Chapter III

Quarternion Algebras and norm forms

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

August 152013

1 Construction or Definition

Definition 1.1. Let F be any field with $\operatorname{char}(F) \neq 2$ and $a, b \in \dot{F}$. Define

 quarternion algebra $A=\left(\frac{a, b}{F}\right)$ as follows:A is generated, as an algebra, by two generators i, j. with relations

$$
i^{2}=a, \quad j^{2}=b \quad i j=-j i .
$$

1. Also let $k:=i j \in A$. Then,

$$
k^{2}=-a b, \quad i k=-k i=a j, \quad k j=-j k=b i
$$

2. So, i,j,k anticommute.
3. When $F=\mathbb{R}$, the usual quaternion is $\mathcal{H}:=\left(\frac{-1,-1}{\mathbb{R}}\right)$.
4. A is spanned by $1, i, j, k$ as a $V S$ over F.

Lemma 1.2 (Construction). $A=\left(\frac{a, b}{F}\right)$ is constructed as follows:

1. Let $P=F[[X, Y]]$ be the non-commutative polynomial algebra. This is also called the "free algebra" over F, generated by X, Y. In fact,

$$
P=F[[X, Y]]=\bigoplus_{w \in \Omega} F \cdot w=F \cdot 1 \oplus \oplus F \cdot X \oplus F \cdot Y \oplus F \cdot X Y \oplus F \cdot Y X \cdots
$$

where Ω is the set of all words in X, Y.
2. Let \mathcal{I} be the two sided ideal of $F[[X, Y]]$ generated by

$$
\left\{X^{2}-a, Y^{2}-b, X Y+Y X\right\}
$$

3. Then,

$$
A=\left(\frac{a, b}{F}\right)=\frac{F[[X, Y]]}{\mathcal{I}}
$$

4. We write

$$
i:=\bar{X}, \quad j:=\bar{Y}, \quad k:=i j=\overline{X Y}
$$

Proposition 1.3 (1.0). $\{1, i, j, k\}$ is a basis for $A=\left(\frac{a, b}{F}\right) . S o, \operatorname{dim} A=4$.
Proof. We use the construction. Write $i=\bar{X}, j=\bar{Y}$ and $k=i j$. It is clear that A is generated by $\{1, i, j, k\}$ spans A.
Linear Independence: Let E be the algebraic closure of F. Fix $\alpha, \beta \in E$ such that $\alpha^{2}=-a, \beta^{2}=b$. Let

$$
i_{0}=\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right) \quad j_{0}=\left(\begin{array}{cc}
0 & \beta \\
\beta & 0
\end{array}\right) \in \mathbb{M}(E) .
$$

Define

$$
\varphi_{0}: F[[X, Y]] \longrightarrow \mathbb{M}(E) \quad \text { by } \quad \varphi_{0}(X)=i_{0}, \quad \varphi_{0}(Y)=j_{0} .
$$

Now,

$$
\varphi_{0}\left(X^{2}-a\right)=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)-a=0
$$

Similarly,

$$
\varphi_{0}\left(Y^{2}-a\right)=\left(\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right)-b=0
$$

Also,

$$
\begin{aligned}
\varphi(X Y+Y X) & =\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \beta \\
\beta & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \beta \\
\beta & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\alpha \beta & 0 \\
0 & -\alpha \beta
\end{array}\right)+\left(\begin{array}{cc}
-\alpha \beta & 0 \\
0 & \alpha \beta
\end{array}\right)=0 .
\end{aligned}
$$

So, φ_{0} factors through as follows:

So, φ_{0} factors as follows:

$$
\varphi(k)=\varphi(i j)=\varphi_{0}(X Y)=\left(\begin{array}{cc}
\alpha \beta & 0 \\
0 & -\alpha \beta
\end{array}\right)
$$

Clearly,

$$
1, i_{0}=\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right), j_{0}=\left(\begin{array}{cc}
0 & \beta \\
\beta & 0
\end{array}\right),\left(\begin{array}{cc}
\alpha \beta & 0 \\
0 & -\alpha \beta
\end{array}\right)
$$

are linealry independent over E. Hence $1, i, j, k$ are linearly independent. The proof is complete.

