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1 Construction or Definition

Definition 1.1. Let F be any field with char(F ) 6= 2 and a, b ∈ Ḟ . Define

quarternion algebra A =
(
a,b
F

)
as follows:

A is generated, as an algebra, by two generators i, j. with relations

i2 = a, j2 = b ij = −ji.

1. Also let k := ij ∈ A. Then,

k2 = −ab, ik = −ki = aj, kj = −jk = bi

2. So, i, j, k anticommute.

3. When F = R, the usual quaternion is H :=
(
−1,−1

R

)
.

4. A is spanned by 1, i, j, k as a VS over F .

Lemma 1.2 (Construction). A =
(
a,b
F

)
is constructed as follows:
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1. Let P = F [[X, Y ]] be the non-commutative polynomial algebra. This

is also called the "free algebra" over F , generated by X, Y . In fact,

P = F [[X, Y ]] =
⊕

w∈Ω

F ·w = F ·1⊕⊕F ·X⊕F ·Y ⊕F ·XY ⊕F ·Y X · · ·

where Ω is the set of all words in X, Y .

2. Let I be the two sided ideal of F [[X, Y ]] generated by

{X2 − a, Y 2 − b,XY + Y X}

3. Then,

A =

(
a, b

F

)
=

F [[X, Y ]]

I

4. We write

i := X, j := Y , k := ij = XY

Proposition 1.3 (1.0). {1, i, j, k} is a basis for A =
(
a,b
F

)
. So, dimA = 4.

Proof. We use the construction. Write i = X, j = Y and k = ij. It is clear
that A is generated by {1, i, j, k} spans A.

Linear Independence: Let E be the algebraic closure of F . Fix α, β ∈ E
such that α2 = −a, β2 = b. Let

i0 =

(
0 α
−α 0

)
j0 =

(
0 β
β 0

)
∈ M(E).

Define

ϕ0 : F [[X, Y ]] −→ M(E) by ϕ0(X) = i0, ϕ0(Y ) = j0.

Now,

ϕ0(X
2 − a) =

(
a 0
0 a

)
− a = 0.

Similarly,

ϕ0(Y
2 − a) =

(
b 0
0 b

)
− b = 0.
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Also,

ϕ(XY + Y X) =

(
0 α
−α 0

)(
0 β
β 0

)
+

(
0 β
β 0

)(
0 α
−α 0

)

=

(
αβ 0
0 −αβ

)
+

(
−αβ 0
0 αβ

)
= 0.

So, ϕ0 factors through as follows:

F [[X, Y ]] //

ϕ0

%%KKKKKKKKKK

F [[X,Y ]]
I

ϕ

��
�

�

�

M(E)

So, ϕ0 factors as follows:

ϕ(k) = ϕ(ij) = ϕ0(XY ) =

(
αβ 0
0 −αβ

)

Clearly,

1, i0 =

(
0 α
−α 0

)
, j0 =

(
0 β
β 0

)
,

(
αβ 0
0 −αβ

)

are linealry independent over E. Hence 1, i, j, k are linearly independent.
The proof is complete.

Linear Independence: Possible Proof. Suppose α0+α1i+α2j+α3k = 0.
This means, α0 + α1X + α2Y + α3XY ∈ I. Write

α0 + α1X + α2Y + α3XY

=
∑

f1(X, Y )k(X2 − a)gk1(X, Y ) +
∑

fk
2 (X, Y )(Y 2 − b)gk2(X, Y )

+
∑

fk
3 (X, Y )(XY + Y X)gk3(X, Y )

In fact

X2Y = X(XY + Y X)−XYX = X(XY + Y X)− (XY + Y X)X + Y X2
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or

X2Y ≡ Y X2 mod (XY +Y X). Similarly Y 2X = XY 2 mod (XY +Y X).

Using this, we can write

α0 + α1X + α2Y + α3XY

= f1(X, Y )(X2 − a) + f2(X, Y )(Y 2 − b)

+
∑

fk
3 (X, Y )(XY + Y X)gk3(X, Y )

One should be able to equate coefficients and complete the proof. I did not
spend enough time on it. I live it as an exercise.

