

 1 3 −5
0 −1 3
0 0 −1


is not diagonalizable.

(c) Prove that the matrix

A =


4 3 −5 1
0 −1 3 1
0 0 −1 −1
0 0 0 1


is not diagonalizable.
Solution: For §5.1, Exercise 8 , A has three eigenvalues, λ =
−1, 1, 4

Also,

dimE(−1) + dimE(1) + dimE(4) = 1 + 1 + 1 = 3 6= 4

So, A is not diagonalizable.
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Chapter 6

Inner Product Spaces

6.1 Length and Dot Product

1. On Length, distance angle, Triangle Inequality Do not try to
simplify your answer too much. You may not get answers in whole
numbers.

(a) Let u = (3, 3) and v = (6,−12).

i. Compute ‖u‖, ‖v‖, ‖u + v‖.
ii. Compute distance d(u,v).
iii. Compute the dot product u · v.
iv. Compute the angle between u and v.

(It is okay to leave your answer as cos−1(∗). )
v. Verify the Cauchy-Swartz inequality.
vi. Verify the triangle inequality.

Solution: We do it one by one:

i. We have
‖u‖ =

√
32 + 32 =

√
18,

‖v‖ =
√

62 + (−12)2 =
√

180,

‖u + v‖ = ‖(9,−9)‖ =
√

92 + (−9)2 =
√

162

69
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ii. Distance

d(u,v) = ‖u− v‖ = ‖(−3, 15)‖ =
√

(−3)2 + 152 =
√

234

iii. The dot product

u · v = 3 · 6 + 3 · (−12) = −18

iv. The angle θ is given by

cos θ =
u · v
‖u‖ ‖v‖

=
−18√

18
√

180
= − 1√

10
=⇒ θ = cos−1

(
− 1√

10

)
v. To check Cauchy-Swatrz Inequality, we have to check

|u · v| ≤ ‖u‖ ‖v‖ , which works : |−18| ≤
√

18
√

180

vi. To check triangle inequality, we need to check

‖u + v‖ ≤ ‖u‖+ ‖v‖ which works :
√

162 ≤
√

18 +
√

180

(b) Let u = (3, 3,−3) and v = (6, 6,−12).

i. Compute ‖u‖, ‖v‖, ‖u + v‖.
ii. Compute distance d(u,v).
iii. Compute the dot product u · v.
iv. Compute the angle between u and v.

(It is okay to leave your answer as cos−1(∗). )
v. Verify the Cauchy-Swartz inequality.
vi. Verify the triangle inequality.

(c) Let u = (1, 1, 0) and v = (
√

6,
√

6,−2
√

6).

i. Compute ‖u‖, ‖v‖, ‖u + v‖.
ii. Compute distance d(u,v).
iii. Compute the dot product u · v.
iv. Compute the angle between u and v.

(It is okay to leave your answer as cos−1(∗). )
v. Verify the Cauchy-Swartz inequality.
vi. Verify the triangle inequality.
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(d) Let u = (1, 1,−1,−1) and v = (3, 3, 4, 5).
i. Compute ‖u‖, ‖v‖, ‖u + v‖.
ii. Compute distance d(u,v).
iii. Compute the dot product u · v.
iv. Compute the angle between u and v.

(It is okay to leave your answer as cos−1(∗). )
v. Verify the Cauchy-Swartz inequality.
vi. Verify the triangle inequality.

2. On Orthogonal Vectors and Pythagorean

Let me remind the readers that the two words "Orthogonal" and "Per-
pendicular" means the same thing and used interchangeably.

(a) Let u = (1,−1) and v = (a, a). Is u orthogonal to v. If yes, verify
the Pythagorean equality.

(b) Let u = (1,−1, 1) and v = (1,−1,−2). Is u orthogonal to v. If
yes, verify the Pythagorean equality.
Solution: We compute Inner (dot) product

u · v = 1 + 1− 2 = 0. So, yes u ⊥ v

Now, {
‖u‖2 + ‖v‖2 = (1 + 1 + 1) + (1 + 1 + 4) = 9

‖u + v‖2 = ‖(2,−2,−1)‖2 = 4 + 4 + 1 = 9

So, Pythagorean equality is checked.
(c) Let u = (1,−1, 1,−1) and v = (1, 1, 3, 3). Is u orthogonal to v.

If yes, verify the Pythagorean equality.
Solution: We compute Inner (dot) product

u · v = 1− 1 + 3− 3 = 0. So, yes u ⊥ v

Now,{
‖u‖2 + ‖v‖2 = (1 + 1 + 1 + 1) + (1 + 1 + 9 + 9) = 24

‖u + v‖2 = ‖(2, 0, 4, 2)‖2 = 4 + 0 + 16 + 4 = 24

So, Pythagorean equality is checked.
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(d) Let u = (1,−1, 1,−1) and v = (a, a, 3a, 3a). Is u orthogonal to
v. If yes, verify the Pythagorean equality.
Solution: We compute Inner (dot) product

u · v = a− a+ 3a− 3a = 0. So, yes u ⊥ v

Now,
‖u‖2 + ‖v‖2 = (1 + 1 + 1 + 1) + (a2 + a+9a2 + 9a2) = 4 + 20a2

‖u + v‖2 = ‖(1 + a,−1 + a, 1 + 3a,−1 + 3a)‖2
= (1 + a)2 + (−1 + a)2 + (1 + 3a)2 + (−1 + 3a)2 = 4 + 20a2

So, Pythagorean equality is checked.

