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1 Definition of Ŵ (F ) and W (F )

From now on, by a quadratic form, we mean a nonsingular quadratic form
(see page 27). As always, F will denote a field with char(F ) 6= 2. We will
form two groups out of all isomorphism classes of quadratic forms over F ,
where the orthogonal sum will be the addition. We need to define a Monoid.
In fact, a monoid is like an abelian group, where elements need not have an
inverse.

Definition 1.1. A monoid is a set M with a binary operation + satisfying

the following properties: ∀ x, y, x ∈M , we have

1. (Associativity) (x+ y) + z = x+ (y + z).

2. (Commutativity) x+ y = y + x

3. (Identity) M has an additive identity (zero) 0 ∈M such that 0+x = x.

We define the Grothendieck group of a monoid.
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Theorem 1.2. Suppose M is a monoid. Then there is an abelian group G

with the following properties:

1. There is a homomorphism i :M −→ G the binary structurs,

2. G is generated by the image M .

3. G has the following universal property: suppose G be any abelian group

and ϕ :M −→ G is a homomorphism of binary structures. Then there

is a unique homomorphim ψ : G −→ G such that the diagram

M
i //

  A
AA

AA
AA

A G

ψ∃!
��
�

�

�

G
commutes.

Proof. (The proof is like that of localization. Lam gives a proof when M is
cancellative.) We define an equivalence realtion ∼ on M ×M as follows: for
x, y, x′, y′ ∈M define

(x, y) ∼ (x′, y′) if x+ y′ + z = x′ + y + z for some z ∈M.

(Think of (x, y) = x − y.) We will denote the equivalence class of (x, y) by
(x, y). We let G be the set of the equivalence classes. Define "addition" by
(x, y) + (u, v) := (x+ u, y + v). Then, G is a group. (0, 0) acts as the zero
of G and −(x, y) = (y, x).

Define i : M −→ G by i(x) = (x, 0). It is a homomorphism of binary-
structures. It follows it is injective and G is generated by M .

For the universal property, define ψ(x, y) = ϕ(x)− ϕ(y).
Definition. This groups is called the Grothendieck group of M . It is some-
times denoted by Groth(M).

Examples.

1. Let V (F ) be the isomorphims classes of finite dimensional vector spaces.
Then, V (F ) is a (cancellative) monoid, under the operation ⊕, direct
sum. It follows easily (check or ask me to check) that Groth(V (F )) ≈
Z.
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2. Let A be a commutative ring. Let P(A) be the set of all isomorphism
classes of finitely generated projective A−modules. P(A) is a monoid
under the operation ⊕, direct sum. (Note P(A) not cancellative). We
denote

K0(A) := Groth(P(A)) called the Grothendieck group

of projective modules. (Note, this approach to define Grothendiek
Group G0(A) of finitely generated A−modules does not work.)

3. Our interest in this course is the monoid M =M(F ) of all the isometry
classes of quadratic forms. It is a (cancellative) monoid, under the
orthogonal sum ⊥.

Definition 1.3. Let M =M(F ) denote the monoid of all nonsingular isom-

etry classes of quadratic spaces over F . Define Grothendieck-Witt Group

Ŵ (F ) := Groth(M(F )). By cnacellation M(F ) →֒ Ŵ (F ).

In deed, Ŵ (F ) has a ring srtucture. The multiplicative structue is given by

tensor product of quadratic forms defined in §1.6. That means,

1. For x = [(V1, q1)], y = [(V2, q2))] ∈ Ŵ (F ) define,

xy := [(V1 ⊗ V2, q1 ⊗ q2)]

2. We can check all the properties of ring for ⊥ and the tensor product:

(a) Since tensor product is commutative (up to isomorphim), the mul-

tiplication on Ŵ (F ) is a commutative: i. e. xy = yx.

(b) (Distributivity) x(y + z) = xy + xz

(c) 〈1〉 is the multiplicative identity.

