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1 The Brauer Group

1. As always, F would denote a field.

2. All F−algebras considered are assumed to be finite dimensional.

3. Let A be an F−algebra and S be a subset of A. Denote

CA(S) := {a ∈ A : as = sa ∀ s ∈ S},

which is called the centralizer of S in A.

(a) It follows CA(S) is a subalgebra of A.

(b) By defintion of F−algebras, F ⊆ CA(S).

(c) In particular, denote Z(A) := CA(A), to be called the center of A.

4. An F−algebra A is said to be F−central over F , if Z(A) = A.

5. An F−algebra A is said to be simple, if it has no two-sided ideals other
than (0), A.

6. F−algebra A is said to be central simple algebra (CSA) over F , if it is
both central over F and is simple.
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In this chapter, we study central simple algebras over F .

Examples.

1. The trivial example is F over F .

2. Let F be a vector space of F with dimV = n. Then End(V )
∼

−→
Mn(R) is a CSA over F . Proof. Exercise.

3. For two nonzero a, b ∈ F , we have A =
(

a, b

F

)

is a CSA over F . Proof:
Seen before.

Important theorem:

Theorem 1.1. Let A,B be two F−algebras.

1. Let A′ ⊆ A, B′ ⊆ B be subalgebras. Then,

CA⊗B(A
′ ⊗B′) = CA(A

′)⊗ CB(B
′).

2. If A is CSA and B is simple, then A⊗B is simple.

3. In particular, if A,B are CSA over F then so is A⊗B.

Proof. Postponed

We proceed to define Brauer Group of a field F .

Definition 1.2. Let A,B be two CSAs over F . We say that A is similar

to B, if there are vector spaces U, V such that A⊗ End(U) ≈ B ⊗ End(V ).

This means, if A⊗Mn(F ) ≈ B ⊗Mm(F ), for some n,m. Then, "similarity"

is an equivalence relation on the set of all CSAs over F .

Proof. We write A ∼ A′ if they are similar. For any CSA A ∼ A. It is also
obvious the A ∼ B =⇒ B ∼ A. Now suppose A ∼ B ∼ C. So, there are
vector spaces U, V,W,Z such that

A⊗ End(U) ≈ B ⊗ End(V ) and B ⊗ End(W ) ≈ C ⊗ End(Z).
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So,

A⊗End(U)⊗End(W ) ≈ B⊗End(V )⊗End(W ) ≈ B⊗End(V )⊗End(Z).

Hence
A⊗ End(U ⊗W )⊗ B ⊗ End(V ⊗ Z).

The proof is complete.

Definition 1.3. Let B(F ) denote the set of all equivalence classes of CSAs

over F . Denote the equivalence class of A by [A].

1. Define a "multiplication" as follows:

[A] · [B] = [A⊗B], note A⊗ B is a CSA.

2. It is easy to check that this is a well defined binary structure on B(F ).

3. Note [F ] = [Mn(F )] = [End(V )] for all n and vector spaces V with

dimV = n.

4. Also, [A] · [F ] = [A]. So, [F ] is the identity.

5. So, B(F ) has a monoid structure. In fact it is group, as follows (1.4).

Proposition 1.4. Let A be a CSA over F and Aop denote the opposite al-

gebra. Then, A ⊗ Aop ≈ EndF (A), where EndF (A) denotes the F−linear

homomorphisms A −→ A. So, [A]−1 = [Aop].

Proof. For convenience denote Aop = {aop : A ∈ A}. Recall, aop · bop := ba.
Note, if I is also a two sided ideal in Aop, then I is a two sided ideal in A.
So, Aop is simple and similarly, it is also central over F . Now define

θ0 : A× Aop −→ EndF (A) by θ0(a, b
op)(c) := acb.

It is easy to see that θ is a bilinear morphism. So, θ0 extends to a homomor-
phism

θ : A⊗ Aop −→ EndF (A).

It is easy the check that θ is an F−algebra homomorphism. Since A ⊗ Aop

simple ker(θ) = 0. By comparing the diemension θ is an isomorphism. The
proof is complete.
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Definition 1.5. This group B(F ) is called the Brauer group.

Theorem 1.6 (Wedderburn Theorem). Suppose A is a CSA over F .

1. Then, A ≈ Mn(D) for some central division algebra D over F .

2. Also, this division algebra D is uniquely determined (upto isomor-

phism). This means, for central division algebras D,∆, we have

Mn(D) ≈ Mm(∆) =⇒ D ≈ ∆.

Proof. The proof is not difficult. Lam skips the proof and we do the same.

Theorem 1.7. The elements of B(F ) is in 1-1 correspondance with the

isomorphim classes of central division rings over F .

Proof. First, suppose A is a CSA. By Wedderburn theorem, for some entral
division ring D we have

A ≈ Mn(D) ≈ D ⊗Mn(F ). hence [A] = [D].

