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1 Definition of W\(F) and W (F)

From now on, by a quadratic form, we mean a nonsingular quadratic form
(see page 27). As always, F' will denote a field with char(F) # 2. We will
form two groups out of all isomorphism classes of quadratic forms over F,
where the orthogonal sum will be the addition. We need to define a Monoid.
In fact, a monoid is like an abelian group, where elements need not have an

mverse.

Definition 1.1. A monoid is a set M with a binary operation + satisfying

the following properties: V x,y,x € M, we have

1. (Associativity) (x +y) + 2 =2+ (y + 2).
2. (Commutativity) x +y =y +

3. (Identity) M has an additive identity (zero) 0 € M such that 0+z = .

We define the Grothendieck group of a monoid.



Theorem 1.2. Suppose M is a monoid. Then there is an abelian group G

with the following properties:

1. There is a homomorphism ¢ : M — G the binary structurs,
2. G is generated by the image M.

3. G has the following universal property: suppose G be any abelian group
and ¢ : M — G is a homomorphism of binary structures. Then there
is a unique homomorphim ¢ : G — G such that the diagram

M—=¢

|
\?; | o commutes.
%

g

Proof. (The proof is like that of localization. Lam gives a proof when M is
cancellative.) We define an equivalence realtion ~ on M x M as follows: for
x,y, 2,y € M define

(v,y) ~ (@) if z+y+z=2"4y+=z for some z € M.

(Think of (z,y) = x —y.) We will denote the equivalence class of (z,y) by
x,y). We let G be the set of the equivalence classes. Define "addition" by
x,y) + (u,v) := (x +u,y +v). Then, G is a group. (0,0) acts as the zero
of G and —(z,y) = (y,z).

Define i : M — G by i(x) = (z,0). It is a homomorphism of binary-
structures. It follows it is injective and G is generated by M.

——

For the universal property, define ¥ (x,y) = p(z) — ¢(y). n

Definition. This groups is called the Grothendieck group of M. It is some-
times denoted by Groth(M).

Examples.

1. Let V(F) be the isomorphims classes of finite dimensional vector spaces.
Then, V(F) is a (cancellative) monoid, under the operation @, direct
sum. It follows easily (check or ask me to check) that Groth(V (F)) ~
Z.



2. Let A be a commutative ring. Let P(A) be the set of all isomorphism
classes of finitely generated projective A—modules. P(A) is a monoid
under the operation @, direct sum. (Note P(A) not cancellative). We
denote

Ko(A) := Groth(P(A)) called the Grothendieck group

of projective modules. (Note, this approach to define Grothendiek
Group Go(A) of finitely generated A—modules does not work.)

3. Our interest in this course is the monoid M = M (F) of all the isometry
classes of quadratic forms. It is a (cancellative) monoid, under the
orthogonal sum .

Definition 1.3. Let M = M (F) denote the monoid of all nonsingular isom-
etry classes of quadratic spaces over F. Define Grothendieck-Witt Group

W(F) = Groth(M(F)). By cnacellation M (F) — /W(F)

In deed, /W(F ) has a ring srtucture. The multiplicative structue is given by

tensor product of quadratic forms defined in §1.6. That means,

1. For z = [(Vi,q)],y = [(Va, ¢2))] € W(F) define,

zy = [V @ Va, 1 @ q2)]

2. We can check all the properties of ring for | and the tensor product:

(a) Since tensor product is commutative (up to isomorphim), the mul-

tiplication on W\(F) is a commutative: i. e. zy = yz.
(b) (Distributivity) z(y + z) = zy + xz

(c) (1) is the multiplicative identity.

So, /W(F) is a commutative ring.



Furhter Comments:

1. Any element x € /V[7(F ) can be written as z = ¢; — ¢2 where ¢y, g2 are
nonsingular quadratic forms.

2. For two quadratic form ¢y, gs We have ¢, = ¢ € W(F) = ¢ X q.

Proof. Suppose ¢ = ¢2 € /W(F) Then, (¢1,0) ~ (g2,0) and hence,
g1 + 2 = qo + z for some quadratic space z. By cancellation ¢; = ¢».
The proof is complete. |

3. The dimension function induces a homomorphims of binary structures
dim: M(F) — Z (V,q) — dim V.
4. By the universal property, the dimension function induces a homomor-
phim of groups
dim:W(F) — 7 g1 — g2 — dim ¢; — dim ¢5.
In fact, it is a homomorphism of rings.