3. On Computing the Orthogonal Space

(a) Let u = (1,−1, 1). Compute the vectors space of all the vectors,
orthogonal to u. (Sometimes, this space is denoted by u⊥.)

(b) Let u = (1,−1, 1, 3). Compute the vectors space of all the vectors,
orthogonal to u.

(c) Let u = (1, 0, 1, 7). Compute the vectors space of all the vectors,
orthogonal to u.
Solution: The vectors orthogonal to u = (1, 0, 1, 7) is given by

u · x = 0⇐⇒ x1 + x3 + 7x4 = 0

So, the space orthogonal to u is given by

u⊥ =



−t− 7u

s
t
u

 : s, t, u ∈ R


4. On Changing the direction and size of vectors

(a) Let u = (1,−2, 1).

i. Compute the vector v, so the its length ‖v‖ = 1, and has the
same direction.

ii. Compute the vector v, so the its length ‖v‖ =
√

2 and has
the same direction.
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iii. Compute the vector v, so the its length ‖v‖ = π and has the
opposite direction.

(b) Let u = (3,−3, 3, 3).
i. Compute the vector v, so the its length ‖v‖ = 1, and has the

same direction.
ii. Compute the vector v, so the its length ‖v‖ =

√
2 and has

the same direction.
iii. Compute the vector v, so the its length ‖v‖ = π and has the

opposite direction.
Solution: We do it one by one:
i. We have

v =
u

‖u‖
=

(3,−3, 3, 3)√
36

=

(
1

2
,−1

2
,
1

2
,
1

2

)
ii. We have

v =
√

2
u

‖u‖
=
√

2
(3,−3, 3, 3)√

36
=

(
1√
2
,− 1√

2
,

1√
2
,

1√
2

)
iii. We have

v = π
u

‖u‖
= π

(3,−3, 3, 3)√
36

=
(π

2
,−π

2
,
π

2
,
π

2

)

6.2 Inner Product Spaces

Remark. Note that dot product discussed in Section 6.1 is what is called the
inner product, in this section. Therefore, Rn, together with dot product, is
an inner product space. Other than Rn, bulk of examples on inner product
spaces comes from inner product by integration (Example 6.2.2).

It would not make sense to provide additional problems, on Rn in this
section, just because the name has changed. Most of the problems in this
section would on inner product by integration.

1. Suppose V = C[0, 1] be the inner product space of all continuous func-
tions on [0, 1]. Let f(x) = ex and g(x) = e2x.
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(a) Compute ‖f‖, ‖g‖, ‖f + g‖.
(b) Compute distance d(f ,g).

(c) Compute the dot product f · g.
(d) Compute the angle between f and g.

(It is okay to leave your answer as cos−1(∗). )

(e) Verify the triangle inequality.

(f) Compute projection Projfg and Projgf .

Solution: We do one by one:

(a) The length

‖f‖ =
√∫ 1

0
e2xdx =

√
e2−1
2

‖g‖ =
√∫ 1

0
e4xdx =

√
e4−1
4

‖f + g‖ =
√∫ 1

0
(ex + e2x)2dx =

√∫ 1

0
(e2x + 2e3x + e4x)dx

=
√

e2−1
2

+ 2(e3−1)
3

+ e4−1
4

(b) The distance d(f ,g) = ‖f − g‖

=

√∫ 1

0

(ex − e2x)2dx =

√∫ 1

0

(e2x − 2e3x + e4x)dx

=

√
e2 − 1

2
− 2(e3 − 1)

3
+
e4 − 1

4

(c) Now, the inner product

〈f ,g〉 =

∫ 1

0

e3xdx =
e3 − 1

3

(d) The angle θ between f and g is given by

cos θ =
〈f ,g〉
‖f‖ · ‖g‖

=
e3−1
3√

e2−1
2

√
e4−1
4
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(e) One can use calculator to check, the triangle inequality:√
e2 − 1

2
+

2(e3 − 1)

3
+
e4 − 1

4
≤
√
e2 − 1

2
+

√
e4 − 1

4

(f) Finally, 
Projfg = 〈f ,g〉

‖f‖2 f =
e3−1

3
e2−1

2

ex

Projgf = 〈f ,g〉
‖g‖2g =

e3−1
3

e4−1
4

e2x

2. Suppose V = C[0, 1] be the inner product space of all continuous func-
tions on [0, 1]. Let f(x) = x3 and g(x) = 1− x3.

(a) Compute ‖f‖, ‖g‖, ‖f + g‖.
(b) Compute distance d(f ,g).

(c) Compute the dot product f · g.
(d) Compute the angle between f and g.

(It is okay to leave your answer as cos−1(∗). )

(e) Verify the triangle inequality.

(f) Compute projection Projfg and Projgf .

3. Suppose V = C[0, π] be the inner product space of all continuous func-
tions on [0, 1]. Let f(x) = cos x and g(x) = sin x.

(a) Compute ‖f‖, ‖g‖, ‖f + g‖.
(b) Compute distance d(f ,g).

(c) Compute the dot product f · g.
(d) Compute the angle between f and g.

(It is okay to leave your answer as cos−1(∗). )

(e) Verify the triangle inequality.

(f) Compute projection Projfg and Projgf .

Hint: Use formulas{
sin 2x = 2 cos x sinx
cos 2x = cos2 x sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x
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6.3 Orthonormal Bases

No Homework Assigned on this section.



Chapter 7

Linear Transformations

7.1 Definitions and Introduction

No Homework Assigned on this section.

7.2 Properties of Linear Transformation

No Homework Assigned on this section.
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