Lemma 1.4. Two observations:

1. Symmetry: (
a, b

F

)
=

(
b, a

F

)

2. Functoriality:

If F →֒ K is a field extension KF⊗F

(
a, b

F

)
∼−→
(
a, b

K

)
as K−algebras.

Proof. Follows from construction.

Proposition 1.5. Let a, b ∈ Ḟ . Then,

1. (
a, b

F

)
∼−→
(
ax2, by2

F

)
∀ x, y ∈ Ḟ .

2. (−1, 1

F

)
∼−→ M2(F )
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3.

CENTER

(
a, b

F

)
= F.

4.
(
a,b
F

)
has no nontrivial ideals (a simple algebra).

5. Remark. Because of (3, 4),
(
a,b
F

)
is a central simple algebra over F,

which will be discussed in chapter IV.

Proof. Write A =
(
a,b
F

)
and A′ =

(
ax2,by2

F

)
. As usual let 1, i, j, k = ij be the

"standard" basis of A. and 1, i′, j′, k′ = i′j′ be the "standard" basis of A′.

Then, i2 = a, j2 = b, (i′)2 = ax2, (j′)2 = by2.

Define a map

ϕ0 : F [[X, Y ]] −→
(
a, b

F

)
by ϕ(X) = xi, ϕ(Y ) = yj.

Consider the two sided ideal

J = GeneratedBy
(
X2 − ax2, Y 2 − by2, XY + Y X

)

Then, ϕ(J ) = 0. So, ϕ0 factors as

F [[X, Y ]]
ϕ0 //

��

(
a,b
F

)

(
ax2,by2

F

) ϕ

;;w
w

w
w

w

sending i′ 7→ xi, j′ 7→ yj.

Since ϕ is F−algebra map, it is also a F−linear map. So, 1, ϕ(i′) = xi, ϕ(j′) =
yj, ϕ(k′) = xyk is also a basis. Therefore, ϕ is an isomorphism.

Proof of (2): In the proof of (1.3), take a = −1, b = 1 and α = β = 1. That
means, take

i0 =

(
0 1
−1 0

)
, j0 =

(
0 1
1 0

)
. Note, i0j0 =

(
1 0
0 −1

)

It is easy to check that I2, i0, j0, i0j0 is a basis of M2(F ). So, i 7→ i0, j 7→ j0
defines the isomophism needed.
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Proof of (3): Let E be the algebraic closure of F . Then,

E ⊗F

(
a, b

F

)
≈
(
a, b

E

)
≈
(
−
√
−a

2
,
√
b
2

E

)
≈
(−1, 1

E

)
≈ M2(E).

1. Center of M2(E) is E (as EI2). Proof. Exercise.

2. Claim: Center of A :=
(
a,b
F

)
is F .

Proof. Note, for x ∈ A,

x ∈ Center(A) ⇐⇒ xi = ix, xj = jx ⇐⇒ x ∈ Center(M2(E)) ⇐⇒ x ∈ E.

So, x ∈ A ∩ E. So, x ∈ F . So, (3) is established.

3. Proof of (4): Suppose A has a nontrivial ideal I. Write I = I⊗E. So,
dimF I < 4 and hence dimE I < 4. Note iI ⊆ I, jI ⊆ I, Ii ⊆ I, Ij ⊆ I.
Hence, iI ⊆ I, jI ⊆ I, Ii ⊆ I, Ij ⊆ I. Therefore, I is a nontrivial
ideal of

(
a,b
F

)
≈ M2(E), which is a contradiction.

1.1 Pure Quarternions

Definition 1.6. A quaternion v = α + βi + γj + δk ∈ A :=
(
a,b
F

)
is called

a pure quaternion if α = 0. The F−linear space of all pure quaternions is

denoted by A0.

Proposition 1.7. Let 0 6= v ∈ A. Then

v ∈ A0 ⇐⇒ v /∈ F and v2 ∈ F.

Proof. Let v = α + βi+ γj + δk. Then,

v2 = (α2 + aβ2 + bγ2 − abδ2) + 2α(βi+ γj + δk).

The corollary follows form this identity.

Corollary 1.8. If A =
(
a,b
F

)
and A′ =

(
a′,b′

F

)
. Let ϕ : A

∼−→ A′ be a

F−algebra isomorphism. The ϕ(A0) = A′
0.