~

5. The kernel of the homomorphism is denoted by I(F') is called the Fun-
damental ideal of W (F).

6. We have,

This ideal is truly fundamental in this theory. Voevodsky received
Fields Medal, for proving Milnor’s conjecture, concerning these ideals.

~

Proposition 1.4. The fundamental ideal I(F') is additively generated by

the expressions (a) — (1), with a # 0.
Proof. Clearly, for all a # 0 the clements (a) — (1) € I(F). Let z € I(F).
Then, z = ¢1 — g2 where ¢y, g2 are nonsingualr and dim ¢; = dim g, = n (say).
We diagonalize
q1:<a1,...,an>, q1:<b1,...,bn>



The proof is complete. |

The following is a primary object of our study.

Definition 1.5. Define the Witt Ring
W(F)
W(F) :=
(F) =g
Clearly, W (F) inherits the ring structure from W(F ).

Proposition 1.6. 1. There is an 1 to 1 correspondence between the

isometry classes of all anisotropic forms <+— W(F)

2. Two (nonsingular) forms ¢, ¢’ represent the same element in W (F) if

and only if ¢, = ¢,. (In this case we say ¢, ¢’ are "Witt-similar".)

3. If dim ¢ = dim ¢’ then ¢, ¢’ represent the same element in W (F') if and
only if ¢ = ¢'.

Proof. Suppose z € W(F'). Then, z = q; — ¢ € W(F) for two nongingular
forms. Since (a) L (—a) = H, we have (—a) = —(a) for all nonzero a € F.
With ¢; = (a1) L -+ (an) and ¢ = (by) L ---(b,,) we have

In W(F) ¢ —g2=(a1) L--- L{an) L ({=b) L---{=bm)) =1 ¢

for some some nonsingualr form ¢q. Now, we can write ¢ = ¢, L q., by
the decomposition theorem. Therefore, ¢ = ¢, € W(F). So, any element
xr = q — qo € W(F) is represented by an anisotropic form. Now, we show
is correspondence is 1-1. Let ¢, ¢ be anisotropic and ¢ = ¢ € W(F'). Then,
g=¢ +mH e /W(F ). Without loss we assume m > 0. By the comment
above ¢ = ¢’ L mH. Since ¢ is anisotropic m = 0. So, ¢ = ¢'.

Now, (2) follows from (1). For (3), write ¢ = qr L ¢4, ¢ = ¢, L ¢, where
a, ¢, are anisotropic and g, ¢, are hyperbolic. Suppose ¢ = ¢ € W(F).
Then ¢, = ¢, by (2). Comparing dimension, we have ¢ = ¢'.
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Definition 1.7. Consider the natural homomorphism

—~

i W(F) — W(F)

o~

1. The ideal (image) I(F) := i(I(F")) is also called the fundamental ideal
of W(F).

2. Note that the induced map i : I(F) —> I(F) is an isomorphism.

Proof. Suppose i(z) = 0. That means = mH. Considering, dimen-

sion, 0 = dimz = 2m. So, m =0 and z = 0. |

Proposition 1.8. A form ¢ represents an element in I(F) C W(F) if and

only if dim ¢ is even.

Proof. Suppose x € I(F) is represented by the form q. (Note, by element in
W (F) is represented by a nonsisngular form.) In any case, x = q; — ¢ with
dim ¢, = dimgs. So, ¢ = ¢ — g2 + mH € W(F) The dimension function is
defined on /V[7(F) Applying this function, we have dim ¢ = 2m is even.

Conversely, suppose dim ¢ is even. In W(F'), we have
q = <a/1)b1> J— e L <an7bn>
= ((az) = (=b1)) L -+ L ((an) — (=bn)) € I(F).

Corollary 1.9. Consider the epimorphism
dim : W(F) — Z.

1. dim induces an epimorphism

. Z
dlmo : W(F) - ﬁ

2. Further, dimg induces an isomorphism

W(F) ~ Z

I(F) 27



Proof. Consider the commutative diagram

- W(F
W(F)—W(F) — 7

diml dimg /

YA
Z 27

[\

The diagonal map at the end is well defined by the "if" part of (1.8) and it
is an isomorphism by the "only if" part of (1.8). ]



2 Group of Square Classes

£

We exploit the group of square classes 72

1. The determinant function defines a monoid homomorphism

F
2
2. It extends to
—~ F ., _F
d:W(F)— =] by q— g d(q)d(g) e =

It does not extend to W (F), because det(H) = —1 need not be in F?2.