So, Ŵ (F ) is a commutative ring.
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Furhter Comments:

1. Any element x ∈ Ŵ (F ) can be written as x = q1 − q2 where q1, q2 are
nonsingular quadratic forms.

2. For two quadratic form q1, q2 We have q1 = q2 ∈ Ŵ (F )⇐⇒ q1 ∼= q1.

Proof. Suppose q1 = q2 ∈ Ŵ (F ). Then, (q1, 0) ∼ (q2, 0) and hence,
q1 + z ∼= q2 + z for some quadratic space z. By cancellation q1 ∼= q2.
The proof is complete.

3. The dimension function induces a homomorphims of binary structures

dim :M(F ) −→ Z (V, q) 7→ dimV.

4. By the universal property, the dimension function induces a homomor-
phim of groups

dim : Ŵ (F ) −→ Z q1 − q2 7→ dim q1 − dim q2.

In fact, it is a homomorphism of rings.

5. The kernel of the homomorphism is denoted by Î(F ) is called the Fun-

damental ideal of Ŵ (F ).

6. We have,

Ŵ (F )

Î(F )
≈ Z

This ideal is truly fundamental in this theory. Voevodsky received
Fields Medal, for proving Milnor’s conjecture, concerning these ideals.

Proposition 1.4. The fundamental ideal Î(F ) is additively generated by

the expressions 〈a〉 − 〈1〉, with a 6= 0.

Proof. Clearly, for all a 6= 0 the elements 〈a〉 − 〈1〉 ∈ Î(F ). Let z ∈ Î(F ).
Then, z = q1−q2 where q1, q2 are nonsingualr and dim q1 = dim q2 = n (say).
We diagonalize

q1 = 〈a1, . . . , an〉, q1 = 〈b1, . . . , bn〉
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So,

z = q1 − q2 =
n∑

i=1

〈ai〉 −
n∑

i=1

〈bi〉 =
n∑

i=1

(〈ai〉 − 〈1〉)−
n∑

i=1

(〈bi〉 − 〈1〉).

The proof is complete.

The following is a primary object of our study.

Definition 1.5. Define the Witt Ring

W (F ) :=
Ŵ (F )

H · Z
Clearly, W (F ) inherits the ring structure from Ŵ (F ).

Proposition 1.6. 1. There is an 1 to 1 correspondence between the

isometry classes of all anisotropic forms ←→ W (F )

2. Two (nonsingular) forms q, q′ represent the same element in W (F ) if

and only if qa ∼= q′a. (In this case we say q, q′ are "Witt-similar".)

3. If dim q = dim q′ then q, q′ represent the same element in W (F ) if and

only if q ∼= q′.

Proof. Suppose x ∈ W (F ). Then, x = q1 − q2 ∈ W (F ) for two nongingular
forms. Since 〈a〉 ⊥ 〈−a〉 ∼= H, we have 〈−a〉 = −〈a〉 for all nonzero a ∈ Ḟ .
With q1 ∼= 〈a1〉 ⊥ · · · 〈an〉 and q2 ∼= 〈b1〉 ⊥ · · · 〈bm〉 we have

In W (F ) q1 − q2 = 〈a1〉 ⊥ · · · ⊥ 〈an〉 ⊥ (〈−b1〉 ⊥ · · · 〈−bm〉) =: q

for some some nonsingualr form q. Now, we can write q ∼= qh ⊥ qa, by
the decomposition theorem. Therefore, q = qa ∈ W (F ). So, any element
x = q1 − q2 ∈ W (F ) is represented by an anisotropic form. Now, we show
is correspondence is 1-1. Let q, q′ be anisotropic and q = q′ ∈ W (F ). Then,

q = q′ + mH ∈ Ŵ (F ). Without loss we assume m ≥ 0. By the comment
above q ∼= q′ ⊥ mH. Since q is anisotropic m = 0. So, q ∼= q′.

