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1 Construction or Definition

Definition 1.1. Let F' be any field with char(F) # 2 and a,b € F. Define

quarternion algebra A = (“Fb) as follows:
A is generated, as an algebra, by two generators i,j. with relations

i*=a, j*=0b ij=—ji.
1. Also let k:=15 € A. Then,
k* = —ab, ik=—ki=uaj, kj=—jk=ubi

2. So, 1,7,k anticommute.

3. When F =R, the usual quaternion is H := (_113&_1).

4. A is spanned by 1,1,7,k as a VS over F.

Lemma 1.2 (Construction). A = (%b) is constructed as follows:
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1. Let P = F[[X,Y]] be the non-commutative polynomial algebra. This
is also called the "free algebra" over F', generated by X,Y. In fact,

P=FX,Y]|=PFw=F100F - XO0F YOF-XYQF-YX -

we

where € is the set of all words in X,Y.
2. Let Z be the two sided ideal of F[[X, Y]] generated by

{X? —a,Y? - b, XY +YX}

3. Then,

() g

4. We write

=X, j:=Y, k:=1ij=

~

Proposition 1.3 (1.0). {1,4,7,k} is a basis for A = (%b) So, dim A = 4.

Proof. We use the construction. Write i = X,j =Y and k = ij. It is clear
that A is generated by {1,4, j, k} spans A.

Linear Independence: Let E be the algebraic closure of F. Fix o, € F
such that a? = —a, 82 = b. Let

¢0=<_0a ‘8‘) joz(g g)eM(E).

Define
o FIIX,Y]] — M(E) by ¢o(X) =10, wo(Y) = o
Now,
o(X? —a) = (g 2) a=0
Similarly,



Also,

go(XY—FYX):(_Oa g)(g €)+(
0

0
B
[ af 0 —afs B
(% )+ (50 )
So, ¢ factors through as follows:

FIIX, ¥)) — £

So, ¢o factors as follows:

p(k) = ¢(ij) = po(XY) = ( aoﬁ —gﬁ )

. 0 « . (0B af 0
(5 ) () (3 )

are linealry independent over E. Hence 1,4, j, k are linearly independent.
The proof is complete. |

Clearly,

Linear Independence: Possible Proof. Suppose ag+aqi+asj+ask = 0.
This means, ag + a1 X + axY + a3 XY € Z. Write

ap+ a1 X + agY + a3 XY
=Y ACY)HX —a)gf(X,Y) + ) (X Y) (Y2 = b)gs(X,Y)

YA Y)(XY +YX)gh(X,Y)
In fact

XY = X(XY +YX) - XYX = X(XY +YX) — (XY + VX)X + VX2
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or
XY =Y X? mod (XY+YX). Similarly Y>X = XY? mod (XY +Y X).
Using this, we can write
ag + a1 X + oY + a3 XY
= H(XY)(X? —a) + (X, V)(V* = b)
+ )XY (XY + Y X)gh(X,Y)

One should be able to equate coefficients and complete the proof. I did not
spend enough time on it. I live it as an exercise.

Lemma 1.4. Two observations:

1. Symmetry:

2. Functoriality:

b\ ~ b
If F < Kisa field extension KpQp <a;) — (a,?) as K—algebras.

Proof. Follows from construction. n

Proposition 1.5. Let a,b € F. Then,

a,b\ ~ [az? by? :
i ? F.
(F)—>< 2 ) Vavye€




CENTER <“—Fb) —F

4. (%b) has no nontrivial ideals (a simple algebra).

5. Remark. Because of (3, 4), (a?b) is a central simple algebra over F,

which will be discussed in chapter IV.

Proof. Write A = (“Tb) and A’ = (%) As usual let 1,14, 7, k = ij be the
"standard" basis of A. and 1,4, j’, k' =i’j’ be the "standard" basis of A’.
Then, i*=a,j>=0,(i")*=ax? (5')* = by*.

Define a map

oo XY — (%) by olX) =i, plY) =i
Consider the two sided ideal
J = GeneratedBy (X2 —ax®,Y? —by?, XY + YX)
Then, p(J) = 0. So, ¢, factors as

F[X,Y]] 22—~ (“—b) sending i v xi,j — yJ.

l 7
-
~
-
PR

ax?,by?
F

Since ¢ is F'—algebra map, it is also a F'—linear map. So, 1, (i) = zi, ¢(j') =
yj, p(k") = xyk is also a basis. Therefore, ¢ is an isomorphism.