Linear Independence: Possible Proof. Suppose $\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k=0$. This means, $\alpha_{0}+\alpha_{1} X+\alpha_{2} Y+\alpha_{3} X Y \in \mathcal{I}$. Write

$$
\begin{gathered}
\alpha_{0}+\alpha_{1} X+\alpha_{2} Y+\alpha_{3} X Y \\
=\sum f_{1}(X, Y)^{k}\left(X^{2}-a\right) g_{1}^{k}(X, Y)+\sum f_{2}^{k}(X, Y)\left(Y^{2}-b\right) g_{2}^{k}(X, Y) \\
+\sum f_{3}^{k}(X, Y)(X Y+Y X) g_{3}^{k}(X, Y)
\end{gathered}
$$

In fact

$$
X^{2} Y=X(X Y+Y X)-X Y X=X(X Y+Y X)-(X Y+Y X) X+Y X^{2}
$$

$X^{2} Y \equiv Y X^{2} \bmod (X Y+Y X) . \quad$ Similarly $Y^{2} X=X Y^{2} \bmod (X Y+Y X)$.
Using this, we can write

$$
\begin{gathered}
\alpha_{0}+\alpha_{1} X+\alpha_{2} Y+\alpha_{3} X Y \\
=f_{1}(X, Y)\left(X^{2}-a\right)+f_{2}(X, Y)\left(Y^{2}-b\right) \\
+\sum f_{3}^{k}(X, Y)(X Y+Y X) g_{3}^{k}(X, Y)
\end{gathered}
$$

One should be able to equate coefficients and complete the proof. I did not spend enough time on it. I live it as an exercise.

Lemma 1.4. Two observations:

1. Symmetry:

$$
\left(\frac{a, b}{F}\right)=\left(\frac{b, a}{F}\right)
$$

2. Functoriality:

If $\quad F \hookrightarrow K$ is a field extension $\quad K_{F} \otimes_{F}\left(\frac{a, b}{F}\right) \xrightarrow{\sim}\left(\frac{a, b}{K}\right) \quad$ as K-algebras.
Proof. Follows from construction.
Proposition 1.5. Let $a, b \in \dot{F}$. Then,
1.

$$
\left(\frac{a, b}{F}\right) \xrightarrow{\sim}\left(\frac{a x^{2}, b y^{2}}{F}\right) \quad \forall x, y \in \dot{F} .
$$

2.

$$
\left(\frac{-1,1}{F}\right) \xrightarrow{\sim} \mathbb{M}_{2}(F)
$$

3.

$$
\operatorname{CENTER}\left(\frac{a, b}{F}\right)=F
$$

4. $\left(\frac{a, b}{F}\right)$ has no nontrivial ideals (a simple algebra).
5. Remark. Because of $(3,4),\left(\frac{a, b}{F}\right)$ is a central simple algebra over F , which will be discussed in chapter IV.

Proof. Write $A=\left(\frac{a, b}{F}\right)$ and $A^{\prime}=\left(\frac{a x^{2}, b y^{2}}{F}\right)$. As usual let $1, i, j, k=i j$ be the "standard" basis of A. and $1, i^{\prime}, j^{\prime}, k^{\prime}=i^{\prime} j^{\prime}$ be the "standard" basis of A^{\prime}.

$$
\text { Then, } \quad i^{2}=a, j^{2}=b,\left(i^{\prime}\right)^{2}=a x^{2},\left(j^{\prime}\right)^{2}=b y^{2} .
$$

Define a map

$$
\varphi_{0}: F[[X, Y]] \longrightarrow\left(\frac{a, b}{F}\right) \quad \text { by } \quad \varphi(X)=x i, \quad \varphi(Y)=y j .
$$

Consider the two sided ideal

$$
\mathcal{J}=\text { GeneratedBy }\left(X^{2}-a x^{2}, Y^{2}-b y^{2}, X Y+Y X\right)
$$

Then, $\varphi(\mathcal{J})=0$. So, φ_{0} factors as

Since φ is F-algebra map, it is also a F-linear map. So, $1, \varphi\left(i^{\prime}\right)=x i, \varphi\left(j^{\prime}\right)=$ $y j, \varphi\left(k^{\prime}\right)=x y k$ is also a basis. Therefore, φ is an isomorphism.
Proof of (2): In the proof of (1.3), take $a=-1, b=1$ and $\alpha=\beta=1$. That means, take

$$
i_{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad j_{0}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) . \quad \text { Note, } \quad i_{0} j_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is easy to check that $I_{2}, i_{0}, j_{0}, i_{0} j_{0}$ is a basis of $\mathbb{M}_{2}(F)$. So, $i \mapsto i_{0}, j \mapsto j_{0}$ defines the isomophism needed.

