Chapter II

Introduction to Witt Rings

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

May 112013

1 Definition of $\widehat{W}(F)$ and $W(F)$

From now on, by a quadratic form, we mean a nonsingular quadratic form (see page 27). As always, F will denote a field with $\operatorname{char}(F) \neq 2$. We will form two groups out of all isomorphism classes of quadratic forms over F, where the orthogonal sum will be the addition. We need to define a Monoid. In fact, a monoid is like an abelian group, where elements need not have an inverse.

Definition 1.1. A monoid is a set M with a binary operation + satisfying the following properties: $\forall x, y, x \in M$, we have

1. (Associativity) $(x+y)+z=x+(y+z)$.
2. (Commutativity) $x+y=y+x$
3. (Identity) M has an additive identity (zero) $0 \in M$ such that $0+x=x$.

We define the Grothendieck group of a monoid.

Theorem 1.2. Suppose M is a monoid. Then there is an abelian group G with the following properties:

1. There is a homomorphism $i: M \longrightarrow G$ the binary structurs,
2. G is generated by the image M.
3. G has the following universal property: suppose \mathcal{G} be any abelian group and $\varphi: M \longrightarrow \mathcal{G}$ is a homomorphism of binary structures. Then there is a unique homomorphim $\psi: G \longrightarrow \mathcal{G}$ such that the diagram

commutes.

Proof. (The proof is like that of localization. Lam gives a proof when M is cancellative.) We define an equivalence realtion \sim on $M \times M$ as follows: for $x, y, x^{\prime}, y^{\prime} \in M$ define

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \quad \text { if } \quad x+y^{\prime}+z=x^{\prime}+y+z \quad \text { for some } \quad z \in M
$$

(Think of $(x, y)=x-y$.) We will denote the equivalence class of (x, y) by $\overline{(x, y)}$. We let G be the set of the equivalence classes. Define "addition" by $\overline{(x, y)}+\overline{(u, v)}:=\overline{(x+u, y+v)}$. Then, G is a group. $\overline{(0,0)}$ acts as the zero of G and $-\overline{(x, y)}=\overline{(y, x)}$.

Define $i: M \longrightarrow G$ by $i(x)=\overline{(x, 0)}$. It is a homomorphism of binarystructures. It follows it is injective and G is generated by M.

For the universal property, define $\psi(x, y)=\varphi(x)-\varphi(y)$.
Definition. This groups is called the Grothendieck group of M. It is sometimes denoted by $\operatorname{Groth}(M)$.

Examples.

1. Let $V(F)$ be the isomorphims classes of finite dimensional vector spaces. Then, $V(F)$ is a (cancellative) monoid, under the operation \oplus, direct sum. It follows easily (check or ask me to check) that $\operatorname{Groth}(V(F)) \approx$ \mathbb{Z}.
2. Let A be a commutative ring. Let $\mathcal{P}(A)$ be the set of all isomorphism classes of finitely generated projective A-modules. $\mathcal{P}(A)$ is a monoid under the operation \oplus, direct sum. (Note $\mathcal{P}(A)$ not cancellative). We denote

$$
K_{0}(A):=\operatorname{Groth}(\mathcal{P}(A)) \quad \text { called the Grothendieck group }
$$

of projective modules. (Note, this approach to define Grothendiek Group $G_{0}(A)$ of finitely generated A-modules does not work.)
3. Our interest in this course is the monoid $M=M(F)$ of all the isometry classes of quadratic forms. It is a (cancellative) monoid, under the orthogonal sum \perp.

Definition 1.3. Let $M=M(F)$ denote the monoid of all nonsingular isometry classes of quadratic spaces over F. Define Grothendieck-Witt Group

$$
\widehat{W}(F):=\operatorname{Groth}(M(F)) . \quad \text { By cnacellation } \quad M(F) \hookrightarrow \widehat{W}(F) .
$$

In deed, $\widehat{W}(F)$ has a ring srtucture. The multiplicative structue is given by tensor product of quadratic forms defined in $\S 1.6$. That means,

1. For $\left.x=\left[\left(V_{1}, q_{1}\right)\right], y=\left[\left(V_{2}, q_{2}\right)\right)\right] \in \widehat{W}(F)$ define,

$$
x y:=\left[\left(V_{1} \otimes V_{2}, q_{1} \otimes q_{2}\right)\right]
$$

2. We can check all the properties of ring for \perp and the tensor product:
(a) Since tensor product is commutative (up to isomorphim), the multiplication on $\widehat{W}(F)$ is a commutative: i. e. $x y=y x$.
(b) (Distributivity) $x(y+z)=x y+x z$
(c) $\langle 1\rangle$ is the multiplicative identity.