Now, (2) follows from (1). For (3), write q = qh ⊥ qa, q
′ = q′h ⊥ q′a where

qa, q
′

a are anisotropic and qh, q
′

h are hyperbolic. Suppose q = q′ ∈ W (F ).
Then qa ∼= q′a, by (2). Comparing dimension, we have q ∼= q′.
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Definition 1.7. Consider the natural homomorphism

i : Ŵ (F ) −→ W (F )

1. The ideal (image) I(F ) := i(Î(F )) is also called the fundamental ideal

of W (F ).

2. Note that the induced map i : Î(F )
∼−→ I(F ) is an isomorphism.

Proof. Suppose i(x) = 0. That means x = mH. Considering, dimen-

sion, 0 = dim x = 2m. So, m = 0 and x = 0.

Proposition 1.8. A form q represents an element in I(F ) ⊆ W (F ) if and

only if dim q is even.

Proof. Suppose x ∈ I(F ) is represented by the form q. (Note, by element in
W (F ) is represented by a nonsisngular form.) In any case, x = q1 − q2 with

dim q1 = dim q2. So, q = q1 − q2 +mH ∈ Ŵ (F ). The dimension function is

defined on Ŵ (F ). Applying this function, we have dim q = 2m is even.

Conversely, suppose dim q is even. In W (F ), we have

q = 〈a1, b1〉 ⊥ · · · ⊥ 〈an, bn〉

= (〈a1〉 − 〈−b1〉) ⊥ · · · ⊥ (〈an〉 − 〈−bn〉) ∈ I(F ).

Corollary 1.9. Consider the epimorphism

dim : Ŵ (F ) ։ Z.

1. dim induces an epimorphism

dim0 : W (F ) ։
Z

2Z
.

2. Further, dim0 induces an isomorphism

W (F )

I(F )

∼−→ Z

2Z
.
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Proof. Consider the commutative diagram

Ŵ (F ) //

dim

��

W (F )

dim0

��

// W (F )
I(F )

∼

||xx
xx

xx
xx

x

Z
// Z

2Z

The diagonal map at the end is well defined by the "if" part of (1.8) and it
is an isomorphism by the "only if" part of (1.8).
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2 Group of Square Classes

We exploit the group of square classes Ḟ

Ḟ 2 .

1. The determinant function defines a monoid homomorphism

d :M(F ) −→ Ḟ

Ḟ 2

2. It extends to

d : Ŵ (F ) −→ Ḟ

Ḟ 2
by q1 − q2 7→ d(q1)d(q2)

−1 ∈ Ḟ

Ḟ 2

It does not extend to W (F ), because det(H) = −1 need not be in Ḟ 2.

3. However, for a quadratic form, we define signed determinant

d±(q) = (−1)n(n−1)
2 d(q) where n = dim q.

Even this fails to extend to a homomorphism on W (F ).

4. We define a group structure on

Q(F ) := Z2 ×
Ḟ

Ḟ 2
.

∀ (e, x), (e′, x′) ∈ Q(F ) define product (e, x)·(e′, x′) := (e+e′, (−1)ee′xx′).

(a) This defines an abelian group structure on Q(F ).

(b) (0, 1) ∈ Q(F ) is the identity.

(c) Also

(e, x)·(e, (−1)ex) = (0, (−1)e2+ex2) = (0, 1), which describes the inverse.

(d) We have an exact sequence of groups

0 // Ḟ
Ḟ 2

// Q(F ) // Z2
// 0 1st homomophism x 7→ (0, x).

Proposition 2.1. We have the following:
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1. The map

(dim0, d±) :M(F ) −→ Q(F ) is a monoid epimorphism.

2. This extends to a group epimorphism

(dim0, d±) : Ŵ (F ) ։ Q(F ).

3. This induces an isomorphism

W (F )

I(F )2
∼−→ Q(F ).

