# Chapter III Quarternion Algebras and norm forms

Satya Mandal

University of Kansas, Lawrence KS 66045 USA

August 15 2013

## 1 Construction or Definition

**Definition 1.1.** Let F be any field with  $char(F) \neq 2$  and  $a, b \in \dot{F}$ . Define quarternion algebra  $A = \left(\frac{a,b}{F}\right)$  as follows:

A is generated, as an algebra, by two generators i, j. with relations

$$i^2 = a, \quad j^2 = b \quad ij = -ji.$$

1. Also let  $k := ij \in A$ . Then,

$$k^2 = -ab, \quad ik = -ki = aj, \quad kj = -jk = bk$$

- 2. So, i, j, k anticommute.
- 3. When  $F = \mathbb{R}$ , the usual quaternion is  $\mathcal{H} := \left(\frac{-1, -1}{\mathbb{R}}\right)$ .
- 4. A is spanned by 1, i, j, k as a VS over F.

**Lemma 1.2** (Construction).  $A = \begin{pmatrix} a,b \\ F \end{pmatrix}$  is constructed as follows:

1. Let P = F[[X, Y]] be the non-commutative polynomial algebra. This is also called the "free algebra" over F, generated by X, Y. In fact,

$$P = F[[X, Y]] = \bigoplus_{w \in \Omega} F \cdot w = F \cdot 1 \oplus \oplus F \cdot X \oplus F \cdot Y \oplus F \cdot XY \oplus F \cdot YX \cdots$$

where  $\Omega$  is the set of all words in X, Y.

2. Let  $\mathcal{I}$  be the two sided ideal of F[[X, Y]] generated by

$$\{X^2 - a, Y^2 - b, XY + YX\}$$

3. Then,

$$A = \left(\frac{a, b}{F}\right) = \frac{F[[X, Y]]}{\mathcal{I}}$$

4. We write

$$i:=\overline{X}, \ j:=\overline{Y}, \ k:=ij=\overline{XY}$$

**Proposition 1.3** (1.0).  $\{1, i, j, k\}$  is a basis for  $A = \left(\frac{a, b}{F}\right)$ . So, dim A = 4.

**Proof.** We use the construction. Write  $i = \overline{X}, j = \overline{Y}$  and k = ij. It is clear that A is generated by  $\{1, i, j, k\}$  spans A.

**Linear Independence:** Let *E* be the algebraic closure of *F*. Fix  $\alpha, \beta \in E$  such that  $\alpha^2 = -a, \beta^2 = b$ . Let

$$i_0 = \begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix}$$
  $j_0 = \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix} \in \mathbb{M}(E).$ 

Define

$$\varphi_0: F[[X,Y]] \longrightarrow \mathbb{M}(E) \quad by \quad \varphi_0(X) = i_0, \quad \varphi_0(Y) = j_0.$$

Now,

$$\varphi_0(X^2-a) = \left(\begin{array}{cc} a & 0\\ 0 & a \end{array}\right) - a = 0.$$

Similarly,

$$\varphi_0(Y^2-a) = \begin{pmatrix} b & 0\\ 0 & b \end{pmatrix} - b = 0.$$

Also,

$$\varphi(XY + YX) = \begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix} \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix} + \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha\beta & 0 \\ 0 & -\alpha\beta \end{pmatrix} + \begin{pmatrix} -\alpha\beta & 0 \\ 0 & \alpha\beta \end{pmatrix} = 0.$$

So,  $\varphi_0$  factors through as follows:



So,  $\varphi_0$  factors as follows:

$$\varphi(k) = \varphi(ij) = \varphi_0(XY) = \begin{pmatrix} \alpha\beta & 0\\ 0 & -\alpha\beta \end{pmatrix}$$

Clearly,

$$1, i_0 = \begin{pmatrix} 0 & \alpha \\ -\alpha & 0 \end{pmatrix}, j_0 = \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix}, \begin{pmatrix} \alpha\beta & 0 \\ 0 & -\alpha\beta \end{pmatrix}$$

are linealry independent over E. Hence 1, i, j, k are linearly independent. The proof is complete.