So, $\widehat{W}(F)$ is a commutative ring.

Furhter Comments:

1. Any element $x \in \widehat{W}(F)$ can be written as $x=q_{1}-q_{2}$ where q_{1}, q_{2} are nonsingular quadratic forms.
2. For two quadratic form q_{1}, q_{2} We have $q_{1}=q_{2} \in \widehat{W}(F) \Longleftrightarrow q_{1} \cong q_{1}$.

Proof. Suppose $q_{1}=q_{2} \in \widehat{W}(F)$. Then, $\left(q_{1}, 0\right) \sim\left(q_{2}, 0\right)$ and hence, $q_{1}+z \cong q_{2}+z$ for some quadratic space z. By cancellation $q_{1} \cong q_{2}$. The proof is complete.
3. The dimension function induces a homomorphims of binary structures

$$
\operatorname{dim}: M(F) \longrightarrow \mathbb{Z} \quad(V, q) \mapsto \operatorname{dim} V .
$$

4. By the universal property, the dimension function induces a homomorphim of groups

$$
\operatorname{dim}: \widehat{W}(F) \longrightarrow \mathbb{Z} \quad q_{1}-q_{2} \mapsto \operatorname{dim} q_{1}-\operatorname{dim} q_{2}
$$

In fact, it is a homomorphism of rings.
5. The kernel of the homomorphism is denoted by $\widehat{I}(F)$ is called the Fundamental ideal of $\widehat{W}(F)$.
6. We have,

$$
\frac{\widehat{W}(F)}{\widehat{I}(F)} \approx \mathbb{Z}
$$

This ideal is truly fundamental in this theory. Voevodsky received Fields Medal, for proving Milnor's conjecture, concerning these ideals.

Proposition 1.4. The fundamental ideal $\widehat{I}(F)$ is additively generated by

$$
\text { the expressions }\langle a\rangle-\langle 1\rangle, \quad \text { with } \quad a \neq 0 .
$$

Proof. Clearly, for all $a \neq 0$ the elements $\langle a\rangle-\langle 1\rangle \in \widehat{I}(F)$. Let $z \in \widehat{I}(F)$. Then, $z=q_{1}-q_{2}$ where q_{1}, q_{2} are nonsingualr and $\operatorname{dim} q_{1}=\operatorname{dim} q_{2}=n($ say $)$. We diagonalize

$$
q_{1}=\left\langle a_{1}, \ldots, a_{n}\right\rangle, \quad q_{1}=\left\langle b_{1}, \ldots, b_{n}\right\rangle
$$

So,

$$
z=q_{1}-q_{2}=\sum_{i=1}^{n}\left\langle a_{i}\right\rangle-\sum_{i=1}^{n}\left\langle b_{i}\right\rangle=\sum_{i=1}^{n}\left(\left\langle a_{i}\right\rangle-\langle 1\rangle\right)-\sum_{i=1}^{n}\left(\left\langle b_{i}\right\rangle-\langle 1\rangle\right) .
$$

The proof is complete.
The following is a primary object of our study.
Definition 1.5. Define the Witt Ring

$$
W(F):=\frac{\widehat{W}(F)}{\mathbb{H} \cdot \mathbb{Z}}
$$

Clearly, $W(F)$ inherits the ring structure from $\widehat{W}(F)$.
Proposition 1.6. 1. There is an 1 to 1 correspondence between the

$$
\text { isometry classes of all anisotropic forms } \longleftrightarrow W(F)
$$

2. Two (nonsingular) forms q, q^{\prime} represent the same element in $W(F)$ if and only if $q_{a} \cong q_{a}^{\prime}$. (In this case we say q, q^{\prime} are "Witt-similar".)
3. If $\operatorname{dim} q=\operatorname{dim} q^{\prime}$ then q, q^{\prime} represent the same element in $W(F)$ if and only if $q \cong q^{\prime}$.

Proof. Suppose $x \in W(F)$. Then, $x=q_{1}-q_{2} \in W(F)$ for two nongingular forms. Since $\langle a\rangle \perp\langle-a\rangle \cong \mathbb{H}$, we have $\langle-a\rangle=-\langle a\rangle$ for all nonzero $a \in \dot{F}$. With $q_{1} \cong\left\langle a_{1}\right\rangle \perp \cdots\left\langle a_{n}\right\rangle$ and $q_{2} \cong\left\langle b_{1}\right\rangle \perp \cdots\left\langle b_{m}\right\rangle$ we have

$$
\text { In } W(F) \quad q_{1}-q_{2}=\left\langle a_{1}\right\rangle \perp \cdots \perp\left\langle a_{n}\right\rangle \perp\left(\left\langle-b_{1}\right\rangle \perp \cdots\left\langle-b_{m}\right\rangle\right)=: q
$$