Proof. To see (dim0, d±) is a monoid homomorphism, let q, q′ be two non-
singular forms, with dim q = n, dim q′ = n′. We compute

(dim0, d±)(q) · (dim0, d±)(q
′) =

(
n+ n′, (−1)

(

nn′+
(n(n−1)

2
+

(n′(n′
−1)

2

)

d(q)d(q′)

)

=

(
n+ n′, (−1)

(

(n+n
′)(n+n

′
−1)

2

)

d(q)d(q′)

)
= (dim0, d±)(q ⊥ q′)

To see it is epimorphism, note

(dim0, d±)(〈a〉) = (1, a · Ḟ 2), (dim0, d±)(〈1,−a〉) = (0, a · Ḟ 2).

Now, (dim0, d±) extends to Ŵ (F ) from the universal property of Ŵ (F ). So,
(2) is established. To, see (3), note

(dim0, d±)(H) = (0, 1). Hence it factors

Ŵ (F ) // //

����

Q(F )

W (F )

β0

;;v
v

v
v

v

We show that β0(I(F )
2) is trivial. By (1.4) and , I(F ) is additively generated

by 〈1〉−〈a〉 = 〈1, a〉. So, I(F )2 is additively generated by product 〈1, a, b, ab〉.
we have

(dim0, d±)(〈1, a, b, ab〉) = (0, a2b2Ḟ 2) = (0, 1).
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So, β0 factors through f : W (F )
I(F )2

։ Q(F ). Now, we will construct an inverse

g : Q(F ) −→ W (F )
I(F )2

of f , as follows:

g(0, a) = 〈1, a〉 (mod I(F )2), g(1, a) = 〈a〉 (mod I(F )2),

Routine checking establishes (see textbook) that g is a group homomor-
phism. It is easy to see that fg = Id. So, g is injective. But g(1, a) =
〈a〉 (mod I(F )2). So, g is also surjective.

Corollary 2.2 (Pfister). I(F )2 consists of classes of the even dimensional

forms q for which d(q) = (−1)n(n−1)
2 , where n = dim q.

Proof. It is restatement of (2.1) that the map f(q) =
(
dim0(q), (−1)

n(n−1)
2 d(q)

)

is injective, while the identity of Q(F ) is (0, 1).

Corollary 2.3 (Pfister). The map f induces an isomorphim I(F )
I(F )2

∼−→ Ḟ

Ḟ 2 .

Proof. We have the diagram

I(F )
I(F )2

d±
//

� _

��

Ḟ

Ḟ 2
� _

��
W (F )
I(F )2

∼

f
// Q(F )

We only need to prove that the, restriction of f on the first line lands in Ḟ

Ḟ 2

It is surjective because d±(〈1,−a〉) = a. It is injective because all the other
three maps are.

Let q ∈ I(F ), so dim q = 2r. So,

f([q]) =
(
2r, (−1) 2r(2r−1)

2 d(q)
)
= (0, (−1)rd(q)) .

This also shows that the diagram commutes. Now, f([q]) = (0, 1) means
(−1)rd(q) = 1 · Ḟ 2.

f([q]) = (0, 1)⇐⇒ (−1)rd(q) = 1 · Ḟ 2 ⇐⇒ d(q) =

{
1 if r even
−1 if r odd.
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Corollary 2.4. For q ∈ I(F ), we have dim q = 2r. Then,

q ∈ I(F )2 ⇐⇒ d(q) =

{
1 if r even

−1 if r odd.

Corollary 2.5. The following are equivalent:

1. Ŵ (F ) is noetherian.

2. W (F ) is noetherian.

3. Ḟ

Ḟ 2 is finite.

Proof. (1) =⇒ (2) is obvious.

((2) =⇒ (3)): Note I(F )
I(F )2

is noetherian, over the noetherian ring W (F )
I(F )

.

Also, by (1.9) W (F )
I(F )

≈ Z2. So, I(F )
I(F )2

is finite and hence, by (2.3), Ḟ

Ḟ 2 is finite.