Proof of (3): Let E be the algebraic closure of F. Then,

$$
E \otimes_{F}\left(\frac{a, b}{F}\right) \approx\left(\frac{a, b}{E}\right) \approx\left(\frac{-\sqrt{-a}^{2}, \sqrt{b}^{2}}{E}\right) \approx\left(\frac{-1,1}{E}\right) \approx \mathbb{M}_{2}(E)
$$

1. Center of $\mathbb{M}_{2}(E)$ is E (as $E I_{2}$). Proof. Exercise.
2. Claim: Center of $A:=\left(\frac{a, b}{F}\right)$ is F.

Proof. Note, for $x \in A$,
$x \in \operatorname{Center}(A) \Longleftrightarrow x i=i x, x j=j x \Longleftrightarrow x \in \operatorname{Center}\left(\mathbb{M}_{2}(E)\right) \Longleftrightarrow x \in E$.
So, $x \in A \cap E$. So, $x \in F$. So, (3) is established.
3. Proof of (4): Suppose A has a nontrivial ideal I. Write $\mathcal{I}=I \otimes E$. So, $\operatorname{dim}_{F} I<4$ and hence $\operatorname{dim}_{E} \mathcal{I}<4$. Note $i I \subseteq I, j I \subseteq I, I i \subseteq I, I j \subseteq I$. Hence, $i \mathcal{I} \subseteq \mathcal{I}, j \mathcal{I} \subseteq \mathcal{I}, \mathcal{I} i \subseteq \mathcal{I}, \mathcal{I} j \subseteq \mathcal{I}$. Therefore, \mathcal{I} is a nontrivial ideal of $\left(\frac{a, b}{F}\right) \approx \mathbb{M}_{2}(E)$, which is a contradiction.

1.1 Pure Quarternions

Definition 1.6. A quaternion $v=\alpha+\beta i+\gamma j+\delta k \in A:=\left(\frac{a, b}{F}\right)$ is called a pure quaternion if $\alpha=0$. The F-linear space of all pure quaternions is denoted by A_{0}.

Proposition 1.7. Let $0 \neq v \in A$. Then

$$
v \in A_{0} \Longleftrightarrow v \notin F \text { and } v^{2} \in F .
$$

Proof. Let $v=\alpha+\beta i+\gamma j+\delta k$. Then,

$$
v^{2}=\left(\alpha^{2}+a \beta^{2}+b \gamma^{2}-a b \delta^{2}\right)+2 \alpha(\beta i+\gamma j+\delta k) .
$$

The corollary follows form this identity.
Corollary 1.8. If $A=\left(\frac{a, b}{F}\right)$ and $A^{\prime}=\left(\frac{a^{\prime}, b^{\prime}}{F}\right)$. Let $\varphi: A \xrightarrow{\sim} A^{\prime}$ be a F-algebra isomorphism. The $\varphi\left(A_{0}\right)=A_{0}^{\prime}$.

Proof. Follows from (1.6).

1.2 The Real Quarternion

By (1.5), we have only three quartenion algebras:

$$
\left(\frac{1,1}{\mathbb{R}}\right), \quad\left(\frac{-1,1}{\mathbb{R}}\right) \approx \mathbb{M}_{2}(\mathbb{R}), \quad \text { and } \quad \mathcal{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)
$$

We will study the third one, known as The Real Quarternion Algebra.

1. First, $\mathbb{C}=\mathbb{R}+\mathbb{R} i \subseteq \mathcal{H}$.
2. \mathbb{C} is not in the center of \mathcal{H}. In this sense, \mathcal{H} is not a \mathbb{C}-algebra.
3. \mathcal{H} is a right \mathbb{C} vector space with basis $\{1, j\}$. Any $v=x+y i+z j+w k$ can ne written as

$$
v=(x+y i)+j(z-w i)=\alpha+j \beta \quad \text { for some } \quad \alpha, \beta \in \mathbb{C} .
$$