for some some nonsingualr form q. Now, we can write $q \cong q_{h} \perp q_{a}$, by the decomposition theorem. Therefore, $q=q_{a} \in W(F)$. So, any element $x=q_{1}-q_{2} \in W(F)$ is represented by an anisotropic form. Now, we show is correspondence is $1-1$. Let q, q^{\prime} be anisotropic and $q=q^{\prime} \in W(F)$. Then, $q=q^{\prime}+m \mathbb{H} \in \widehat{W}(F)$. Without loss we assume $m \geq 0$. By the comment above $q \cong q^{\prime} \perp m \mathbb{H}$. Since q is anisotropic $m=0$. So, $q \cong q^{\prime}$.

Now, (2) follows from (1). For (3), write $q=q_{h} \perp q_{a}, q^{\prime}=q_{h}^{\prime} \perp q_{a}^{\prime}$ where q_{a}, q_{a}^{\prime} are anisotropic and q_{h}, q_{h}^{\prime} are hyperbolic. Suppose $q=q^{\prime} \in W(F)$. Then $q_{a} \cong q_{a}^{\prime}$, by (2). Comparing dimension, we have $q \cong q^{\prime}$.

Definition 1.7. Consider the natural homomorphism

$$
i: \widehat{W}(F) \longrightarrow W(F)
$$

1. The ideal (image) $I(F):=i(\widehat{I}(F))$ is also called the fundamental ideal of $W(F)$.
2. Note that the induced map $i: \widehat{I}(F) \xrightarrow{\sim} I(F)$ is an isomorphism.

Proof. Suppose $i(x)=0$. That means $x=m \mathbb{H}$. Considering, dimension, $0=\operatorname{dim} x=2 m$. So, $m=0$ and $x=0$.

Proposition 1.8. A form q represents an element in $I(F) \subseteq W(F)$ if and only if $\operatorname{dim} q$ is even.

Proof. Suppose $x \in I(F)$ is represented by the form q. (Note, by element in $W(F)$ is represented by a nonsisngular form.) In any case, $x=q_{1}-q_{2}$ with $\operatorname{dim} q_{1}=\operatorname{dim} q_{2}$. So, $q=q_{1}-q_{2}+m \mathbb{H} \in \widehat{W}(F)$. The dimension function is defined on $\widehat{W}(F)$. Applying this function, we have $\operatorname{dim} q=2 m$ is even.

Conversely, suppose $\operatorname{dim} q$ is even. In $W(F)$, we have

$$
\begin{gathered}
q=\left\langle a_{1}, b_{1}\right\rangle \perp \cdots \perp\left\langle a_{n}, b_{n}\right\rangle \\
=\left(\left\langle a_{1}\right\rangle-\left\langle-b_{1}\right\rangle\right) \perp \cdots \perp\left(\left\langle a_{n}\right\rangle-\left\langle-b_{n}\right\rangle\right) \in I(F) .
\end{gathered}
$$

Corollary 1.9. Consider the epimorphism

$$
\operatorname{dim}: \widehat{W}(F) \rightarrow \mathbb{Z}
$$

1. dim induces an epimorphism

$$
\operatorname{dim}_{0}: W(F) \rightarrow \frac{\mathbb{Z}}{2 \mathbb{Z}}
$$

2. Further, dim_{0} induces an isomorphism

$$
\frac{W(F)}{I(F)} \xrightarrow{\sim} \frac{\mathbb{Z}}{2 \mathbb{Z}}
$$

Proof. Consider the commutative diagram

The diagonal map at the end is well defined by the "if" part of (1.8) and it is an isomorphism by the "only if" part of (1.8).

2 Group of Square Classes

We exploit the group of square classes $\frac{\dot{F}}{F^{2}}$.

1. The determinant function defines a monoid homomorphism

$$
d: M(F) \longrightarrow \frac{\dot{F}}{\dot{F}^{2}}
$$

2. It extends to

$$
d: \widehat{W}(F) \longrightarrow \frac{\dot{F}}{\dot{F}^{2}} \quad \text { by } \quad q_{1}-q_{2} \mapsto d\left(q_{1}\right) d\left(q_{2}\right)^{-1} \in \frac{\dot{F}}{\dot{F}^{2}}
$$

It does not extend to $W(F)$, because $\operatorname{det}(\mathbb{H})=-1$ need not be in \dot{F}^{2}.
3. However, for a quadratic form, we define signed determinant

$$
d_{ \pm}(q)=(-1)^{\frac{n(n-1)}{2}} d(q) \quad \text { where } \quad n=\operatorname{dim} q
$$