((3) =⇒ (1)): By diagonalization, Ŵ (F ) is additively generated by 〈a〉,
with a ∈ Ḟ

Ḟ 2 . Since, Ḟ

Ḟ 2 is finite, Ŵ (F ) is finitely generated commutative ring

over Z. So, Ŵ (F ) is noetherian.

Remark 2.6. The map f : W (F )
I(F )2

∼−→ Q(F ) in (2.1) is an isomorphism of

groups. Since, W (F )
I(F )2

is ring, f induces a ring structure on Q(F ). Further

comments:

1. The multiplication is given by

(0, a)o(0, b) = (0, 1), (0, a)o(1, b) = (0, a), (1, a)o(1, b) = (1, ab).

2. For two fields F,K if there is an isomorphism θ : Ḟ

Ḟ 2

∼−→ K̇

K̇2 , with

θ(−1) = −1 then Q(F )
∼−→ Q(K).
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3 Some Elementary Computations

Definition 3.1. A field k is said to be quadratically closed, if
√
a ∈ k for all

0 6= a ∈ k.

Theorem 3.2. F is quadratrically closed if and only if dim : Ŵ (F ) −→ Z

is an isomprphism. In this case W (F )
∼−→ Z2.

Proof. Suppose q is a form. We have

q = 〈a1, 〉 ⊥ 〈a2〉 · · · 〈an〉 = 〈b21〉 ⊥ 〈b22〉 · · · 〈b2n〉 = n〈1〉.

So, the map dim is an isomorphism. Also q−q′ = (dim q−dim q′)〈1〉 ∈ Ŵ (F ).
So, dim is also injective. Note H 7→ 2.

We define signature of the form.

Definition 3.3. Let F = R and q is a nonsingular form with dim q = n.

Use diagonalization, we have q ∼= r〈1〉 ⊥ (n− r)〈−1〉 for some n,m > 0. We

define signature of q; as

Sig(q) = 2r − n = (number of 〈1〉)− (number of 〈−1〉).

We need to justify that this is well defined. Suppose q ∼= s〈1〉 ⊥ (n− s)〈−1〉.
Passing to Witt group

[q] = r[〈1〉]− (n− r)[〈1〉] = (2r − n)[〈1〉].

Similarly, [q] = (2s−n)[〈1〉]. So, (2r−n)[〈1〉] = (2s−n)[〈1〉]. It follows from

(2) on (3.4 below) that r = s

So, Sig(q) is well defined.

Proposition 3.4 (3.2). Let F = R. Then:

1. There are exactly two anisotropic form at each (positive) dimesions,

namely n〈1〉, n〈−1〉.
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2. W (R)
∼−→ Z is an isomorphism. (This is not induced by the dimension

map.)

3. (Sylvester’s Law of Inertia) Two (nonsingular) forms over F are

quivalent if and only is they have same dimension and same signature.

4. Ŵ (R)
∼−→ Z(G) where G is a 2−element group.

Proof. We have Ḟ

Ḟ 2 = {±1}. So, a form q ∼= n〈1〉 ⊥ m〈−1〉 Clearly, q is
anisotropic if and only if either n = 0 or m = 0. So, (1) is established.

We prove (2). Suppose x ∈ W (R). There is an anisotropic form q such
that x = [q]. By (1) q = n〈1〉 for some n ∈ Z. Define ψ : W (R) −→ Z by
ψ(x) := n. We need to ensure that ψ is well defined. So, suppose x = [n〈1〉] =
[m〈1〉]. Assume n ≥ m. So, in Ŵ (F ) we have (n〈1〉) = (m〈1〉)+u(H). Since,
q is anisotropic, u = 0 and n = m. So, ψ is well defined. It is clear that ψ is
surjective. Now suppose x = [n〈1〉] and ψ(x) = 0. By definition n = 0. So,
(2) is established.