3. However, for a quadratic form, we define signed determinant

n(n—1)
2

d+(q) = (-1) d(q) where n =dimg.
Even this fails to extend to a homomorphism on W (F').
4. We define a group structure on
I
Q(F) = ZQ X ﬁ
Y (e,z),(€,2") € Q(F) define product (e, x)-(¢',z') = (e+€, (—1)* za’).

(a) This defines an abelian group structure on Q(F).
(b) (0,1) € Q(F) is the identity.
(c) Also
(e,2)-(e, (=1)°z) = (0, (=1)**z%) = (0,1), which describes the inverse.
(d) We have an exact sequence of groups
FE

0— 7 —=Q(F) ——=2Zy—>0 1st homomophism x> (0,z).

Proposition 2.1. We have the following:
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1. The map
(dimg, dy) : M(F) — Q(F) is a monoid epimorphism.
2. This extends to a group epimorphism
(dimo, ds ) : W(F) — Q(F).
3. This induces an isomorphism

W(F) -
Ty Q)

Proof. To see (dimg, d1) is a monoid homomorphism, let ¢, ¢ be two non-
singular forms, with dim ¢ = n,dim ¢’ = n’. We compute

(dimo, d1)(q) - (dimg, ds)(q) = (n - <—1><“"’*("‘"2‘”*("’%"”)d(q)d(q'))

( (n+n’)<;+n’fl) )

= (n +n', (—1)

To see it is epimorphism, note

d(q)d(q'>) _ (dimo, ds)(q L ¢)

(dimg, d+)((a)) = (1,a - F?), (dimg,ds)((1, —a)) = (0,a - F?).

Now, (dimg, d+) extends to W(F ) from the universal property of /W(F) So,
(2) is established. To, see (3), note

W(F) —=Q(F)
7
(dimg, d+)(H) = (0,1). Hence it factors i /ﬁ/
Ve g 0
W(F)
We show that fy(I(F')?) is trivial. By (1.4) and , I(F) is additively generated
by (1) —(a) = (1,a). So, I(F)?is additively generated by product (1, a, b, ab).

we have .
(dimg, d+)({1,a, b, ab)) = (0,a*b*F?) = (0,1).



So, By factors through f F)Q
g:Q(F) — (F)2 ) of f, as follows:

9(0,a) = (1,a) (mod I(F)*), g(1,a) = (a) (mod I(F)*),

— Q(F). Now, we will construct an inverse

Routine checking establishes (see textbook) that ¢ is a group homomor-
phism. It is easy to see that fg = Id. So, g is injective. But g(1,a) =
{(a) (mod I(F)?). So, g is also surjective. ]

Corollary 2.2 (Pfister). I(F)?* consists of classes of the even dimensional
n(n—1)

forms q for which d(q) = (—=1)" 2z , where n = dimg.

n(n—1)
2

Proof. It is restatement of (2.1) that the map f(q) = (dimo(q), (—1) d(q))
is injective, while the identity of Q(F) is (0, 1). n

Corollary 2.3 (Pfister). The map f induces an isomorphim II(;)Q - %
Proof. We have the diagram

d+
e

N

1

We only need to prove that the, restriction of f on the first line lands in %
It is surjective because d. ({1, —a)) = a. It is injective because all the other
three maps are. |

Let g € I(F'), so dimq = 2r. So,

£y = (2r, (=D)*% " d(a)) = (0,(~1)"d()).

This also shows that the diagram commutes. Now, f([¢]) = (0,1) means

(~1)d(q) = 1- F2.

2r(2r—1)
2

1 if reven

) = 0.1) = (-17dle) =172 = ag) = { L) 7o
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Corollary 2.4. For q € I(F), we have dimq = 2r. Then,

1 of r even

7< I(F)2 > dle) = { —1 if r odd.

Corollary 2.5. The following are equivalent:

1. W(F) is noetherian.
2. W(F) is noetherian.
3. % is finite.

Proof. (1) = (2) is obvious.
(2) = (3)): Note (( ))2 is noetherlan over the noetherian rlng 1((FF))

Also, by (1. 9) — ~ Zy. So, + I(F 2 is finite and hence, by (2.3), £ = Is finite.

(3 = ( )) By dlagonahzatlon W(F ) is additively generated by (a),
with a € = . Since, £ 7 is finite, W( ) is finitely generated commutative ring
over Z. So7 W( ) is noetherian. n

Remark 2.6. The map f : ?/(F) — Q(F) in (2.1) is an isomorphism of

(F)?
; I?(/I(f);) is ring, f induces a ring structure on Q(F). Further

groups. Since

comments:
1. The multiplication is given by
(0, a)o(0,b) = (0,1), (0,a)o(1,5) = (0,a), (1,a)o(1,) = (1,ab).