Even this fails to extend to a homomorphism on $W(F)$.
4. We define a group structure on

$$
Q(F):=\mathbb{Z}_{2} \times \frac{\dot{F}}{\dot{F^{2}}}
$$

$\forall(e, x),\left(e^{\prime}, x^{\prime}\right) \in Q(F) \quad$ define product $\quad(e, x) \cdot\left(e^{\prime}, x^{\prime}\right):=\left(e+e^{\prime},(-1)^{e e^{\prime}} x x^{\prime}\right)$.
(a) This defines an abelian group structure on $Q(F)$.
(b) $(0,1) \in Q(F)$ is the identity.
(c) Also
$(e, x) \cdot\left(e,(-1)^{e} x\right)=\left(0,(-1)^{e^{2}+e} x^{2}\right)=(0,1), \quad$ which describes the inverse.
(d) We have an exact sequence of groups

$$
0 \longrightarrow \frac{\dot{F}}{\dot{F}^{2}} \longrightarrow Q(F) \longrightarrow \mathbb{Z}_{2} \longrightarrow 0 \quad \text { 1st homomophism } \quad x \mapsto(0, x) .
$$

Proposition 2.1. We have the following:

1. The map

$$
\left(\operatorname{dim}_{0}, d_{ \pm}\right): M(F) \longrightarrow Q(F) \quad \text { is a monoid epimorphism. }
$$

2. This extends to a group epimorphism

$$
\left(\operatorname{dim}_{0}, d_{ \pm}\right): \widehat{W}(F) \rightarrow Q(F)
$$

3. This induces an isomorphism

$$
\frac{W(F)}{I(F)^{2}} \xrightarrow{\sim} Q(F) .
$$

Proof. To see $\left(\operatorname{dim}_{0}, d_{ \pm}\right)$is a monoid homomorphism, let q, q^{\prime} be two nonsingular forms, with $\operatorname{dim} q=n, \operatorname{dim} q^{\prime}=n^{\prime}$. We compute

$$
\left.\left.\begin{array}{c}
\left(\operatorname{dim}_{0}, d_{ \pm}\right)(q) \cdot\left(\operatorname{dim}_{0}, d_{ \pm}\right)\left(q^{\prime}\right)=\left(n+n^{\prime},(-1)\left(n n^{\prime}+\frac{(n(n-1)}{2}+\frac{\left(n^{\prime}\left(n^{\prime}-1\right)\right.}{2}\right)\right. \\
\\
=\left(n+n^{\prime},(-1) d\left(q^{\prime}\right)\right) \\
\left(\frac{\left(n+n^{\prime}\right)\left(n+n^{\prime}-1\right)}{2}\right) \\
\end{array}\right)(q) d\left(q^{\prime}\right)\right)=\left(\operatorname{dim}_{0}, d_{ \pm}\right)\left(q \perp q^{\prime}\right)
$$

To see it is epimorphism, note

$$
\left(\operatorname{dim}_{0}, d_{ \pm}\right)(\langle a\rangle)=\left(1, a \cdot \dot{F}^{2}\right), \quad\left(\operatorname{dim}_{0}, d_{ \pm}\right)(\langle 1,-a\rangle)=\left(0, a \cdot \dot{F}^{2}\right)
$$

Now, $\left(\operatorname{dim}_{0}, d_{ \pm}\right)$extends to $\widehat{W}(F)$ from the universal property of $\widehat{W}(F)$. So, (2) is established. To, see (3), note

We show that $\beta_{0}\left(I(F)^{2}\right)$ is trivial. By (1.4) and, $I(F)$ is additively generated by $\langle 1\rangle-\langle a\rangle=\langle 1, a\rangle$. So, $I(F)^{2}$ is additively generated by product $\langle 1, a, b, a b\rangle$. we have

$$
\left(\operatorname{dim}_{0}, d_{ \pm}\right)(\langle 1, a, b, a b\rangle)=\left(0, a^{2} b^{2} \dot{F}^{2}\right)=(0,1)
$$

So, β_{0} factors through $f: \frac{W(F)}{I(F)^{2}} \rightarrow Q(F)$. Now, we will construct an inverse $g: Q(F) \longrightarrow \frac{W(F)}{I(F)^{2}}$ of f, as follows:

$$
g(0, a)=\langle 1, a\rangle \quad\left(\bmod I(F)^{2}\right), \quad g(1, a)=\langle a\rangle\left(\bmod I(F)^{2}\right),
$$

Routine checking establishes (see textbook) that g is a group homomorphism. It is easy to see that $f g=I d$. So, g is injective. But $g(1, a)=$ $\langle a\rangle\left(\bmod I(F)^{2}\right)$. So, g is also surjective.