We prove (3). Suppose q ∼= q′. It is established that they have same dime-
sion and signature. Now suppose q, q′ have same signature and dimension.
We can write

q = m〈1〉 ⊥ n〈−1〉, r〈1〉 ⊥ s〈−1〉
So, dim q = m+n = r+s = dim q′, 2n−dim q = 2r−dim q′. So, m = r, n = s.
So, (3) is established.

We prove (4). The determiant d : Ŵ (R) −→ Ṙ

Ṙ2 is defined. We can use
this to see e1 := 〈1〉 6= 〈−1〉 =: e2. e1, e2 are linealry independent over Z.

To, see this let m〈1〉+ n〈−1〉 = 0 ∈ R̂. Taking the image in W (R), we have
(m− n)〈1〉 = 0 ∈ W (R). By (2), m = n.

It is also clear that ŴR is generated by e1, e2, as a ring. So, we have
ŴR ≈ Ze1 ⊕ Ze2. The proof is complete.

Remark 3.5 (Skip?). We have the following, when F = R.

1. Î(F ) a free abelian group generated by 〈1〉 − 〈−1〉. (Obvious from (4)

of (3.4))
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2. Sig :M(F ) −→ Z is a monoid homomorphism.

3. Discuss method of "completion of square" for diagonalization.

3.1 Over the filed F = Fq with q 6= 2

Let q = pm for some prime p 6= 2 and F = Fq.

1. Ḟ is cyclic group of even order q − 1. (See field theory.)

2. So, Ḟ ≈ G× Z2 where o(G) is odd.

3. So, o
(
Ḟ

Ḟ 2

)
= 2 (because everything has order 1 or 2.)

Proposition 3.6 (3.4). Let F = Fq and Ḟ

Ḟ 2 = {1, s}. Then,

1. s is a sum of two squares, and

2. every (nonsingular) binary form is universal.

Proof. In fact, (1) =⇒ (2) : Since 1, s are the only two square classes, there
are at most three non-equivalent binary forms

f1 = 〈1, 1〉 = x2 + y2, f2 = 〈1, s〉 = x2 + sy2, f3 = 〈s, s〉 = sx2 + sy2.

We need to check, 1, s ∈ D(fi). Clealry, 1, s ∈ D(f2). By (1) s = a2+ b2. So,
s = f1(a, b), 1 = f1(1, 0) ∈ D(f1). Then, s = f3(1, 0), s

2 = f3(a, b) ∈ D(f3).
So, (1) =⇒ (2).

We will prove (1). Two cases:

1. −1 ∈ Ḟ 2. Then, 〈1, 1〉 ∼= 〈1,−1〉, which is universal (because H =
X1X2. So, s ∈ D(〈1, 1〉.

2. Suppose −1 /∈ Ḟ 2. Consider two (finite) sets Ḟ 2, 1 + Ḟ 2. They are
not equal, because 1 ∈ Ḟ 2 and 1 /∈ 1 + Ḟ 2. In particular, there is a
z ∈ Ḟ such that 1 + z2 /∈ Ḟ 2. Now by hypothesis, 1 + z2 6= 0. Since
Ḟ

Ḟ 2 = {1, s}, sḞ 2 = (1 + z2)Ḟ 2. So, s = (1 + z2)λ2 is a sum of two
squares.
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4 Presentation of Witt Rings

We describe Ŵ (F ) in terms of generators and relations/

Lemma 4.1. Let F be a field, with char(F ) 6= 2. Then, Ŵ (F ) is generated,

as a commutative ring), by the set {〈a〉 : a ∈ Ḟ}. Further, for a, b ∈ Ḟ ,

we have

1. (R01): 〈1〉 = 1(= the identity of the ring).

2. (R02): 〈a〉 · 〈b〉 = 〈ab〉

3. (R03): 〈a〉+ 〈b〉 = 〈a+ b〉 · (1 + 〈ab〉), whenever a+ b ∈ Ḟ .