**Linear Independence: Possible Proof.** Suppose  $\alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k = 0$ . This means,  $\alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_3 X Y \in \mathcal{I}$ . Write

$$\alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_3 X Y$$
  
=  $\sum f_1(X, Y)^k (X^2 - a) g_1^k(X, Y) + \sum f_2^k (X, Y) (Y^2 - b) g_2^k(X, Y)$   
+  $\sum f_3^k (X, Y) (XY + YX) g_3^k(X, Y)$ 

In fact

$$X^{2}Y = X(XY + YX) - XYX = X(XY + YX) - (XY + YX)X + YX^{2}$$

 $X^2Y \equiv YX^2 \mod (XY + YX). \quad Similarly \ Y^2X = XY^2 \mod (XY + YX).$ 

Using this, we can write

$$\alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_3 XY$$
  
=  $f_1(X, Y)(X^2 - a) + f_2(X, Y)(Y^2 - b)$   
+  $\sum f_3^k(X, Y)(XY + YX)g_3^k(X, Y)$ 

One should be able to equate coefficients and complete the proof. I did not spend enough time on it. I live it as an exercise.

Lemma 1.4. Two observations:

1. Symmetry:

$$\left(\frac{a,b}{F}\right) = \left(\frac{b,a}{F}\right)$$

2. Functoriality:

1.

2.

If 
$$F \hookrightarrow K$$
 is a field extension  $K_F \otimes_F \left(\frac{a,b}{F}\right) \xrightarrow{\sim} \left(\frac{a,b}{K}\right)$  as  $K$ -algebras.

**Proof.** Follows from construction.

**Proposition 1.5.** Let  $a, b \in \dot{F}$ . Then,

$$\left(\frac{a,b}{F}\right) \xrightarrow{\sim} \left(\frac{ax^2, by^2}{F}\right) \quad \forall \ x, y \in \dot{F}.$$
$$\left(\frac{-1,1}{F}\right) \xrightarrow{\sim} \mathbb{M}_2(F)$$

4

or

$$CENTER\left(\frac{a,b}{F}\right) = F.$$

- 4.  $\left(\frac{a,b}{F}\right)$  has no nontrivial ideals (a simple algebra).
- 5. **Remark**. Because of (3, 4),  $\left(\frac{a,b}{F}\right)$  is a central simple algebra over F, which will be discussed in chapter IV.

**Proof.** Write  $A = \begin{pmatrix} a,b \\ F \end{pmatrix}$  and  $A' = \begin{pmatrix} ax^2, by^2 \\ F \end{pmatrix}$ . As usual let 1, i, j, k = ij be the "standard" basis of A. and 1, i', j', k' = i'j' be the "standard" basis of A'.

Then, 
$$i^2 = a, j^2 = b, (i')^2 = ax^2, (j')^2 = by^2.$$

Define a map

$$\varphi_0: F[[X,Y]] \longrightarrow \left(\frac{a,b}{F}\right) \quad by \quad \varphi(X) = xi, \quad \varphi(Y) = yj.$$

Consider the two sided ideal

$$\mathcal{J} = GeneratedBy\left(X^2 - ax^2, Y^2 - by^2, XY + YX\right)$$

Then,  $\varphi(\mathcal{J}) = 0$ . So,  $\varphi_0$  factors as

Since  $\varphi$  is F-algebra map, it is also a F-linear map. So,  $1, \varphi(i') = xi, \varphi(j') = yj, \varphi(k') = xyk$  is also a basis. Therefore,  $\varphi$  is an isomorphism.

**Proof of (2)**: In the proof of (1.3), take a = -1, b = 1 and  $\alpha = \beta = 1$ . That means, take

$$i_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad j_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \quad Note, \quad i_0 j_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

It is easy to check that  $I_2, i_0, j_0, i_0 j_0$  is a basis of  $\mathbb{M}_2(F)$ . So,  $i \mapsto i_0, j \mapsto j_0$  defines the isomorphism needed.