4. For $v \in \mathcal{H}$ define

$$
L_{v}: \mathcal{H} \longrightarrow \mathcal{H} \quad \text { by } \quad L_{v}(z)=v z . \quad \text { Then }, \quad L_{v v^{\prime}}=L_{v} o L_{v^{\prime}} .
$$

5. L_{v} is a \mathbb{C}-linear endomorphism of \mathcal{H}. To see this we check

$$
L_{v}\left(z_{1} \alpha+z_{2} \beta\right)=v\left(z_{1} \alpha+z_{2} \beta\right)=L_{v}\left(z_{1}\right) \alpha+L_{v}\left(z_{2}\right) \beta .
$$

6. L defines, \mathbb{R}-algebra homomorphism

$$
L: \mathcal{H} \longrightarrow \operatorname{End}_{\mathbb{C}}(\mathcal{H})=\mathbb{M}_{2}(\mathbb{C}) \quad \text { wrt } \quad \text { basis } \quad 1, j
$$

7. We have

$$
L_{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad L_{j}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad L_{k}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \in \mathbb{M}_{2}(\mathbb{C})
$$

Needs care, because scalar multiplication comes from right:

$$
\binom{L_{i}(1)}{L_{i}(j)}^{t}=\binom{i}{i j}^{t}=\binom{i}{-j i}^{t}=\left(\begin{array}{ll}
1 & j
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

Note entries in the square matrix are scalars and the basis elements are from \mathcal{H}. Also

$$
\binom{L_{k}(1)}{L_{k}(j)}^{t}=\binom{k}{k j}^{t}=\binom{-j i}{-i}^{t}=\left(\begin{array}{ll}
1 & j
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)
$$

8. This is left regular representation of \mathcal{H} in $\operatorname{End}(\mathcal{H})$.
9. We can compute $L_{x+i y}, L_{\alpha+j \beta}$ where $x, y \in \mathbb{R}$ and $\alpha, \beta \in \mathbb{C}$, by composition:

$$
L_{x+y i}=L_{x}+L_{y} L_{i}=\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)+\left(\begin{array}{cc}
y & 0 \\
0 & y
\end{array}\right)\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)=\left(\begin{array}{cc}
x+y i & 0 \\
0 & x+y i
\end{array}\right)
$$

Use this to compute

$$
L_{\alpha+j \beta}=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)
$$

10. L is a faithful representation:

$$
L_{v}=0 \Longrightarrow L_{v}(1)=v=0 .
$$

11. So, \mathcal{H} is isomorphic to the real subalgebra of $\mathbb{M}_{2}(\mathbb{C})$, consisting of matrices of the form:

$$
L_{\alpha+j \beta}=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \quad \text { with } \quad \alpha, \beta \in \mathbb{C} .
$$

Recall the following:
Definition 1.9. Recall the following:

1. A matrix in $U \in \mathbb{M}_{n}(\mathbb{C})$ is called a unitary matix, if $U U^{*}=I_{n}=U^{*} U$.
2. The group $U(n)$ of all unitary matrices is called the unitary group.
3. The special unitary group $S U(n)$ is defined to be

$$
S U(n)=\{U \in U(n): \operatorname{det}(U)=1\} .
$$

Lemma 1.10. We have

$$
S U(2)=\left\{\sigma=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right): \alpha, \beta \in \mathbb{C} \text { and } \operatorname{det}(\sigma)=1\right\}
$$

Proof. Omitted. Write down the equations and solve.
Corollary 1.11. The group of unit quaternions

$$
U_{0}=\left\{x+y i+z j+w k: x^{2}+y^{2}+z^{2}+w^{2}=1\right\} \xrightarrow{\sim} S U(2)
$$

Proof. Under the representation L, image of L is exactly $S U(2)$, by (1.10). More precisely,

$$
L_{\alpha+\beta j}\left(\begin{array}{ll}
1 & j
\end{array}\right)=\left(\begin{array}{ll}
1 & j
\end{array}\right)\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)
$$

Conjugation

Definition 1.12. For

$$
v=x+y i+z j+w k \in \mathcal{H} \quad \text { define } \quad \bar{v}:=x-y i-z j-w k
$$

We say \bar{v} is the conjugate of v.