Proof of (2): In the proof of (1.3), take a = —1,b =1 and o = § = 1. That
means, take

) 0 1 . 01 o 1 0
ZO_(_]_ 0)7 ]0_<1 0) N0t67 EOJO_<0 _1)

It is easy to check that Io, g, jo, t0jo is a basis of My(F). So, i +— ig, 7 — Jo
defines the isomophism needed.



Proof of (3): Let E be the algebraic closure of F. Then,

E®r (a’?b) ~ (%) R (ﬂ) ~ (%) ~ My(E).

1. Center of My(FE) is E (as Ely). Proof. Exercise.

2. Claim: Center of A := (‘%b) is F.

Proof. Note, for x € A,
x € Center(A) <= w1 =ix,zj = jo <= x € Center(My(E)) <=z € E.
So,z € ANE. So, x € F. So, (3) is established.

3. Proof of (4): Suppose A has a nontrivial ideal I. Write Z = I® E. So,
dimp I < 4 and hence dimgZ < 4. Note«l C 1,51 C 1,12 C 1,15 C 1.
Hence, iZ C 7,;7 C 7,71 C Z,7j C Z. Therefore, 7 is a nontrivial
ideal of (%) ~ M, (E), which is a contradiction.

1.1 Pure Quarternions

Definition 1.6. A quaternion v = a+ i +vj + 0k € A .= (“Tb) is called
a pure quaternion if &« = 0. The F'—linear space of all pure quaternions is
denoted by Aj.

Proposition 1.7. Let 0 #v € A. Then
vEAy=v¢F and v’ € F.

Proof. Let v = o + i + vj + 0k. Then,
v? = (a® + aB® + by? — abd®) + 2a(Bi + vj + 0k).

The corollary follows form this identity. |

F
F—algebra isomorphism. The p(Ay) = Aj.

Corollary 1.8. If A = (%) and A’ = (%) Let ¢ : A — A’ be a

Proof. Follows from (1.6). ]



1.2 The Real Quarternion

By (1.5), we have only three quartenion algebras:

<%> <%>zMg(R), and H:(_lﬁ_l).

We will study the third one, known as The Real Quarternion Algebra.

1. First, C=R+Ri C H.
2. Cis not in the center of H. In this sense, H is not a C—algebra.

3. H is a right C vector space with basis {1,j}. Any v = x4+ yi+ zj +wk
can ne written as

v=(r+yi)+jlz—wi)=a+jB  for some «,p¢cC.
4. For v € H define
L,:H—H by L,z)=wvz. Then, L, = L,0L,.

5. L, is a C—linear endomorphism of H. To see this we check

Ly(z1a + 228) = v(z1a0 + 298) = Ly(z1)a + Ly(22)5.
6. L defines, R—algebra homomorphism

L:H — Endc(H) =M,y (C) wrt  basis 1, 7.
7. We have

0 0 —1 0 —
e (30) b= (0 ) e (0 ) emie

Needs care, because scalar multiplication comes from right:

(£0) - () - () o0 (6 5)

Note entries in the square matrix are scalars and the basis elements are

from H. Also

(26) - (5) - (Z) =0 (5 7)



8. This is left regular representation of H in End(H).

9. We can compute L,y, Loyjs where 2,y € R and o, 8 € C, by compo-
sition:

- [z 0 y ON[(i 0\ [az+tyi 0
LJ‘*@’_LCCJ“L@/LZ_(O x>+(0 y)(O —i)‘( 0 $+yi)

Use this to compute
a —f
batio = ( B a )

10. L is a faithful representation:

Ly=0=L,(1)=v=0.

11. So, H is isomorphic to the real subalgebra of Mjy(C), consisting of
matrices of the form:

La—i—jﬁ = < g _aﬁ > with Oé,ﬁ e C.

Recall the following:

Definition 1.9. Recall the following:

1. A matrix in U € M,,(C) is called a unitary matix, if UU* = I,, = U*U.
2. The group U(n) of all unitary matrices is called the unitary group.