**Proof of (3)**: Let E be the algebraic closure of F. Then,

$$E \otimes_F \left(\frac{a,b}{F}\right) \approx \left(\frac{a,b}{E}\right) \approx \left(\frac{-\sqrt{-a^2},\sqrt{b^2}}{E}\right) \approx \left(\frac{-1,1}{E}\right) \approx \mathbb{M}_2(E).$$

- 1. Center of  $\mathbb{M}_2(E)$  is E (as  $EI_2$ ). **Proof.** Exercise.
- 2. Claim: Center of  $A := \left(\frac{a,b}{F}\right)$  is F. **Proof.** Note, for  $x \in A$ ,  $x \in Center(A) \iff xi = ix, xj = jx \iff x \in Center(\mathbb{M}_2(E)) \iff x \in E.$ So,  $x \in A \cap E$ . So,  $x \in F$ . So, (3) is established.
- 3. **Proof of (4)**: Suppose A has a nontrivial ideal I. Write  $\mathcal{I} = I \otimes E$ . So,  $\dim_F I < 4$  and hence  $\dim_E \mathcal{I} < 4$ . Note  $iI \subseteq I, jI \subseteq I, Ii \subseteq I, Ij \subseteq I$ . Hence,  $i\mathcal{I} \subseteq \mathcal{I}, j\mathcal{I} \subseteq \mathcal{I}, \mathcal{I}i \subseteq \mathcal{I}, \mathcal{I}j \subseteq \mathcal{I}$ . Therefore,  $\mathcal{I}$  is a nontrivial ideal of  $\left(\frac{a,b}{F}\right) \approx \mathbb{M}_2(E)$ , which is a contradiction.

#### **Pure Quarternions** 1.1

**Definition 1.6.** A quaternion  $v = \alpha + \beta i + \gamma j + \delta k \in A := \left(\frac{a,b}{F}\right)$  is called a pure quaternion if  $\alpha = 0$ . The *F*-linear space of all pure quaternions is denoted by  $A_0$ .

**Proposition 1.7.** Let  $0 \neq v \in A$ . Then

$$v \in A_0 \iff v \notin F \text{ and } v^2 \in F.$$

**Proof.** Let  $v = \alpha + \beta i + \gamma j + \delta k$ . Then,

$$v^{2} = (\alpha^{2} + a\beta^{2} + b\gamma^{2} - ab\delta^{2}) + 2\alpha(\beta i + \gamma j + \delta k).$$

The corollary follows form this identity.

**Corollary 1.8.** If  $A = \begin{pmatrix} a,b \\ F \end{pmatrix}$  and  $A' = \begin{pmatrix} a',b' \\ F \end{pmatrix}$ . Let  $\varphi : A \xrightarrow{\sim} A'$  be a  $F-algebra \ isomorphism.$  The  $\varphi(A_0) = A'_0.$ 

**Proof.** Follows from (1.6).

#### 1.2 The Real Quarternion

By (1.5), we have only three quartenion algebras:

$$\left(\frac{1,1}{\mathbb{R}}\right), \quad \left(\frac{-1,1}{\mathbb{R}}\right) \approx \mathbb{M}_2(\mathbb{R}), \quad and \quad \mathcal{H} = \left(\frac{-1,-1}{\mathbb{R}}\right).$$

We will study the third one, known as The Real Quarternion Algebra.

- 1. First,  $\mathbb{C} = \mathbb{R} + \mathbb{R}i \subseteq \mathcal{H}$ .
- 2.  $\mathbb{C}$  is not in the center of  $\mathcal{H}$ . In this sense,  $\mathcal{H}$  is not a  $\mathbb{C}$ -algebra.
- 3.  $\mathcal{H}$  is a right  $\mathbb{C}$  vector space with basis  $\{1, j\}$ . Any v = x + yi + zj + wk can ne written as

$$v = (x + yi) + j(z - wi) = \alpha + j\beta$$
 for some  $\alpha, \beta \in \mathbb{C}$ .

4. For  $v \in \mathcal{H}$  define

$$L_v: \mathcal{H} \longrightarrow \mathcal{H}$$
 by  $L_v(z) = vz$ . Then,  $L_{vv'} = L_v o L_{v'}$ .