1. If we write

$$
v=(x+y i)+j(z-w i)=\alpha+j \beta \quad \text { then } \quad \bar{v}=\bar{\alpha}-j \beta
$$

2. The representation $L: \mathcal{H} \longrightarrow \mathbb{M}_{2}(\mathbb{C})$ preserves the conjugation (involution) in the sense

$$
\left(L_{v}\right)^{*}=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)^{*}=\left(\begin{array}{cc}
\bar{\alpha} & \bar{\beta} \\
-\beta & \alpha
\end{array}\right)=L_{\bar{v}} .
$$

2 Quaternions and Quadratic Spaces

Let $A:=\left(\frac{a, b}{F}\right)$. In this section, we define a quadratic structure on the quaternion algebra A.

1. For $x=\alpha+\beta i+\gamma j+\delta k$, define $\bar{x}:=\alpha-\beta i-\gamma j-\delta k$.
2. It follows, for $x, y \in A$ and $r \in F$

$$
\overline{x+y}=\bar{x}+\bar{y}, \quad \overline{x y}=\bar{y} \cdot \bar{x}, \quad \overline{\bar{x}}=x, \quad \overline{r x}=r \bar{x} .
$$

3. The map $x \mapsto \bar{x}$ is called the bar involution on A.
4. For $x \in A$ define, Norm $N x$ and Trace $T x$ of x as follows:

$$
N x:=x \bar{x}, \quad T x:=x+\bar{x} .
$$

5. In fact, $N x \in F$ and $T x \in F$. This is because

$$
\overline{N x}=\overline{x \bar{x}}=N x, \quad \text { and similarly }, \quad \overline{T x}=T x
$$

So,
the norm maps $N: A \longrightarrow F, \quad$ and the trace maps $\quad T: A \longrightarrow F$.
6. Define the bilinear form

$$
B: A \times A \longrightarrow F \quad \text { by } \quad B(x, y):=\frac{T(x \bar{y})}{2}=\frac{x \bar{y}+y \bar{x}}{2}
$$

7. The quadratic map associated with B is

$$
q_{B}(x)=B(x, x)=x \bar{x}=N x .
$$

This quadratic form is called the Norm form.
8. We claim: $\{1, i, j, k\}$ forms an orthogonal basis of A, which is checked easily:

$$
B(1, i)=\frac{T i}{2}=0, \quad B(i, j)=\frac{T(i j)}{2}=\frac{T(k)}{2}=0 \quad \text { and so on. }
$$

Corollary 2.1. The quadratic space (A, B) has an orthogonal basis and isometric to

$$
\langle 1,-a,-b, a b\rangle \cong\langle 1,-a\rangle \otimes\langle 1,-b\rangle
$$

Proof. We saw $\{1, i, j, k\}$ is an orthogonal basis of A. We have

$$
\begin{gathered}
q(1)=N(1)=1, \quad q(i)=N(i)=-i^{2}=-a, \\
q(j)=N(j)=-j^{2}=-b, q(k)=N(k)=-k^{2}=a b .
\end{gathered}
$$

The proof is complete.

Observations and a Question:

1. $\operatorname{det}(A)=\operatorname{det}(\langle 1,-a,-b, a b\rangle)=1$.
2. $1 \in D(A)$.
3. Lam comments: these $\langle 1,-a,-b, a b\rangle$ are precisely the four dimensional quadratic forms satifying condition $(1,2)$. (Give a proof).

Corollary 2.2. For $x=\alpha+\beta i+\gamma j+\delta k$ we have

$$
N x=\alpha^{2}-\beta^{2} a-\gamma^{2} b+\delta^{2} a b .
$$

Proof. Use orthogonality. The proof is complete.

Remarks.

1. For $x \in A$, we have $N x=N \bar{x}$.
2. So, $x \mapsto \bar{x}$ is an isometry.
3. So, $B(x, y)=B(\bar{x}, \bar{y})$ for all x, y. Ofcourse

$$
B(x, y)=\frac{T(x \bar{y})}{2}=\frac{T(\bar{x} y)}{2}=B(\bar{x}, \bar{y}) .
$$

4. For any $x \in A$ we have

$$
x^{2}-T(x) x+N(x)=0 .
$$

5. For $x=\alpha+\beta i+\gamma j+\delta k \in \mathcal{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)$, we are not surprized

$$
N(x)=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}
$$

6. Exercise. If we use the model $L(\mathcal{H})$, then norm and trace corresponds exactly to that of matrices (over \mathbb{C}).