Corollary 2.2 (Pfister). $I(F)^{2}$ consists of classes of the even dimensional forms q for which $d(q)=(-1)^{\frac{n(n-1)}{2}}$, where $n=\operatorname{dim} q$.
Proof. It is restatement of (2.1) that the map $f(q)=\left(\operatorname{dim}_{0}(q),(-1)^{\frac{n(n-1)}{2}} d(q)\right)$ is injective, while the identity of $Q(F)$ is $(0,1)$.

Corollary 2.3 (Pfister). The map f induces an isomorphim $\frac{I(F)}{I(F)^{2}} \xrightarrow{\sim} \frac{\dot{F}}{F^{2}}$.
Proof. We have the diagram

We only need to prove that the, restriction of f on the first line lands in $\frac{\dot{F}}{\dot{F}^{2}}$ It is surjective because $d_{ \pm}(\langle 1,-a\rangle)=a$. It is injective because all the other three maps are.

Let $q \in I(F)$, so $\operatorname{dim} q=2 r$. So,

$$
f([q])=\left(2 r,(-1)^{\frac{2 r(2 r-1)}{2}} d(q)\right)=\left(0,(-1)^{r} d(q)\right)
$$

This also shows that the diagram commutes. Now, $f([q])=(0,1)$ means $(-1)^{r} d(q)=1 \cdot \dot{F}^{2}$.

$$
f([q])=(0,1) \Longleftrightarrow(-1)^{r} d(q)=1 \cdot \dot{F}^{2} \Longleftrightarrow d(q)=\left\{\begin{array}{cc}
1 & \text { if } r \text { even } \\
-1 & \text { if } r \text { odd } .
\end{array}\right.
$$

Corollary 2.4. For $q \in I(F)$, we have $\operatorname{dim} q=2 r$. Then,

$$
q \in I(F)^{2} \Longleftrightarrow d(q)=\left\{\begin{array}{cc}
1 & \text { if r even } \\
-1 & \text { if r odd } .
\end{array}\right.
$$

Corollary 2.5. The following are equivalent:

1. $\widehat{W}(F)$ is noetherian.
2. $W(F)$ is noetherian.
3. $\frac{\dot{F}}{\dot{F}^{2}}$ is finite.

Proof. $(1) \Longrightarrow(2)$ is obvious.
$((2) \Longrightarrow(3))$: Note $\frac{I(F)}{I(F)^{2}}$ is noetherian, over the noetherian ring $\frac{W(F)}{I(F)}$. Also, by (1.9) $\frac{W(F)}{I(F)} \approx \mathbb{Z}_{2}$. So, $\frac{I(F)}{I(F)^{2}}$ is finite and hence, by (2.3), $\frac{\dot{F}}{\dot{F}^{2}}$ is finite. $((3) \Longrightarrow(1))$: By diagonalization, $\widehat{W}(F)$ is additively generated by $\langle a\rangle$, with $a \in \frac{\dot{F}}{\dot{F}^{2}}$. Since, $\frac{\dot{F}}{\dot{F}^{2}}$ is finite, $\widehat{W}(F)$ is finitely generated commutative ring over \mathbb{Z}. So, $\widehat{W}(F)$ is noetherian.

Remark 2.6. The map $f: \frac{W(F)}{I(F)^{2}} \xrightarrow{\sim} Q(F)$ in (2.1) is an isomorphism of groups. Since, $\frac{W(F)}{I(F)^{2}}$ is ring, f induces a ring structure on $Q(F)$. Further comments:

1. The multiplication is given by

$$
(0, a) o(0, b)=(0,1),(0, a) o(1, b)=(0, a),(1, a) o(1, b)=(1, a b) .
$$

2. For two fields F, K if there is an isomorphism $\theta: \frac{\dot{F}}{F^{2}} \xrightarrow{\sim} \frac{\dot{K}}{K^{2}}$, with $\theta(-1)=-1$ then $Q(F) \xrightarrow{\sim} Q(K)$.

3 Some Elementary Computations

Definition 3.1. A field k is said to be quadratically closed, if $\sqrt{a} \in k$ for all $0 \neq a \in k$.

Theorem 3.2. F is quadratrically closed if and only if $\operatorname{dim}: \widehat{W}(F) \longrightarrow \mathbb{Z}$ is an isomprphism. In this case $W(F) \xrightarrow{\sim} \mathbb{Z}_{2}$.

Proof. Suppose q is a form. We have

$$
q=\left\langle a_{1},\right\rangle \perp\left\langle a_{2}\right\rangle \cdots\left\langle a_{n}\right\rangle=\left\langle b_{1}^{2}\right\rangle \perp\left\langle b_{2}^{2}\right\rangle \cdots\left\langle b_{n}^{2}\right\rangle=n\langle 1\rangle
$$

So, the map dim is an isomorphism. Also $q-q^{\prime}=\left(\operatorname{dim} q-\operatorname{dim} q^{\prime}\right)\langle 1\rangle \in \widehat{W}(F)$. So, dim is also injective. Note $\mathbb{H} \mapsto 2$.