5.  $L_v$  is a  $\mathbb{C}$ -linear endomorphism of  $\mathcal{H}$ . To see this we check

$$L_v(z_1\alpha + z_2\beta) = v(z_1\alpha + z_2\beta) = L_v(z_1)\alpha + L_v(z_2)\beta.$$

6. L defines,  $\mathbb{R}$ -algebra homomorphism

$$L: \mathcal{H} \longrightarrow End_{\mathbb{C}}(\mathcal{H}) = \mathbb{M}_2(\mathbb{C}) \quad wrt \quad basis \quad 1, j.$$

7. We have

$$L_i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad L_j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad L_k = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \in \mathbb{M}_2(\mathbb{C}).$$

Needs care, because scalar multiplication comes from right:

$$\left(\begin{array}{c}L_i(1)\\L_i(j)\end{array}\right)^t = \left(\begin{array}{c}i\\ij\end{array}\right)^t = \left(\begin{array}{c}i\\-ji\end{array}\right)^t = \left(\begin{array}{c}1\\j\end{array}\right) \left(\begin{array}{c}i&0\\0&-i\end{array}\right)$$

Note entries in the square matrix are scalars and the basis elements are from  $\mathcal{H}$ . Also

$$\left(\begin{array}{c}L_k(1)\\L_k(j)\end{array}\right)^t = \left(\begin{array}{c}k\\kj\end{array}\right)^t = \left(\begin{array}{c}-ji\\-i\end{array}\right)^t = \left(\begin{array}{c}1&j\end{array}\right) \left(\begin{array}{c}0&-i\\-i&0\end{array}\right)$$

- 8. This is left regular representation of  $\mathcal{H}$  in  $End(\mathcal{H})$ .
- 9. We can compute  $L_{x+iy}, L_{\alpha+j\beta}$  where  $x, y \in \mathbb{R}$  and  $\alpha, \beta \in \mathbb{C}$ , by composition:

$$L_{x+yi} = L_x + L_y L_i = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 0 & y \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} x+yi & 0 \\ 0 & \overline{x+yi} \end{pmatrix}$$

Use this to compute

$$L_{\alpha+j\beta} = \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array}\right)$$

10. L is a faithful representation:

$$L_v = 0 \Longrightarrow L_v(1) = v = 0.$$

11. So,  $\mathcal{H}$  is isomorphic to the real subalgebra of  $\mathbb{M}_2(\mathbb{C})$ , consisting of matrices of the form:

$$L_{\alpha+j\beta} = \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} \quad with \quad \alpha, \beta \in \mathbb{C}.$$

Recall the following:

**Definition 1.9.** Recall the following:

- 1. A matrix in  $U \in \mathbb{M}_n(\mathbb{C})$  is called a unitary matrix, if  $UU^* = I_n = U^*U$ .
- 2. The group U(n) of all unitary matrices is called the unitary group.
- 3. The special unitary group SU(n) is defined to be

$$SU(n) = \{U \in U(n) : \det(U) = 1\}.$$

Lemma 1.10. We have

$$SU(2) = \left\{ \sigma = \left( \begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) : \alpha, \beta \in \mathbb{C} \text{ and } \det(\sigma) = 1 \right\}$$

**Proof.** Omitted. Write down the equations and solve.

Corollary 1.11. The group of unit quaternions

$$U_0 = \{x + yi + zj + wk : x^2 + y^2 + z^2 + w^2 = 1\} \xrightarrow{\sim} SU(2)$$

**Proof.** Under the representation L, image of L is exactly SU(2), by (1.10). More precisely,

$$L_{\alpha+\beta j} \begin{pmatrix} 1 & j \end{pmatrix} = \begin{pmatrix} 1 & j \end{pmatrix} \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}$$

Conjugation

Definition 1.12. For

$$v = x + yi + zj + wk \in \mathcal{H}$$
 define  $\overline{v} := x - yi - zj - wk$ 

We say  $\overline{v}$  is the conjugate of v.

1. If we write

$$v = (x + yi) + j(z - wi) = \alpha + j\beta$$
 then  $\overline{v} = \overline{\alpha} - j\beta$ 

2. The representation  $L : \mathcal{H} \longrightarrow \mathbb{M}_2(\mathbb{C})$  preserves the conjugation (involution) in the sense

$$(L_v)^* = \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}^* = \begin{pmatrix} \overline{\alpha} & \overline{\beta} \\ -\beta & \alpha \end{pmatrix} = L_{\overline{v}}.$$

## 2 Quaternions and Quadratic Spaces

Let  $A := \left(\frac{a,b}{F}\right)$ . In this section, we define a quadratic structure on the quaternion algebra A.