Now suppose [D] = [∆] for some central division algebras. Then, for doem
m,n we have

D ⊗Mn(F ) ≈ ∆⊗Mm(F ). Hence Mn(D) ≈ Mn(∆).

By Wedderburn theorem D ≈ ∆.

Follwoing follows:

1. Two non-isomorphic quaternion algebras represent different elementrs
of B(F ).

2. Quaternion algebras need not form a group.

3. Examples Witout proof.

(a) (Frobenius) B(R) = {±1} where −1 :=
(

−1,−1
R

)

.
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(b) If F is a finite field then B(F ) = 0.

(c) Let C(X) →֒ F be algebraic then B(F ) = 0.

(d) Let F be the completion of of a number field at a finite prime.
Then B(F ) = Q/Z.

(e) If K is algebraically closed, then B(K) = 0.
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2 Central Simple Graded Algebras

As usual F denotes a filed.

Definition 2.1. A Z2 graded F−algebra is an F−algebra A such that

1. dimF A < ∞

2. A = A0 ⊕ A1

3. F ⊆ A0, AiAj ⊆ Ai+j for i, j = 0, 1 ∈ Z2.

We sometimes call them just "graded algebras". Given such a Z2 graded

F−algebra A we have:

1. Write h(A) = A0 ∪ A1 to be called homogeneous elements.

2. For a ∈ h(A) write ∂(a) = i if a ∈ Ai.

3. A subspace S ⊆ A is called graded subspace, if

s = s0 + s1 ∈ S with si ∈ Ai =⇒ si ∈ S.

So, S = S0 ⊕ S1 where Si = S ∩ Ai.

4. Likewise, we define graded ideals, graded subalgebras etc.

5. Suppose S ⊆ A is a graded subspace. The graded centralizer ĈA(S) is

defined as

ĈA(S) = C0 ⊕ C1 where Ci = {c ∈ Ai : cs = (−1)i∂ssc ∀s ∈ h(S)}

Equivalently,

c ∈ h(ĈA(S)) ⇐⇒ cs = (−1)∂(c)∂(s)sc ∀s ∈ h(S)

More explicitly, for c0 + c1 ∈ ĈA(S) and s0 + s1 ∈ S, we have

c0s0 = s0c0, c0s1 = s1c0, c1s0 = s0c1, c1s1 = −s1c1.
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6. ĈA(S) is a graded subalgebra of A.

7. Note for s0 + s1 ∈ ĈA(S) and a0 + a1 ∈ A we have

(s0 + s1)(a0 + a1) = s0a0 + s0a1 + s1a0 − s1a1 6= (a0 + a1)(s0 + s1).

So, ĈA(S) 6⊆ CA(S). Similarly, CA(S) 6⊆ ĈA(S).

8. Define the graded centralizer Ẑ(A) := ĈA(A).

9. It is also clear CA(S) is also graded.

10. Also, Z(A)0 = Ẑ(A)0.

Definition 2.2. Let A be a grades algebra over F .

1. A is called a graded central algebra (GCA) if F = Ẑ(A).

2. A is said to be graded simple algerba (GSA), if it has no nontrivial

graded two-sided ideal.

3. A is said to be graded simple central algerba (GSCA), if it is both GSA

and GCA.

2.1 Graded Tensor Product

Definition 2.3. Suppose A = A0⊕A1, B = B0⊕B1 are two graded algebras

over F . Define

A⊗̂B = (A0 ⊗B0 ⊕ A1 ⊗B1)
⊕

(A0 ⊗B1 ⊕ A1 ⊗ B0)

Define the multiplication,that is induced by,

(a⊗ b)(x⊗ y):=(−1)∂(b)∂(x)(ax⊗ by) ∀ a, x ∈ h(A) and b, y ∈ h(B).
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1. Remark. Clearly, as vector spaces A⊗̂B is same as A⊗ B. Only the

multiplication structure is different.

2. ALso A →֒ A⊗̂B and B →֒ A⊗̂B as graded rings.

The following is the graded version of theorem 1.1.

Theorem 2.4. Let A,B be graded F−algebras.

1. Let S ⊆ A, T ⊆ B be graded subalgebras. Then

ĈA⊗̂B(S⊗̂T ) = ĈA(S)⊗̂ĈB(T ).

2. In particular, if A,B are GSCA then so is A⊗̂B.

Proof. The following is a commutative diagram of injective homomorphism

ĈA(S)⊗ ĈB(T ) //___ ĈA⊗̂B(A⊗̂B) of graded rings.

The rest of the proof is routine or long, which I skip.

3 Structure of CSGA

skip

4 Brauer-Wall Group

Give a field F , the Brauer-Wall Group BW (F ) is constructed in the same
way that the Brauer Group B(F ) was defined. Only difference:

1. Replace ⊗ by ⊗̂.

2. Given two GSCAs A,B define A ∼ B if

A⊗̂End(V ) ≈ Bhat⊗End(W )

for some graded vector spaces V,W . There is a way to give a graded
structure to End(V ).
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