Proof. R01, R02 follows from definition of product. We have

d(〈a〉+ 〈b〉) = abḞ 2,

and

d((〈a+b〉·(1+〈ab〉)) = d(〈a+b〉+〈ab+ab2〉) = (a+b)(a2b+ab2)Ḟ 2 = (a+b)Ḟ 2.

Also, a+ b is represented by both sides. Now R03 follows from I.5.1.

Theorem 4.2 (4.1). Let R = Z[Xa : a ∈ Ḟ ] be the polynomial ring over Z,

where Xa are indeterminates (possibly, infinitely many). Let I be the ideal

generated by the set R1 ∪R2 ∪R3 where

1. R1 = {X1 − 1}

2. R2 = {Xab −XaXb : a, b ∈ Ḟ}

3. R3 = {Xa +Xb −Xa+b(1 +Xab) : a, b ∈ Ḟ with a+ b ∈ Ḟ}

Then R
I
≈ Ŵ (F ).
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Proof. As usual define a ring homomorphism

f0 : R −→ Ŵ (F ) by ϕ0(Xa) = 〈a〉

By lemma 4.1, f0(I) = 0. So, f0 induces a homomorphims ϕ, such that

the diagram R

f0 !!B
BB

BB
BB

BB
// R
I

f

��

Ŵ (F )

commutes.

We will define an inverse of f . We define a monoid homomorphism ϕ :
M(F ) −→ R

I
as follows:

Suppose q is a quadratic form. Take any diagonalization q = 〈a1, · · · , an〉.
Define

ϕ(q) = Xa1 + · · ·+Xan

We need to check that this is well defined. Suppose

q = 〈b1, · · · , bn〉 be another diagonalization.

By Witt’s chain equivalence theorem, we may assume that 〈a1, · · · , an〉 and
〈b1, · · · , bn〉 are simply-equivalent. Without loss of generality, we can assume
ai = bi ∀ i ≥ 3 and

〈a1, a2〉 ≡ 〈b1, b2〉.
Now on the image of Xa will be denoted by xa. We have the following
observation:

1. For all a ∈ Ḟ , we have xa2 = 1.

Proof. First, by R1, R2 we have 1 = x1 = xaxa−1 . So, xa is a unit for
all a ∈ Ḟ .

(a) (A) Since a+ a = 2a 6= 0, by R3 we have

xa + xa = x2a(1 + xa2)

(b) (B) By R2, we have xa = xax1. Now

xa + xa = xax1 + xax1 = xa[x1 + x1] = xa[x2(1 + x1)] by R3

= x2a(1 + x1) by R2
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Comparing (A), (B) and cancelling, we have xa2 = x1 = 1.

Now, we have

(
b1 0
0 b2

)
=

(
x y
z w

)(
a1 0
0 a2

)(
x z
y w

)
.

It follows, b1 = a1x
2 + a2y

2 and taking determinant a1a2 = b1b2c
2 for some

c ∈ Ḟ .

1. Case 1. x = 0 or y = 0. Without loss of generality x = 0. So,
b1 = a2y

2. By R2 we have xb1 = xa2y2 = xa2xy2 = xa2 . Also,

xa1 = x
b2

b1
a1
c2
= xb2y2c2 = xb2

Therefore
xa1 + xa2 = xb1 + xb2 .

2. Case 2. x 6= 0, y 6= 0. In this case,

xa1 + xa2 = xa1x2 + xa2y2 = xa1x2+a2y2(1 + xa1a2(xy)2)

= xb1(1 + xa1a2) = xb1(1 + xb1b2) = xb1 + xb2

So, ϕ is well defined. It is clearly a monoid homomorphism.

By defintion of Grothendieck group, ϕ extends to a group homomorphism
ϕ : Ŵ (F ) −→ R

I
. Clearly, ϕ is the inverse of f .

5 Classification of Small Witt Rings

SKIP.
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