2. For two fields F, K if there is an isomorphism 0 : % = %, with
6(—1) = —1 then Q(F) — Q(K).

11



3 Some Elementary Computations
Definition 3.1. A field & is said to be quadratically closed, if \/a € k for all
0#ack.

Theorem 3.2. I is quadratrically closed if and only if dim : /W(F) — Z
is an isomprphism. In this case W (F) — Z.

Proof. Suppose ¢ is a form. We have
¢ = {a1,) L (az) -~ {an) = (b]) L (b3) -~ (b) = n(1).

So, the map dim is an isomorphism. Also ¢—¢’ = (dim ¢—dim ¢’)(1) € W(F)
So, dim is also injective. Note H +— 2. |

We define signature of the form.

Definition 3.3. Let ' = R and ¢ is a nonsingular form with dimq = n.
Use diagonalization, we have ¢ = (1) L (n —r)(—1) for some n,m > 0. We

define signature of ¢; as
Sig(q) = 2r —n = (number of (1)) — (number of (—1)).

We need to justify that this is well defined. Suppose ¢ = s(1) L (n—s)(—1).
Passing to Witt group

Similarly, [q] = (25 —n)[(1)]. So, (2r —n)[(1)] = (25 —n)[(1)]. It follows from
(2) on (3.4 below) that r = s

So, Sig(q) is well defined.

Proposition 3.4 (3.2). Let F =R. Then:

1. There are exactly two anisotropic form at each (positive) dimesions,

namely n{1), n{—1).
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2. W(R) — Z is an isomorphism. (This is not induced by the dimension
map.)

3. (Sylvester’s Law of Inertia) Two (nonsingular) forms over F are

quivalent if and only is they have same dimension and same signature.

—

4. W(R) = Z(G) where G is a 2—element group.

Proof. We have Fi = {£1}. So, a form ¢ = n(l) L m(—1) Clearly, ¢ is

anisotropic if and only if either n =0 or m = 0. So, (1) is established.

We prove (2). Suppose = € W(R). There is an anisotropic form ¢ such
that x = [q]. By (1) ¢ = n(1l) for some n € Z. Define ¢ : W(R) — Z by
() :== n. We need to ensure that 1 is well defined. So, suppose z = [n(1)] =
[m(1)]. Assume n > m. So, in /W(F) we have (n(1)) = (m(1)) +u(H). Since,
¢ is anisotropic, u = 0 and n = m. So, 1 is well defined. It is clear that v is
surjective. Now suppose x = [n(1)] and ¢ (z) = 0. By definition n = 0. So,
(2) is established.

We prove (3). Suppose ¢ = ¢'. It is established that they have same dime-
sion and signature. Now suppose ¢, ¢ have same signature and dimension.

We can write
qg=m(l) Ln(-1), r(1) L s(-1)
So, dimqg =m+n =r+s =dim¢,2n—dim ¢ = 2r—dim¢’. So,m = r,n = s.

So, (3) is established.

We prove (4). The determiant d : W(R) — % is defined. We can use
this to see e; 1= (1) # (—1) =: ey. ey, eq are linealry independent over Z.
To, see this let m(1) +n(—1) = 0 € R. Taking the image in W (R), we have
(m —n)(1) =0 € W(R). By (2), m = n.

__ It is also clear that WR is generated by e, ey, as a ring. So, we have
WR =~ Zey & Zey. The proof is complete. |

Remark 3.5 (Skip?). We have the following, when F' = R.

~

1. I(F) a free abelian group generated by (1) — (—1). (Obvious from (4)
of (3.4))
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2. Sig: M(F) — Z is a monoid homomorphism.

3. Discuss method of "completion of square" for diagonalization.

3.1 Over the filed F' =, with ¢ # 2
Let ¢ = p™ for some prime p # 2 and F' =F,.

1. F is cyclic group of even order ¢ — 1. (See field theory.)
2. So, F' =~ G X Z where o(G) is odd.

3. So, 0 (%) = 2 (because everything has order 1 or 2.)

Proposition 3.6 (3.4). Let F =F, and % = {1,s}. Then,

1. s is a sum of two squares, and
2. every (nonsingular) binary form is universal.

Proof. In fact, (1) = (2) : Since 1, s are the only two square classes, there
are at most three non-equivalent binary forms

fl = <171> :x2+y27 f? = <17S> :$2+8y2, f3 = <8a8> = 81‘2—|—Sy2.

