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Preview

» Define Orthonormal Basis of an Inner Product Spaces

» Discuss Gram-Schmidt Method of finding an Orthonormal
Basis
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Orthonormal Bases

Definition: Orthonormal Basis

Definition Suppose (V, (—, —)) is an Inner product space.

» A subset S C V is said to be an Orthogonal subset, if
(u,v) =0, for all u,v € S, with u # v. That means, if
elements in S are pairwise orthogonal.

» An Orthogonal subset S C V is said to be an
Orthonormal subset if, in addition, ||u|| =1, for allu € S.

» If an Orthonormal set S is also a basis of V, then it is
called an Orthonormal Basis. That means, if

(u,v) =0 YuveS u#v
lul| =1 ucs
S is a basis of V
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Orthonormal Bases

Continued

» We remark that, we did not require that S is a finite set.
However, we would mainly be considering finite such
subsets S = {uj,u,,...,u,} C V.

» So, a finite subset S = {uj,u,,...,u,} C Visan
orthonormal basis, if

(uj,u;) =0 Vi j=12....,ni#]
lui| =1 Vi, =1,2,....,n
S is a basis of V
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Orthonormal Bases

Example 6.3.1

Most obvious example of an orthonormal basis is standard
basis S = {e;,ez,...,e,} CR", where

(1,0,0,...,0)
= (0,1,0,...,0)
(0,0,1,...,0) (1)

e, =(0,0,0,...,1)

w I\.) l—‘
I

?
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Orthonormal Bases

Lemma 6.3.1

Suppose (V,(—,—)) is an inner product space. Suppose

S ={uy,uy,...,u,} C Vis an orthogonal set, consisting of
nonzero vectors. Then, S is linearly independent.

Proof. Suppose

cauy+cuy+ -+ cu,=0 where ¢,...,¢c, € R.

— <U1, ciu; + ouy 4 - - -+ Cnlln> = <U1,0> =0

= ¢1(ug,u;) + (ug,up) + - -+ + ¢, (ug,u,) =0
)

:>C1<U1,U1>+C20—|—"‘+Cn020. :>C1<U1,U1 =0.
= ¢, =0. Likewise, ¢ =---=c¢,=0
This completes the proof. [ ]
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Orthonormal Bases

Recall: Orthogonal Projections

Suppose (V, (—,—)) is an inner product space and u,v € V.
Then the orthogonal projective of u along v is

. u,v
Proj,(u) = <HVH2>V

In the next frame, we would discuss Gram-Schmidt
Orthogonalization Process.
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Orthonormal Bases

Theorem 6.3.2: Gram-Schmidt Orthogonalization
Process

Let (V, (—,—)) be an inner product space and
S ={uy,uy,...,u,} be a basis of V. Construct the following
sequence of vectors:

Vi = U
vy = uy — Proj,, (up)
vz = u3 — Proj,,(u3) — Proj,,(u3)

v, = u, — Proj,, (u,) — Proj,,(u,) — - -+ — Proj,,_,(u,)

()

Then, {vi,...,v,} is an Orthogonal Basis of V.
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Orthonormal Bases

Proof.It is easy to see, inductively,
span{vi,...,v,} = span{u,uy,... u,} = V.

Since dim V = n, the theorem follows from Theorem 4.5.5. =
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Orthonormal Bases

Continued

In this frame, we write Equation 2, more explicitly.

Vi = UuU;
_ _ {ugv)
V2 ||v1|\2> 1 -
_ _ {uzvi _ (u3,vo
Vs = U = o 2V T 2 V2 (3)
<Un,V]_> (um"2> <u,,,v2>
Vp, = u, — Vi — Vg — v oo — S5V,
e VT B TP [voa|? "1
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Orthonormal Bases

Continued

In this frame, we show first two terms geometrically:

uy .
uz—projy; (uz)=:v2

o—————>eo

Proju; u2 vi=ug
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Orthonormal Bases

Corollary 6.3.3

Let (V,(—,—)) be an inner product space and
S ={uy,uy,...,u,} be a basis of V. Let {vy,v,,...,v,} be
as in Equation 2, which is an orthogonal basis of V. Then,

{ Vi W v, }
[Ival[ " flval[ ™ [lvall

is an Orthonormal Basis of V.
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Example

Example 6.3.2

Let u; = (1,1,1), u = (1,-1,1), u3 = (1,1, —1). Use
Gram-Schmidt Orthogonalization process, to compute an
orthonormal basis of R3, in two steps, using Theorem 6.3.2

and Corollary 6.3.3.
Solution: We have

2 2 2
lua[[® = Juzl|” = Jlus||” =3,

<U1,U2> — <u17u3> - 17 <u27u3> - _1
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Example

Continued

(v =u; =(1,1,1)
vo = up — My, = (1,-1,1) - (1 1,1) = (% _%’ %)

, 2l :
Jva* = 32 <>l'37V2><: —>§
o {uzwg _ {uzvp
| A A T Y e e
=(1,1,-1)-3(1,1,1) - 2419 (3.-%3)

) —
(1,1, 1) — (1,1,1)+( ,—2.1) =(1,1,-1) + (0, —1,0)
=(1,0,-1)
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Example

Continued

So, an Orthogonal Basis of R is

(09 3-47) w00}

2V2
Also, [will=V3, v = Ve vsll = v2
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Example

Continued

So, an Orthonormal basis of R3 is
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