Proof. Follows from (1.6).
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1.2 The Real Quarternion

By (1.5), we have only three quartenion algebras:
(
1, 1

R

)
,

(−1, 1

R

)
≈ M2(R), and H =

(−1,−1

R

)
.

We will study the third one, known as The Real Quarternion Algebra.

1. First, C = R+ Ri ⊆ H.

2. C is not in the center of H. In this sense, H is not a C−algebra.

3. H is a right C vector space with basis {1, j}. Any v = x+ yi+ zj+wk
can ne written as

v = (x+ yi) + j(z − wi) = α + jβ for some α, β ∈ C.

4. For v ∈ H define

Lv : H −→ H by Lv(z) = vz. Then, Lvv′ = LvoLv′ .

5. Lv is a C−linear endomorphism of H. To see this we check

Lv(z1α + z2β) = v(z1α + z2β) = Lv(z1)α + Lv(z2)β.

6. L defines, R−algebra homomorphism

L : H −→ EndC(H) = M2(C) wrt basis 1, j.

7. We have

Li =

(
i 0
0 −i

)
, Lj =

(
0 −1
1 0

)
, Lk =

(
0 −i
−i 0

)
∈ M2(C).

Needs care, because scalar multiplication comes from right:
(

Li(1)
Li(j)

)t

=

(
i
ij

)t

=

(
i

−ji

)t

=
(
1 j

)( i 0
0 −i

)

Note entries in the square matrix are scalars and the basis elements are
from H. Also

(
Lk(1)
Lk(j)

)t

=

(
k
kj

)t

=

(
−ji
−i

)t

=
(
1 j

)( 0 −i
−i 0

)
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8. This is left regular representation of H in End(H).

9. We can compute Lx+iy, Lα+jβ where x, y ∈ R and α, β ∈ C, by compo-
sition:

Lx+yi = Lx+LyLi =

(
x 0
0 x

)
+

(
y 0
0 y

)(
i 0
0 −i

)
=

(
x+ yi 0

0 x+ yi

)

Use this to compute

Lα+jβ =

(
α −β
β α

)

10. L is a faithful representation:

Lv = 0 =⇒ Lv(1) = v = 0.

11. So, H is isomorphic to the real subalgebra of M2(C), consisting of
matrices of the form:

Lα+jβ =

(
α −β
β α

)
with α, β ∈ C.

Recall the following:

Definition 1.9. Recall the following:

1. A matrix in U ∈ Mn(C) is called a unitary matix, if UU∗ = In = U∗U .

2. The group U(n) of all unitary matrices is called the unitary group.

3. The special unitary group SU(n) is defined to be

SU(n) = {U ∈ U(n) : det(U) = 1}.
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Lemma 1.10. We have

SU(2) =

{
σ =

(
α −β

β α

)
: α, β ∈ C and det(σ) = 1

}

Proof. Omitted. Write down the equations and solve.

Corollary 1.11. The group of unit quaternions

U0 = {x+ yi+ zj + wk : x2 + y2 + z2 + w2 = 1} ∼−→ SU(2)

Proof. Under the representation L, image of L is exactly SU(2), by (1.10).
More precisely,

Lα+βj

(
1 j

)
=
(
1 j

)( α −β
β α

)

Conjugation

Definition 1.12. For

v = x+ yi+ zj + wk ∈ H define v := x− yi− zj − wk

We say v is the conjugate of v.

1. If we write

v = (x+ yi) + j(z − wi) = α + jβ then v = α− jβ

2. The representation L : H −→ M2(C) preserves the conjugation (invo-

lution) in the sense

(Lv)
∗ =

(
α −β

β α

)∗

=

(
α β

−β α

)
= Lv.
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2 Quaternions and Quadratic Spaces

Let A :=
(
a,b
F

)
. In this section, we define a quadratic structure on the

quaternion algebra A.

1. For x = α + βi+ γj + δk, define x := α− βi− γj − δk.

2. It follows, for x, y ∈ A and r ∈ F

x+ y = x+ y, xy = y · x, x = x, rx = rx.

3. The map x 7→ x is called the bar involution on A.

4. For x ∈ A define, Norm Nx and Trace Tx of x as follows:

Nx := xx, Tx := x+ x.