We define signature of the form.
Definition 3.3. Let $F=\mathbb{R}$ and q is a nonsingular form with $\operatorname{dim} q=n$. Use diagonalization, we have $q \cong r\langle 1\rangle \perp(n-r)\langle-1\rangle$ for some $n, m>0$. We define signature of q; as

$$
\operatorname{Sig}(q)=2 r-n=(\text { number of }\langle 1\rangle)-(\text { number of }\langle-1\rangle) .
$$

We need to justify that this is well defined. Suppose $q \cong s\langle 1\rangle \perp(n-s)\langle-1\rangle$. Passing to Witt group

$$
[q]=r[\langle 1\rangle]-(n-r)[\langle 1\rangle]=(2 r-n)[\langle 1\rangle] .
$$

Similarly, $[q]=(2 s-n)[\langle 1\rangle]$. So, $(2 r-n)[\langle 1\rangle]=(2 s-n)[\langle 1\rangle]$. It follows from (2) on (3.4 below) that $r=s$

So, $\operatorname{Sig}(q)$ is well defined.
Proposition 3.4 (3.2). Let $F=\mathbb{R}$. Then:

1. There are exactly two anisotropic form at each (positive) dimesions, namely $n\langle 1\rangle, n\langle-1\rangle$.
2. $W(\mathbb{R}) \xrightarrow{\sim} \mathbb{Z}$ is an isomorphism. (This is not induced by the dimension map.)
3. (Sylvester's Law of Inertia) Two (nonsingular) forms over F are quivalent if and only is they have same dimension and same signature.
4. $\widehat{W}(\mathbb{R}) \xrightarrow{\sim} \mathbb{Z}(G)$ where G is a 2 -element group.

Proof. We have $\frac{\dot{F}}{\dot{F}^{2}}=\{ \pm 1\}$. So, a form $q \cong n\langle 1\rangle \perp m\langle-1\rangle$ Clearly, q is anisotropic if and only if either $n=0$ or $m=0$. So, (1) is established.

We prove (2). Suppose $x \in W(\mathbb{R})$. There is an anisotropic form q such that $x=[q]$. By (1) $q=n\langle 1\rangle$ for some $n \in \mathbb{Z}$. Define $\psi: W(\mathbb{R}) \longrightarrow \mathbb{Z}$ by $\psi(x):=n$. We need to ensure that ψ is well defined. So, suppose $x=[n\langle 1\rangle]=$ $[m\langle 1\rangle]$. Assume $n \geq m$. So, in $\widehat{W}(F)$ we have $(n\langle 1\rangle)=(m\langle 1\rangle)+u(\mathbb{H})$. Since, q is anisotropic, $u=0$ and $n=m$. So, ψ is well defined. It is clear that ψ is surjective. Now suppose $x=[n\langle 1\rangle]$ and $\psi(x)=0$. By definition $n=0$. So, (2) is established.

We prove (3). Suppose $q \cong q^{\prime}$. It is established that they have same dimesion and signature. Now suppose q, q^{\prime} have same signature and dimension. We can write

$$
q=m\langle 1\rangle \perp n\langle-1\rangle, \quad r\langle 1\rangle \perp s\langle-1\rangle
$$

So, $\operatorname{dim} q=m+n=r+s=\operatorname{dim} q^{\prime}, 2 n-\operatorname{dim} q=2 r-\operatorname{dim} q^{\prime}$. So, $m=r, n=s$. So, (3) is established.

We prove (4). The determiant $d: \widehat{W}(\mathbb{R}) \longrightarrow \frac{\dot{\mathbb{R}}}{\dot{\mathbb{R}}^{2}}$ is defined. We can use this to see $e_{1}:=\langle 1\rangle \neq\langle-1\rangle=: e_{2} . e_{1}, e_{2}$ are linealry independent over \mathbb{Z}. To, see this let $m\langle 1\rangle+n\langle-1\rangle=0 \in \widehat{\mathbb{R}}$. Taking the image in $W(\mathbb{R})$, we have $(m-n)\langle 1\rangle=0 \in W(\mathbb{R})$. By (2), $m=n$.

It is also clear that $\widehat{W} \mathbb{R}$ is generated by e_{1}, e_{2}, as a ring. So, we have $\widehat{W} \mathbb{R} \approx \mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$. The proof is complete.

Remark 3.5 (Skip?). We have the following, when $F=\mathbb{R}$.