3. The special unitary group SU(n) is defined to be

SU(n)={U € U(n) : det(U) = 1}.



Lemma 1.10. We have

SU(Z):{J: (g __B> ra, € Cand det(o):l}

Proof. Omitted. Write down the equations and solve. |

Corollary 1.11. The group of unit quaternions
Up={z+yi+zj+wk: 2> +y*+ 22+ 0w =1} = SU(2)

Proof. Under the representation L, image of L is exactly SU(2), by (1.10).
More precisely,

Latgi (1 7)) =(1 ‘”(g _g>

Conjugation
Definition 1.12. For
v=x+yi+zj+wk eH define vV:=x—yi—zj—wk
We say v is the conjugate of v.
1. If we write
v=(x+y)+jlz—wi)=a+jf then T=a—jp

2. The representation L : H — Mjy(C) preserves the conjugation (invo-

lution) in the sense

(e B _(@ B\_,
wr-(57) (5 0)



2 Quaternions and Quadratic Spaces

Let A = (“Fb) In this section, we define a quadratic structure on the

quaternion algebra A.

1. For x = a+ pi + vj + 0k, define = := o — i — vj — k.
2. It follows, for z,y € Aand r € F

Tty=2+y, TWY=y-T, T=2x TIT=TrT.

3. The map x — T is called the bar involution on A.

4. For x € A define, Norm Nz and Trace Tz of x as follows:

Ny :=zxz, Tr:=x+7.

5. In fact, Nz € F and Tx € F. This is because

Nz =272 = Nz, and similarly, Tz = Txz.

s

So,
the norm maps N : A — F, and the trace maps T :A — F.

6. Define the bilinear form

T(zy) oy+yT
2 2

B:AxA—F by B(z,y):=

7. The quadratic map associated with B is
gp(z) = B(z,x) = 2T = Nu.
This quadratic form is called the Norm form.

8. We claim: {1,1i,7, k} forms an orthogonal basis of A, which is checked
easily:
Ti T(ij) T(k)

B(l,i):7:0, B(i,j) = 5 :T:O and so on.




Corollary 2.1. The quadratic space (A, B) has an orthogonal basis and

isometric to

(1, —a, —b,ab) = (1, —a) ® (1, —b)

Proof. We saw {1, 1, j, k} is an orthogonal basis of A. We have

q(j) = N(j) = —j* = —b,q(k) = N(k) = —k* = ab.

The proof is complete. |
Observations and a Question:

1. det(A) = det((1, —a, —b,adb)) = 1.

2. 1e D(A).

3. Lam comments: these (1, —a, —b, ab) are precisely the four dimensional
quadratic forms satifying condition (1, 2). (Give a proof).

Corollary 2.2. For x = a+ fi+ vj + 0k we have
Nz = o — B%a — +*b + 6%ab.

Proof. Use orthogonality. The proof is complete. |
Remarks.

1. For z € A, we have Nx = NT.

2. So, x — T is an isometry.

3. So, B(z,y) = B(%,y) for all ,y. Ofcourse

Blo.y) = T(;@) _ T(gy) _ B@.3).

4. For any x € A we have

2* — T(z)x + N(z) = 0.

11



5. Forx =a+ fi+vj+dk e H= (_1]1’{1) , we are not surprized

N(z) =+ 3+~ +§°

6. Exercise. If we use the model L(H), then norm and trace corresponds
exactly to that of matrices (over C).

Proposition 2.3. We have

1. 2,y € A= N(z,y) = Nz - Ny.
2. x € A is invertible if and only if Nx # 0 (which means x is anisotropic).
Proof. N(xy) = zyzy = x(y - y)T = Nx - Ny. To prove (2), suppose z !

exists. Then
1=N(1)=N(z-2')= N(x)N(z™1).