- 1. For  $x = \alpha + \beta i + \gamma j + \delta k$ , define  $\overline{x} := \alpha \beta i \gamma j \delta k$ .
- 2. It follows, for  $x, y \in A$  and  $r \in F$

$$\overline{x+y} = \overline{x} + \overline{y}, \quad \overline{xy} = \overline{y} \cdot \overline{x}, \quad \overline{\overline{x}} = x, \quad \overline{rx} = r\overline{x}$$

- 3. The map  $x \mapsto \overline{x}$  is called the bar involution on A.
- 4. For  $x \in A$  define, Norm Nx and Trace Tx of x as follows:

$$Nx := x\overline{x}, \quad Tx := x + \overline{x}.$$

5. In fact,  $Nx \in F$  and  $Tx \in F$ . This is because

$$\overline{Nx} = \overline{x\overline{x}} = Nx$$
, and similarly,  $\overline{Tx} = Tx$ .

So,

the norm maps  $N: A \longrightarrow F$ , and the trace maps  $T: A \longrightarrow F$ .

6. Define the bilinear form

$$B: A \times A \longrightarrow F \quad by \quad B(x, y) := \frac{T(x\overline{y})}{2} = \frac{x\overline{y} + y\overline{x}}{2}$$

7. The quadratic map associated with B is

$$q_B(x) = B(x, x) = x\overline{x} = Nx.$$

This quadratic form is called the Norm form.

8. We claim:  $\{1, i, j, k\}$  forms an orthogonal basis of A, which is checked easily:

$$B(1,i) = \frac{Ti}{2} = 0, \quad B(i,j) = \frac{T(ij)}{2} = \frac{T(k)}{2} = 0$$
 and so on.

**Corollary 2.1.** The quadratic space (A, B) has an orthogonal basis and isometric to

$$\langle 1, -a, -b, ab \rangle \cong \langle 1, -a \rangle \otimes \langle 1, -b \rangle$$

**Proof.** We saw  $\{1, i, j, k\}$  is an orthogonal basis of A. We have

$$q(1) = N(1) = 1, \quad q(i) = N(i) = -i^2 = -a,$$
  
 $q(j) = N(j) = -j^2 = -b, \quad q(k) = N(k) = -k^2 = ab$ 

The proof is complete.

#### Observations and a Question:

- 1.  $\det(A) = \det(\langle 1, -a, -b, ab \rangle) = 1.$
- 2.  $1 \in D(A)$ .
- 3. Lam comments: these  $\langle 1, -a, -b, ab \rangle$  are precisely the four dimensional quadratic forms satisfying condition (1, 2). (Give a proof).

**Corollary 2.2.** For  $x = \alpha + \beta i + \gamma j + \delta k$  we have

$$Nx = \alpha^2 - \beta^2 a - \gamma^2 b + \delta^2 a b.$$

**Proof.** Use orthogonality. The proof is complete.

#### Remarks.

- 1. For  $x \in A$ , we have  $Nx = N\overline{x}$ .
- 2. So,  $x \mapsto \overline{x}$  is an isometry.
- 3. So,  $B(x, y) = B(\overline{x}, \overline{y})$  for all x, y. Ofcourse

$$B(x,y) = \frac{T(x\overline{y})}{2} = \frac{T(\overline{x}y)}{2} = B(\overline{x},\overline{y}).$$

4. For any  $x \in A$  we have

$$x^2 - T(x)x + N(x) = 0.$$

- 5. For  $x = \alpha + \beta i + \gamma j + \delta k \in \mathcal{H} = \left(\frac{-1, -1}{\mathbb{R}}\right)$ , we are not surprised  $N(x) = \alpha^2 + \beta^2 + \gamma^2 + \delta^2$
- 6. Exercise. If we use the model  $L(\mathcal{H})$ , then norm and trace corresponds exactly to that of matrices (over  $\mathbb{C}$ ).