1. $\widehat{I}(F)$ a free abelian group generated by $\langle 1\rangle-\langle-1\rangle$. (Obvious from (4) of (3.4))
2. Sig : $M(F) \longrightarrow \mathbb{Z}$ is a monoid homomorphism.
3. Discuss method of "completion of square" for diagonalization.

3.1 Over the filed $F=\mathbb{F}_{q}$ with $q \neq 2$

Let $q=p^{m}$ for some prime $p \neq 2$ and $F=\mathbb{F}_{q}$.

1. \dot{F} is cyclic group of even order $q-1$. (See field theory.)
2. So, $\dot{F} \approx G \times \mathbb{Z}_{2}$ where $o(G)$ is odd.
3. So, $o\left(\frac{\dot{F}}{\dot{F}^{2}}\right)=2$ (because everything has order 1 or 2.)

Proposition 3.6(3.4). Let $F=\mathbb{F}_{q}$ and $\frac{\dot{F}}{\dot{F}^{2}}=\{1, s\}$. Then,

1. s is a sum of two squares, and
2. every (nonsingular) binary form is universal.

Proof. In fact, $(1) \Longrightarrow(2)$: Since $1, s$ are the only two square classes, there are at most three non-equivalent binary forms

$$
f_{1}=\langle 1,1\rangle=x^{2}+y^{2}, \quad f_{2}=\langle 1, s\rangle=x^{2}+s y^{2}, \quad f_{3}=\langle s, s\rangle=s x^{2}+s y^{2} .
$$

We need to check, $1, s \in D\left(f_{i}\right)$. Clealry, $1, s \in D\left(f_{2}\right)$. By (1) $s=a^{2}+b^{2}$. So, $s=f_{1}(a, b), 1=f_{1}(1,0) \in D\left(f_{1}\right)$. Then, $s=f_{3}(1,0), s^{2}=f_{3}(a, b) \in D\left(f_{3}\right)$. So, $(1) \Longrightarrow(2)$.

We will prove (1). Two cases:

1. $-1 \in \dot{F}^{2}$. Then, $\langle 1,1\rangle \cong\langle 1,-1\rangle$, which is universal (because $\mathbb{H}=$ $X_{1} X_{2}$. So, $s \in D(\langle 1,1\rangle$.
2. Suppose $-1 \notin \dot{F}^{2}$. Consider two (finite) sets $\dot{F}^{2}, 1+\dot{F}^{2}$. They are not equal, because $1 \in \dot{F}^{2}$ and $1 \notin 1+\dot{F}^{2}$. In particular, there is a $z \in \dot{F}$ such that $1+z^{2} \notin \dot{F}^{2}$. Now by hypothesis, $1+z^{2} \neq 0$. Since $\frac{F}{F^{2}}=\{1, s\}, s \dot{F}^{2}=\left(1+z^{2}\right) \dot{F}^{2}$. So, $s=\left(1+z^{2}\right) \lambda^{2}$ is a sum of two squares.

4 Presentation of Witt Rings

We describe $\widehat{W}(F)$ in terms of generators and relations/
Lemma 4.1. Let F be a field, with char $(F) \neq 2$. Then, $\widehat{W}(F)$ is generated, as a commutative ring), by the set $\{\langle a\rangle: a \in \dot{F}\}$. Further, for $a, b \in \dot{F}$, we have

1. $\left(R_{0} 1\right):\langle 1\rangle=1(=$ the identity of the ring $)$.
2. $\left(R_{0} 2\right):\langle a\rangle \cdot\langle b\rangle=\langle a b\rangle$
3. $\left(R_{0} 3\right):\langle a\rangle+\langle b\rangle=\langle a+b\rangle \cdot(1+\langle a b\rangle)$, whenever $a+b \in \dot{F}$.

Proof. $R_{0} 1, R_{0} 2$ follows from definition of product. We have

$$
d(\langle a\rangle+\langle b\rangle)=a b \dot{F}^{2},
$$

and
$d\left((\langle a+b\rangle \cdot(1+\langle a b\rangle))=d\left(\langle a+b\rangle+\left\langle a^{b}+a b^{2}\right\rangle\right)=(a+b)\left(a^{2} b+a b^{2}\right) \dot{F}^{2}=(a+b) \dot{F}^{2}\right.$.
Also, $a+b$ is represented by both sides. Now $R_{0} 3$ follows from I.5.1.
Theorem 4.2 (4.1). Let $R=\mathbb{Z}\left[X_{a}: a \in \dot{F}\right]$ be the polynomial ring over \mathbb{Z}, where X_{a} are indeterminates (possibly, infinitely many). Let I be the ideal generated by the set $R 1 \cup R 2 \cup R 3$ where

1. $R 1=\left\{X_{1}-1\right\}$
2. $R 2=\left\{X_{a b}-X_{a} X_{b}: a, b \in \dot{F}\right\}$
3. $R 3=\left\{X_{a}+X_{b}-X_{a+b}\left(1+X_{a b}\right): a, b \in \dot{F}\right.$ with $\left.a+b \in \dot{F}\right\}$

Then $\frac{R}{I} \approx \widehat{W}(F)$.