Proposition 2.3. We have

1. $x, y \in A \Longrightarrow N(x, y)=N x \cdot N y$.
2. $x \in A$ is invertible if and only if $N x \neq 0$ (which means x is anisotropic).

Proof. $N(x y)=x y \overline{x y}=x(y \cdot \bar{y}) \bar{x}=N x \cdot N y$. To prove (2), suppose x^{-1} exists. Then

$$
1=N(1)=N\left(x \cdot x^{-1}\right)=N(x) N\left(x^{-1}\right) .
$$

So, $N x \neq 0$. Conversely, If $N x \neq 0$ then

$$
x \cdot \frac{\bar{x}}{N x}=\frac{x \cdot \bar{x}}{N x}=1 . \quad \text { So, } \quad x^{-1}=\frac{\bar{x}}{N x} .
$$

Contrast: To inner product spaces, with involution (like \mathbb{C}),

$$
x^{-1}=\frac{\bar{x}}{\langle x, \bar{x}\rangle}=\frac{\bar{x}}{\|x\|^{2}} .
$$

Corollary 2.4. skip Corollary 2.4
Theorem 2.5. Let $A=\left(\frac{a, b}{F}\right)$ and $A^{\prime}=\left(\frac{a^{\prime}, b^{\prime}}{F}\right)$. The following are equivalent:

1. A and A^{\prime} are isomorphic as F-algebars.
2. A and A^{\prime} are isometric as quadratic spaces.
3. A_{0} and A_{0}^{\prime} are isometric as quadratic spaces.

Proof. $(2) \Longleftrightarrow(3)$ by cancellation thoerem.
$((1) \Longrightarrow(2)):$ Let $\varphi: A \xrightarrow{\sim} A^{\prime}$ be an F-algebra homomorphism. By corollary $1.8, \varphi\left(A_{0}\right)=A_{0}^{\prime}$. Let $x=\alpha+x_{0} \in A$, with $\alpha \in F, x_{0} \in A_{0}$. We prove $N x=N(\varphi(x))$. We have $\varphi(x)=\alpha+\varphi\left(x_{0}\right)$. It follows $\overline{\varphi(x)}=$ $\alpha-\varphi\left(x_{0}\right)=\varphi(\bar{x})$. So,

$$
N(\varphi(x))=\varphi(x) \cdot \overline{\varphi(x)}=\varphi(x \cdot \bar{x})=x \cdot \bar{x}=N x .
$$

$((3) \Longrightarrow(1))$: Let $\sigma: A_{0} \xrightarrow{\sim} A_{0}^{\prime}$ be an isometry. We have

$$
-a=N(i)=N(\sigma(i))=\sigma(i) \overline{\sigma(i)}=-\sigma(i)^{2}, \quad \text { So, } \quad \sigma(i)^{2}=a
$$

Similalrly, $\sigma(j)^{2}=b$. Also,

$$
i \perp j \Longrightarrow \sigma(i) \perp \sigma(j) \longrightarrow \sigma(i) \sigma(j)=-\sigma(j) \sigma(i)
$$

This shows there is F-algebra homomorphism:

$$
\tilde{\sigma}: A \longrightarrow A^{\prime} \quad i \mapsto \sigma(i), j \mapsto \sigma(j) .
$$

So, $\tilde{\sigma}(k)=\tilde{\sigma}(i) \tilde{\sigma}(j)=\sigma(i) \sigma(j)$.
One can see for $u, v \in A^{\prime}$ the producs $u v, v u$ have same constant term. Since, $\sigma(i) \sigma(j)=-\sigma(j) \sigma(i)$, it follows $\omega:=\sigma(i) \sigma(j) \in A_{0}^{\prime}$.

Also $\sigma(i), \sigma(j), \sigma(k)$ is a basis os A_{0}^{\prime}. Claim: $\omega \notin F \sigma(i)+F \sigma(j)$. If not, write $\sigma(i) \sigma(j)=\alpha \sigma(i)+\beta \sigma(j)$. Multiply by $\sigma(i)$ from left, we have

$$
a \sigma(j)=\alpha a+\beta \sigma(i) \sigma(j)
$$

Since, $1, \sigma(i), \sigma(j), \sigma(k)$ a basis, we have the constant term $\alpha a=0$ and hence $\alpha=0$. Similarly, $\beta=0$. So, the claim is proved.