Proposition 2.3. We have

- 1.  $x, y \in A \Longrightarrow N(x, y) = Nx \cdot Ny$ .
- 2.  $x \in A$  is invertible if and only if  $Nx \neq 0$  (which means x is anisotropic).

**Proof.**  $N(xy) = xy\overline{xy} = x(y \cdot \overline{y})\overline{x} = Nx \cdot Ny$ . To prove (2), suppose  $x^{-1}$  exists. Then

$$1 = N(1) = N(x \cdot x^{-1}) = N(x)N(x^{-1}).$$

So,  $Nx \neq 0$ . Conversely, If  $Nx \neq 0$  then

$$x \cdot \frac{\overline{x}}{Nx} = \frac{x \cdot \overline{x}}{Nx} = 1.$$
 So,  $x^{-1} = \frac{\overline{x}}{Nx}$ 

Contrast: To inner product spaces, with involution (like  $\mathbb{C}$ ),

$$x^{-1} = \frac{\overline{x}}{\langle x, \overline{x} \rangle} = \frac{\overline{x}}{\parallel x \parallel^2}.$$

Corollary 2.4. skip Corollary 2.4

**Theorem 2.5.** Let  $A = \begin{pmatrix} a,b \\ F \end{pmatrix}$  and  $A' = \begin{pmatrix} a',b' \\ F \end{pmatrix}$ . The following are equivalent:

- 1. A and A' are isomorphic as F-algebras.
- 2. A and A' are isometric as quadratic spaces.
- 3.  $A_0$  and  $A'_0$  are isometric as quadratic spaces.

**Proof.** (2)  $\iff$  (3) by cancellation theorem.

 $((1) \implies (2))$ : Let  $\varphi : A \xrightarrow{\sim} A'$  be an *F*-algebra homomorphism. By corollary 1.8,  $\varphi(A_0) = A'_0$ . Let  $x = \alpha + x_0 \in A$ , with  $\alpha \in F, x_0 \in A_0$ . We prove  $Nx = N(\varphi(x))$ . We have  $\varphi(x) = \alpha + \varphi(x_0)$ . It follows  $\overline{\varphi(x)} = \alpha - \varphi(x_0) = \varphi(\overline{x})$ . So,

$$N(\varphi(x)) = \varphi(x) \cdot \overline{\varphi(x)} = \varphi(x \cdot \overline{x}) = x \cdot \overline{x} = Nx.$$

 $((3) \Longrightarrow (1))$ : Let  $\sigma : A_0 \stackrel{\sim}{\longrightarrow} A'_0$  be an isometry. We have

$$-a = N(i) = N(\sigma(i)) = \sigma(i)\overline{\sigma(i)} = -\sigma(i)^2, \qquad So, \quad \sigma(i)^2 = a.$$

Similarly,  $\sigma(j)^2 = b$ . Also,

$$i \perp j \Longrightarrow \sigma(i) \perp \sigma(j) \longrightarrow \sigma(i)\sigma(j) = -\sigma(j)\sigma(i).$$

This shows there is F-algebra homomorphism:

$$\tilde{\sigma}: A \longrightarrow A' \qquad i \mapsto \sigma(i), \ j \mapsto \sigma(j).$$

So,  $\tilde{\sigma}(k) = \tilde{\sigma}(i)\tilde{\sigma}(j) = \sigma(i)\sigma(j)$ .

One can see for  $u, v \in A'$  the producs uv, vu have same constant term. Since,  $\sigma(i)\sigma(j) = -\sigma(j)\sigma(i)$ , it follows  $\omega := \sigma(i)\sigma(j) \in A'_0$ .

Also  $\sigma(i), \sigma(j), \sigma(k)$  is a basis os  $A'_0$ . Claim:  $\omega \notin F\sigma(i) + F\sigma(j)$ . If not, write  $\sigma(i)\sigma(j) = \alpha\sigma(i) + \beta\sigma(j)$ . Multiply by  $\sigma(i)$  from left, we have

$$a\sigma(j) = \alpha a + \beta\sigma(i)\sigma(j)$$

Since,  $1, \sigma(i), \sigma(j), \sigma(k)$  a basis, we have the constant term  $\alpha a = 0$  and hence  $\alpha = 0$ . Similarly,  $\beta = 0$ . So, the claim is proved.