Proof. As usual define a ring homomorphism

$$
f_{0}: R \longrightarrow \widehat{W}(F) \text { by } \quad \varphi_{0}\left(X_{a}\right)=\langle a\rangle
$$

By lemma 4.1, $f_{0}(I)=0$. So, f_{0} induces a homomorphims φ, such that

We will define an inverse of f. We define a monoid homomorphism φ : $M(F) \longrightarrow \frac{R}{I}$ as follows:

Suppose q is a quadratic form. Take any diagonalization $q=\left\langle a_{1}, \cdots, a_{n}\right\rangle$. Define

$$
\varphi(q)=X_{a_{1}}+\cdots+X_{a_{n}}
$$

We need to check that this is well defined. Suppose

$$
q=\left\langle b_{1}, \cdots, b_{n}\right\rangle \quad \text { be another diagonalization. }
$$

By Witt's chain equivalence theorem, we may assume that $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ and $\left\langle b_{1}, \cdots, b_{n}\right\rangle$ are simply-equivalent. Without loss of generality, we can assume $a_{i}=b_{i} \quad \forall i \geq 3$ and

$$
\left\langle a_{1}, a_{2}\right\rangle \equiv\left\langle b_{1}, b_{2}\right\rangle
$$

Now on the image of X_{a} will be denoted by x_{a}. We have the following observation:

1. For all $a \in \dot{F}$, we have $x_{a^{2}}=1$.

Proof. First, by $R 1, R 2$ we have $1=x_{1}=x_{a} x_{a^{-1}}$. So, x_{a} is a unit for all $a \in \dot{F}$.
(a) (A) Since $a+a=2 a \neq 0$, by $R 3$ we have

$$
x_{a}+x_{a}=x_{2 a}\left(1+x_{a^{2}}\right)
$$

(b) (B) By $R 2$, we have $x_{a}=x_{a} x_{1}$. Now

$$
\begin{gathered}
x_{a}+x_{a}=x_{a} x_{1}+x_{a} x_{1}=x_{a}\left[x_{1}+x_{1}\right]=x_{a}\left[x_{2}\left(1+x_{1}\right)\right] \quad \text { by } R 3 \\
=x_{2 a}\left(1+x_{1}\right) \quad \text { by } R 2
\end{gathered}
$$

Comparing (A), (B) and cancelling, we have $x_{a^{2}}=x_{1}=1$.

Now, we have

$$
\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{2}
\end{array}\right)=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)\left(\begin{array}{cc}
x & z \\
y & w
\end{array}\right) .
$$

It follows, $b_{1}=a_{1} x^{2}+a_{2} y^{2}$ and taking determinant $a_{1} a_{2}=b_{1} b_{2} c^{2}$ for some $c \in \dot{F}$.

1. Case 1. $x=0$ or $y=0$. Without loss of generality $x=0$. So, $b_{1}=a_{2} y^{2}$. By $R 2$ we have $x_{b_{1}}=x_{a_{2} y^{2}}=x_{a_{2}} x_{y^{2}}=x_{a_{2}}$. Also,

$$
x_{a_{1}}=x_{b_{2} \frac{b_{1} c_{1}}{a_{1}}}=x_{b_{2} y^{2} c^{2}}=x_{b_{2}}
$$

Therefore

$$
x_{a_{1}}+x_{a_{2}}=x_{b_{1}}+x_{b_{2}} .
$$

2. Case 2. $x \neq 0, y \neq 0$. In this case,

$$
\begin{gathered}
x_{a_{1}}+x_{a_{2}}=x_{a_{1} x^{2}}+x_{a_{2} y^{2}}=x_{a_{1} x^{2}+a_{2} y^{2}}\left(1+x_{a_{1} a_{2}(x y)^{2}}\right) \\
=x_{b_{1}}\left(1+x_{a_{1} a_{2}}\right)=x_{b_{1}}\left(1+x_{b_{1} b_{2}}\right)=x_{b_{1}}+x_{b_{2}}
\end{gathered}
$$

So, φ is well defined. It is clearly a monoid homomorphism.
By defintion of Grothendieck group, φ extends to a group homomorphism $\varphi: \widehat{W}(F) \longrightarrow \frac{R}{I}$. Clearly, φ is the inverse of f.

5 Classification of Small Witt Rings

SKIP.