So, Nx # 0. Conversely, If Nz # 0 then

T T T T
—=—=1. S e p—
v Nzx Nx © g Nz

Contrast: To inner product spaces, with involution (like C),

ol T o
(,7) |z |?*

Corollary 2.4. skip Corollary 2.4

Theorem 2.5. Let A = (a—b) and A" = (#) The following are equivalent:

1. A and A’ are isomorphic as F'—algebars.
2. A and A’ are isometric as quadratic spaces.

3. Ap and Aj, are isometric as quadratic spaces.
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Proof. (2) <= (3) by cancellation thoerem.
(1) = (2)): Let ¢ : A — A’ be an F—algebra homomorphism. By
corollary 1.8, ¢(Ag) = Aj. Let x = a4+ x9 € A, with o € F,zy € Ay.
We prove Nz = N((,O([L')). We have p(x) = a + ¢(zg). It follows ¢(x) =
a — (o) = ¢(T). So,

N(p(@)) = ¢(2) - p(z) = (2 -T) =2 -T = Na.
((3) = (1)): Let o : Ay — A} be an isometry. We have

—a = N(i) = N(o(i)) = 0(i)o(i) = —o(i)?, So, o(i)* = a.

Similalrly, o(j)? = b. Also,

i L= oli) L o(j) — o(i)o(j) = —o(j)oi).

This shows there is F'—algebra homomorphism:
g:A— A" i o), jo()).
So, a(k) = a(i)a(j) = a(i)o(j).

One can see for u,v € A’ the producs uv,vu have same constant term.
Since, o(i)o(j) = ( o (i), it follows w := J( Jo(j) € Aj.

Also o(i),0(j),o(k) is a basis os Aj. Claim: w ¢ Fo(i) + Fo(j). If not,
write o(i)o(j) = ao(i) + fo(j). Multiply by o (i) from left, we have

ao(j) = aa+ fo(i)o(j)

Since, 1,0(i),0(j),o(k) a basis, we have the constant term aa = 0 and hence
a = 0. Similarly, 8 = 0. So, the claim is proved.

So, 1,0(i),0(j),0(k) = o(i)o(j) is a basis. So, & is an isomorphism.  m

Corollary 2.6.
()= (57) wo ()= (%)

Proof. He wrote only . Two quaternion algebras have the norm forms (see

(2.1))

(1,—a,—a,a®), (1,—a,1,—a)
But
(1,—a,1,—a) = (1, —a,—a,1) = (1, —a, —a, a*)

Now, by (2.5), they are isomorphic. The proof is complete. |
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Theorem 2.7. Let A = (%b) Then, the following are equivalent:

1. A= (121) (which is = My(F)).

“F
2. A is not a division algebra.
3. A is isotropic as a quadratic space.
4. A is hyperboloc as a quadratic space.
5. Ay is isotropic as a quadratic space.
6. ({(a) —1)((b) = 1) =0in /I/I7(F) (or in W (F)).
7. The binary form (a, b) represents 1.

8. a € Np/p(E), where E = F(vb) and N/ is a field.

Note, by (2.5), = may mean isomorphism or isometry. If any of these condi-

tions hold, we say A splits over F.
Proof. ((1) <= (4)): (1) means Hyperabolic space (the RHS) as F'—algebra.

So, this is established by (2.5).

(/(\4) —> (6)): In fact, A is isometric to ({a) — 1)((b) — 1), hence zero in

((6) = (4)): Following isometries follows from (6):
<1,6Lb> = <(I, b> = <17 —a, _b7 ab> = <a7b> 1 <_a'7 _b>

which is hyperpolic.
((6) = (7)): We have

—~

(aby L (1) = (a) L (o) € W(F).

Hence
(ab,1) = (a, b)

Since LHS represents 1, so does the RHS.
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((7) = (6)): Since, (a,b) represents 1, (a,b) = (1,ab). So, (1,—a, —b, ab) =
0 € W(F). Therfore, we have

(1) == (4) = (6) <= (7)

((3) <= ((4)): Clearly, (4) = (3). Now suppose A is isotropic. Then,
H L g, for some ¢. In any case, the determinant of the Norm form is
1. So, 1 = det(H) det g. So, detq = —1. So, ¢ = H, by (1.5.1). So,

| -

a’b
4) follows.

(
((4) <= ((5)): If Ap has Witt index zero, then Witt indesx of A would be
ost one. So, (4) = (5) = 3 = (4).

Z
=

((1) = ((2)): Obvious, because the former is not a division algebra.

((2) = ((3)): Suppose A is ansotropic. Then, by (2.3), A would be a
division algebra.

The proof is complete. |
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