So,  $1, \sigma(i), \sigma(j), \sigma(\tilde{k}) = \sigma(i)\sigma(j)$  is a basis. So,  $\tilde{\sigma}$  is an isomorphism.

Corollary 2.6.

$$\left(\frac{a,a}{F}\right) \xrightarrow{\sim} \left(\frac{a,-1}{F}\right) \quad and \quad \left(\frac{a,a}{F}\right) \cong \left(\frac{a,-1}{F}\right)$$

**Proof.** He wrote only  $\cong$ . Two quaternion algebras have the norm forms (see (2.1))

$$\langle 1, -a, -a, a^2 \rangle, \quad \langle 1, -a, 1, -a \rangle$$

But

$$\langle 1, -a, 1, -a \rangle \cong \langle 1, -a, -a, 1 \rangle \cong \langle 1, -a, -a, a^2 \rangle$$

Now, by (2.5), they are isomorphic. The proof is complete.

**Theorem 2.7.** Let  $A = \left(\frac{a,b}{F}\right)$ . Then, the following are equivalent:

- 1.  $A \cong \left(\frac{1,-1}{F}\right)$  (which is  $\cong \mathbb{M}_2(F)$ ).
- 2. A is not a division algebra.
- 3. A is isotropic as a quadratic space.
- 4. A is hyperboloc as a quadratic space.
- 5.  $A_0$  is isotropic as a quadratic space.

6. 
$$(\langle a \rangle - 1)(\langle b \rangle - 1) = 0$$
 in  $\widehat{W}(F)$  (or in  $W(F)$ ).

- 7. The binary form  $\langle a, b \rangle$  represents 1.
- 8.  $a \in N_{E/F}(E)$ , where  $E = F(\sqrt{b})$  and  $N_{E/F}$  is a field.

Note, by (2.5),  $\cong$  may mean isomorphism or isometry. If any of these conditions hold, we say A splits over F.

**Proof.** ((1)  $\iff$  (4)): (1) means Hyperabolic space (the RHS) as *F*-algebra. So, this is established by (2.5).

 $((4) \implies (6))$ : In fact, A is isometric to  $(\langle a \rangle - 1)(\langle b \rangle - 1)$ , hence zero in  $\widehat{W}(F)$ .

 $((6) \Longrightarrow (4))$ : Following isometries follows from (6):

$$\langle 1, ab \rangle \cong \langle a, b \rangle \Longrightarrow \langle 1, -a, -b, ab \rangle \cong \langle a, b \rangle \perp \langle -a, -b \rangle$$

which is hyperpolic.

 $((6) \Longrightarrow (7))$ : We have

$$\langle ab \rangle \perp \langle 1 \rangle = \langle a \rangle \perp \langle b \rangle \quad \in \widehat{W}(F).$$

Hence

 $\langle ab, 1 \rangle \cong \langle a, b \rangle$ 

Since LHS represents 1, so does the RHS.

 $((7) \Longrightarrow (6))$ : Since,  $\langle a, b \rangle$  represents 1,  $\langle a, b \rangle \cong \langle 1, ab \rangle$ . So,  $\langle 1, -a, -b, ab \rangle = 0 \in \widehat{W}(F)$ . Therfore, we have

$$(1) \Longleftrightarrow (4) \Longleftrightarrow (6) \Longleftrightarrow (7)$$

((3)  $\iff$  ((4)): Clearly, (4)  $\implies$  (3). Now suppose A is isotropic. Then,  $A \cong \mathbb{H} \perp q$ , for some q. In any case, the determinant of the Norm form is  $= a^2b^2 = 1$ . So,  $1 = \det(\mathbb{H}) \det q$ . So,  $\det q = -1$ . So,  $q \cong \mathbb{H}$ , by (I.5.1). So, (4) follows.

 $((4) \iff ((5))$ : If  $A_0$  has Witt index zero, then Witt indexs of A would be at most one. So,  $(4) \implies (5) \implies 3 \implies (4)$ .

 $((1) \Longrightarrow ((2))$ : Obvious, because the former is not a division algebra.

 $((2) \implies ((3))$ : Suppose A is ansotropic. Then, by (2.3), A would be a division algebra.

The proof is complete.