5. In fact, Nx ∈ F and Tx ∈ F . This is because

Nx = xx = Nx, and similarly, Tx = Tx.

So,

the norm maps N : A −→ F, and the trace maps T : A −→ F.

6. Define the bilinear form

B : A× A −→ F by B(x, y) :=
T (xy)

2
=

xy + yx

2

7. The quadratic map associated with B is

qB(x) = B(x, x) = xx = Nx.

This quadratic form is called the Norm form.

8. We claim: {1, i, j, k} forms an orthogonal basis of A, which is checked
easily:

B(1, i) =
T i

2
= 0, B(i, j) =

T (ij)

2
=

T (k)

2
= 0 and so on.
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Corollary 2.1. The quadratic space (A,B) has an orthogonal basis and

isometric to

〈1,−a,−b, ab〉 ∼= 〈1,−a〉 ⊗ 〈1,−b〉

Proof. We saw {1, i, j, k} is an orthogonal basis of A. We have

q(1) = N(1) = 1, q(i) = N(i) = −i2 = −a,

q(j) = N(j) = −j2 = −b, q(k) = N(k) = −k2 = ab.

The proof is complete.

Observations and a Question:

1. det(A) = det(〈1,−a,−b, ab〉) = 1.

2. 1 ∈ D(A).

3. Lam comments: these 〈1,−a,−b, ab〉 are precisely the four dimensional
quadratic forms satifying condition (1, 2). (Give a proof).

Corollary 2.2. For x = α + βi+ γj + δk we have

Nx = α2 − β2a− γ2b+ δ2ab.

Proof. Use orthogonality. The proof is complete.

Remarks.

1. For x ∈ A, we have Nx = Nx.

2. So, x 7→ x is an isometry.

3. So, B(x, y) = B(x, y) for all x, y. Ofcourse

B(x, y) =
T (xy)

2
=

T (xy)

2
= B(x, y).

4. For any x ∈ A we have

x2 − T (x)x+N(x) = 0.
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5. For x = α + βi+ γj + δk ∈ H =
(
−1,−1

R

)
, we are not surprized

N(x) = α2 + β2 + γ2 + δ2

6. Exercise. If we use the model L(H), then norm and trace corresponds
exactly to that of matrices (over C).

Proposition 2.3. We have

1. x, y ∈ A =⇒ N(x, y) = Nx ·Ny.

2. x ∈ A is invertible if and only if Nx 6= 0 (which means x is anisotropic).

Proof. N(xy) = xyxy = x(y · y)x = Nx · Ny. To prove (2), suppose x−1

exists. Then
1 = N(1) = N(x · x−1) = N(x)N(x−1).

So, Nx 6= 0. Conversely, If Nx 6= 0 then

x · x

Nx
=

x · x
Nx

= 1. So, x−1 =
x

Nx
.

Contrast: To inner product spaces, with involution (like C),

x−1 =
x

〈x, x〉 =
x

‖ x ‖2 .

Corollary 2.4. skip Corollary 2.4

Theorem 2.5. Let A =
(
a,b
F

)
and A′ =

(
a′,b′

F

)
. The following are equivalent:

1. A and A′ are isomorphic as F−algebars.

2. A and A′ are isometric as quadratic spaces.

3. A0 and A′
0 are isometric as quadratic spaces.
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Proof. (2) ⇐⇒ (3) by cancellation thoerem.

((1) =⇒ (2)): Let ϕ : A
∼−→ A′ be an F−algebra homomorphism. By

corollary 1.8, ϕ(A0) = A′
0. Let x = α + x0 ∈ A, with α ∈ F, x0 ∈ A0.

We prove Nx = N(ϕ(x)). We have ϕ(x) = α + ϕ(x0). It follows ϕ(x) =
α− ϕ(x0) = ϕ(x). So,

N(ϕ(x)) = ϕ(x) · ϕ(x) = ϕ(x · x) = x · x = Nx.

((3) =⇒ (1)): Let σ : A0
∼−→ A′

0 be an isometry. We have

−a = N(i) = N(σ(i)) = σ(i)σ(i) = −σ(i)2, So, σ(i)2 = a.

Similalrly, σ(j)2 = b. Also,

i ⊥ j =⇒ σ(i) ⊥ σ(j) −→ σ(i)σ(j) = −σ(j)σ(i).