So, $1, \sigma(i), \sigma(j), \sigma \tilde{(k})=\sigma(i) \sigma(j)$ is a basis. So, $\tilde{\sigma}$ is an isomorphism.

Corollary 2.6.

$$
\left(\frac{a, a}{F}\right) \xrightarrow{\sim}\left(\frac{a,-1}{F}\right) \quad \text { and } \quad\left(\frac{a, a}{F}\right) \cong\left(\frac{a,-1}{F}\right)
$$

Proof. He wrote only \cong. Two quaternion algebras have the norm forms (see

$$
\begin{equation*}
\left\langle 1,-a,-a, a^{2}\right\rangle, \quad\langle 1,-a, 1,-a\rangle \tag{2.1}
\end{equation*}
$$

But

$$
\langle 1,-a, 1,-a\rangle \cong\langle 1,-a,-a, 1\rangle \cong\left\langle 1,-a,-a, a^{2}\right\rangle
$$

Now, by (2.5), they are isomorphic. The proof is complete.

Theorem 2.7. Let $A=\left(\frac{a, b}{F}\right)$. Then, the following are equivalent:

1. $A \cong\left(\frac{1,-1}{F}\right)\left(\right.$ which is $\left.\cong \mathbb{M}_{2}(F)\right)$.
2. A is not a division algebra.
3. A is isotropic as a quadratic space.
4. A is hyperboloc as a quadratic space.
5. A_{0} is isotropic as a quadratic space.
6. $(\langle a\rangle-1)(\langle b\rangle-1)=0$ in $\widehat{W}(F)($ or in $W(F))$.
7. The binary form $\langle a, b\rangle$ represents 1 .
8. $a \in N_{E / F}(E)$, where $E=F(\sqrt{b})$ and $N_{E / F}$ is a field.

Note, by $(2.5), \cong$ may mean isomorphism or isometry. If any of these conditions hold, we say A splits over F.

Proof. $((1) \Longleftrightarrow(4)):(1)$ means Hyperabolic space (the RHS) as F-algebra. So, this is established by (2.5).
$((4) \Longrightarrow(6))$: In fact, A is isometric to $(\langle a\rangle-1)(\langle b\rangle-1)$, hence zero in $\widehat{W}(F)$.
$((6) \Longrightarrow(4))$: Following isometries follows from (6):

$$
\langle 1, a b\rangle \cong\langle a, b\rangle \Longrightarrow\langle 1,-a,-b, a b\rangle \cong\langle a, b\rangle \perp\langle-a,-b\rangle
$$

which is hyperpolic.
$((6) \Longrightarrow(7))$: We have

$$
\langle a b\rangle \perp\langle 1\rangle=\langle a\rangle \perp\langle b\rangle \quad \in \widehat{W}(F) .
$$

Hence

$$
\langle a b, 1\rangle \cong\langle a, b\rangle
$$

Since LHS represents 1, so does the RHS.
$((7) \Longrightarrow(6))$: Since, $\langle a, b\rangle$ represents $1,\langle a, b\rangle \cong\langle 1, a b\rangle$. So, $\langle 1,-a,-b, a b\rangle=$ $0 \in \widehat{W}(F)$. Therfore, we have

$$
(1) \Longleftrightarrow(4) \Longleftrightarrow(6) \Longleftrightarrow(7)
$$

$((3) \Longleftrightarrow((4))$: Clearly, $(4) \Longrightarrow(3)$. Now suppose A is isotropic. Then, $A \cong \mathbb{H} \perp q$, for some q. In any case, the determinant of the Norm form is $=a^{2} b^{2}=1$. So, $1=\operatorname{det}(\mathbb{H}) \operatorname{det} q$. So, $\operatorname{det} q=-1$. So, $q \cong \mathbb{H}$, by (I.5.1). So, (4) follows.
$\left((4) \Longleftrightarrow((5))\right.$: If A_{0} has Witt index zero, then Witt indesx of A would be at most one. So, $(4) \Longrightarrow(5) \Longrightarrow 3 \Longrightarrow$ (4).
$((1) \Longrightarrow((2))$: Obvious, because the former is not a division algebra.
$((2) \Longrightarrow((3))$: Suppose A is ansotropic. Then, by (2.3), A would be a division algebra.

The proof is complete.