We need to check, 1,s € D(f;). Clealry, 1,s € D(f5). By (1) s = a* +b*. So,
s = fi(a,b),1 = f1(1,0) € D(f1). Then, s = f3(1,0),s* = f3(a,b) € D(f3).
So, (1) = (2).

We will prove (1). Two cases:

1. —1 € F?. Then, (1,1) = (1,—1), which is universal (because H =
XlXQ. SO, S € D(<1, 1>

2. Suppose —1 ¢ F2. Consider two (finite) sets F2,1 + F2. They are
not equal, because 1 € F2 and 1 ¢ 1+ F2. In particular, there is a
z € I such that 14 22 ¢ F2. Now by hypothesis, 1 4 22 # 0. Since
5 = {1}, sF? = (14 22)F% So, s = (1 + 2*)A? is a sum of two
squares. n
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4 Presentation of Witt Rings

We describe W\(F ) in terms of generators and relations/

Lemma 4.1. Let F' be a field, with char(F') # 2. Then, W\(F) is generated,
as a commutative ring), by the set {(a) : a € F'}. Further, for a,b € F,

we have

1. (Rol): (1) = 1(= the identity of the ring).

2. (Ro2): (a) - (b) = (ab)

3. (Ro3): (a)+ (b) = (a+b) - (1 + (ab)), whenever a+b € F.
Proof. Ry1, Ry2 follows from definition of product. We have

d({a) + (b)) = abF?,

and
d(((a+b)-(14(ab))) = d({a+b)+(a+ab®)) = (a+b)(a®b+ab*) F? = (a+b)F?.
Also, a + b is represented by both sides. Now Ry3 follows from 1.5.1. |

Theorem 4.2 (4.1). Let R =7Z[X, :a € F] be the polynomial ring over 7Z,
where X, are indeterminates (possibly, infinitely many). Let I be the ideal
generated by the set R1 U R2 U R3 where

1. Rl={X, -1}
2. R2={Xup — XX, :a,b e F}

3. R3={Xo+ Xy — Xopp(1+Xu) :a,b € F with a+be F}

Then £ ~ /W(F)
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Proof. As usual define a ring homomorphism
fo: R—W(F) by ¢o(Xa) = (a)
By lemma 4.1, fo(I) = 0. So, f induces a homomorphims ¢, such that

R

N

commutes.

the diagram R

—~

W(F)

We will define an inverse of f. We define a monoid homomorphism ¢ :

M(F) — £ as follows:

Suppose ¢ is a quadratic form. Take any diagonalization ¢ = (ay, -, a,).
Define
90<Q) :Xa1 +"'+Xan

We need to check that this is well defined. Suppose

q= (b1, - ,b,) be another diagonalization.
By Witt’s chain equivalence theorem, we may assume that (ai,--- ,a,) and
(b, -+ ,b,) are simply-equivalent. Without loss of generality, we can assume

a;, =b; Vi>3and
(a1, az) = (by, by).

Now on the image of X, will be denoted by z,. We have the following
observation:

1. For all a € F, we have z,2 = 1.

Proof. First, by R1, R2 we have 1 = z; = 2,%,-1. So, ¥, is a unit for
all a € F'.

(a) (A) Since a + a = 2a # 0, by R3 we have
Ta+ Ty = Tog(1 + 242)
(b) (B) By R2, we have x, = x,x1. Now
Tq + Tq = Ta®1 + TaT1 = Ta[T1 + 21] = xo[v2(1 +21)] by R3
= T, (1 4+ 1) by R2

16



Comparing (A), (B) and cancelling, we have z,2 = x; = 1.

b 0\ [z vy a; 0 T oz

0 b, ) \z w 0 as y w )’
It fol_lows, b = a12? + axy? and taking determinant ajas = bibyc?® for some
ceF.

Now, we have

1. Case 1. =z = 0 or y = 0. Without loss of generality z = 0. So,
b = agy®. By R2 we have ), = Z4y,2 = Tq,T,2 = Tg,. Also,

Ial = l’bQ%CQ = xbngCQ = l’bz

Therefore
Ty + Loy = Ty, + Tpy-

2. Case 2. x # 0,y # 0. In this case,
Tay + Tay = Taya? + Tagy? = Taya2tazy? (1 + Tayag(ay)?)
- xbl(l + Ia1a2) = xbl(l + Ib1b2> = Tp, + Tp,

So, ¢ is well defined. It is clearly a monoid homomorphism.

By defintion of Grothendieck group, ¢ extends to a group homomorphism
¢ : W(F) — £ Clearly, ¢ is the inverse of f.

5 Classification of Small Witt Rings

SKIP.
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