This shows there is F−algebra homomorphism:

σ̃ : A −→ A′ i 7→ σ(i), j 7→ σ(j).

So, σ̃(k) = σ̃(i)σ̃(j) = σ(i)σ(j).

One can see for u, v ∈ A′ the producs uv, vu have same constant term.
Since, σ(i)σ(j) = −σ(j)σ(i), it follows ω := σ(i)σ(j) ∈ A′

0.

Also σ(i), σ(j), σ(k) is a basis os A′
0. Claim: ω /∈ Fσ(i) + Fσ(j). If not,

write σ(i)σ(j) = ασ(i) + βσ(j). Multiply by σ(i) from left, we have

aσ(j) = αa+ βσ(i)σ(j)

Since, 1, σ(i), σ(j), σ(k) a basis, we have the constant term αa = 0 and hence
α = 0. Similarly, β = 0. So, the claim is proved.

So, 1, σ(i), σ(j), ˜σ(k) = σ(i)σ(j) is a basis. So, σ̃ is an isomorphism.

Corollary 2.6.
(a, a

F

)
∼−→
(
a,−1

F

)
and

(a, a
F

)
∼=
(
a,−1

F

)

Proof. He wrote only ∼=. Two quaternion algebras have the norm forms (see
(2.1))

〈1,−a,−a, a2〉, 〈1,−a, 1,−a〉
But

〈1,−a, 1,−a〉 ∼= 〈1,−a,−a, 1〉 ∼= 〈1,−a,−a, a2〉
Now, by (2.5), they are isomorphic. The proof is complete.
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Theorem 2.7. Let A =
(
a,b
F

)
. Then, the following are equivalent:

1. A ∼=
(
1,−1
F

)
(which is ∼= M2(F )).

2. A is not a division algebra.

3. A is isotropic as a quadratic space.

4. A is hyperboloc as a quadratic space.

5. A0 is isotropic as a quadratic space.

6. (〈a〉 − 1)(〈b〉 − 1) = 0 in Ŵ (F ) (or in W (F )).

7. The binary form 〈a, b〉 represents 1.

8. a ∈ NE/F (E), where E = F (
√
b) and NE/F is a field.

Note, by (2.5), ∼= may mean isomorphism or isometry. If any of these condi-

tions hold, we say A splits over F .

Proof. ((1) ⇐⇒ (4)): (1) means Hyperabolic space (the RHS) as F−algebra.
So, this is established by (2.5).

((4) =⇒ (6)): In fact, A is isometric to (〈a〉 − 1)(〈b〉 − 1), hence zero in

Ŵ (F ).

((6) =⇒ (4)): Following isometries follows from (6):

〈1, ab〉 ∼= 〈a, b〉 =⇒ 〈1,−a,−b, ab〉 ∼= 〈a, b〉 ⊥ 〈−a,−b〉

which is hyperpolic.

((6) =⇒ (7)): We have

〈ab〉 ⊥ 〈1〉 = 〈a〉 ⊥ 〈b〉 ∈ Ŵ (F ).

Hence
〈ab, 1〉 ∼= 〈a, b〉

Since LHS represents 1, so does the RHS.
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((7) =⇒ (6)): Since, 〈a, b〉 represents 1, 〈a, b〉 ∼= 〈1, ab〉. So, 〈1,−a,−b, ab〉 =
0 ∈ Ŵ (F ). Therfore, we have

(1) ⇐⇒ (4) ⇐⇒ (6) ⇐⇒ (7)

((3) ⇐⇒ ((4)): Clearly, (4) =⇒ (3). Now suppose A is isotropic. Then,
A ∼= H ⊥ q, for some q. In any case, the determinant of the Norm form is
= a2b2 = 1. So, 1 = det(H) det q. So, det q = −1. So, q ∼= H, by (I.5.1). So,
(4) follows.

((4) ⇐⇒ ((5)): If A0 has Witt index zero, then Witt indesx of A would be
at most one. So, (4) =⇒ (5) =⇒ 3 =⇒ (4).

((1) =⇒ ((2)): Obvious, because the former is not a division algebra.

((2) =⇒ ((3)): Suppose A is ansotropic. Then, by (2.3), A would be a
division algebra.

The proof is complete.
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