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The Brauer Group

. As always, F' would denote a field.

. All F—algebras considered are assumed to be finite dimensional.

. Let A be an F—algebra and S be a subset of A. Denote
Ca(S)={a€A:as=saV seS}

which is called the centralizer of S in A.

(a) It follows C'4(S) is a subalgebra of A.
(b) By defintion of F—algebras, F' C C(S).
(c) In particular, denote Z(A) := C4(A), to be called the center of A.

. An F—algebra A is said to be I'—central over F, if Z(A) = A.

. An F'—algebra A is said to be simple, if it has no two-sided ideals other
than (0), A.

. F'—algebra A is said to be central simple algebra (CSA) over F, if it is
both central over F' and is simple.

1



In this chapter, we study central simple algebras over F'.
Examples.
1. The trivial example is F' over F'

2. Let F be a vector space of F' with dimV = n. Then End(V) —
M, (R) is a CSA over F. Proof. Exercise.

3. For two nonzero a,b € F', we have A = (a—b) is a CSA over F. Proof:

F
Seen before.

Important theorem:

Theorem 1.1. Let A, B be two F—algebras.

1. Let A C A, B' C B be subalgebras. Then,

Casn(A' @ B') = C4(A) @ Cp(B).

2. If A is CSA and B is simple, then A ® B is simple.
3. In particular, if A, B are CSA over F then so is A® B.

Proof. Postponed u
We proceed to define Brauer Group of a field F'.

Definition 1.2. Let A, B be two CSAs over F. We say that A is similar
to B, if there are vector spaces U,V such that A ® End(U) ~ B @ End(V).
This means, if A® M, (F) ~ B® M,,(F), for some n,m. Then, "similarity"

is an equivalence relation on the set of all CSAs over F.

Proof. We write A ~ A’ if they are similar. For any CSA A ~ A. It is also
obvious the A ~ B = B ~ A. Now suppose A ~ B ~ C. So, there are
vector spaces U, V, W, Z such that

AR EndU)~ B® End(V) and B® End(W)~C® End(Z).



So,
AR End(U)®@ End(W) ~ BRQ End(V)® End(W) ~ B® End(V)® End(Z).

Hence

A® End(U@W)® B® End(V © Z).

The proof is complete. |

Definition 1.3. Let B(F') denote the set of all equivalence classes of CSAs
over F. Denote the equivalence class of A by [A].

1. Define a "multiplication" as follows:

[A]-[B] = [A® B], note A®B isa CSA.

2. Tt is easy to check that this is a well defined binary structure on B(F).

3. Note [F] = [M,,(F)] = [End(V)] for all n and vector spaces V with
dimV = n.

4. Also, [A] - [F] = [A]. So, [F] is the identity.
5. So, B(F') has a monoid structure. In fact it is group, as follows (1.4).

Proposition 1.4. Let A be a CSA over F and A° denote the opposite al-
gebra. Then, A @ A? ~ Endp(A), where Endr(A) denotes the F—linear
homomorphisms A — A. So, [A]~1 = [A%].

Proof. For convenience denote A? = {a®? : A € A}. Recall, a” - b := ba.
Note, if I is also a two sided ideal in A°, then I is a two sided ideal in A.
So, A is simple and similarly, it is also central over F. Now define

Op: Ax AP — Endpr(A) by 6Oy(a,b”)(c) := ach.

It is easy to see that 6 is a bilinear morphism. So, 6, extends to a homomor-
phism

0: AR AP — Endpr(A).
It is easy the check that 6 is an F'—algebra homomorphism. Since A ® A

simple ker(f) = 0. By comparing the diemension 6 is an isomorphism. The
proof is complete. |



Definition 1.5. This group B(F) is called the Brauer group.

Theorem 1.6 (Wedderburn Theorem). Suppose A is a CSA over F.

1. Then, A =~ M,,(D) for some central division algebra D over F.

2. Also, this division algebra D is uniquely determined (upto isomor-

phism). This means, for central division algebras D, A, we have
M, (D) =~ M,,(A) = D=A.

Proof. The proof is not difficult. Lam skips the proof and we do the same.
|

Theorem 1.7. The elements of B(F') is in 1-1 correspondance with the

isomorphim classes of central division rings over F'.

Proof. First, suppose A is a CSA. By Wedderburn theorem, for some entral
division ring D we have

A~M, (D)~ D@ M,(F). hence [A] = [D].

Now suppose [D] = [A] for some central division algebras. Then, for doem
m,n we have

D @M, (F)~A®M,,(F). Hence M,(D)~M,(A).

By Wedderburn theorem D ~ A. |

Follwoing follows:

1. Two non-isomorphic quaternion algebras represent different elementrs
of B(F).

2. Quaternion algebras need not form a group.

3. Examples Witout proof.

(a) (Frobenius) B(R) = {£1} where —1 := (==1).



(b) If F' is a finite field then B(F') = 0.
(c¢) Let C(X) < F be algebraic then B(F') = 0.

(d) Let F' be the completion of of a number field at a finite prime.
Then B(F) = Q/Z.

(e) If K is algebraically closed, then B(K) = 0.



2 Central Simple Graded Algebras

As usual F denotes a filed.

Definition 2.1. A Z, graded F—algebra is an F'—algebra A such that

1.

2.

3.

dimp A < 00
A=A, A

F Q Ag, AZAJ Q Ai—i—j for Z,j = 0, 1e ZQ.

We sometimes call them just "graded algebras". Given such a Z, graded

F—algebra A we have:

1.

2.

Write h(A) = Ag U A; to be called homogeneous elements.

For a € h(A) write 0(a) =i if a € A;.

. A subspace S C A is called graded subspace, if

s=589+ 8 € Swiths; € A;, — s, €8.
SO, S = So D Sl where Sz =5N Az
Likewise, we define graded ideals, graded subalgebras etc.

Suppose S C A is a graded subspace. The graded centralizer C 4(S) is
defined as

Ca(S)=Co® Cy where C;={ce A;:cs=(=1)%sc Vs e h(S)}
Equivalently,

¢ € h(CA(S)) <= ¢s = (=1)7DOsc Vs e h(S)
More explicitly, for ¢y + ¢ € C’A(S) and sg + s; € S, we have

CoSo = SoCo, CoS1 = S1€p, C1S0 = SoC1, C1S1 = —S1C1.



9.

10

CA(S) is a graded subalgebra of A.
. Note for so + 57 € C’A(S) and ag + a; € A we have
(so + s1)(ap + a1) = spap + soas + s1ag — s1a1 # (ag + a1)(so + s1)-
So, Ca(S) € C4(S). Similarly, C4(S) Z Ca(S).
Define the graded centralizer Z(A) := C4(A).

It is also clear C'4(5) is also graded.

. Also, Z(A)o = Z(A),.

Definition 2.2. Let A be a grades algebra over F'.

1

2

3

2.1

. Ais called a graded central algebra (GCA) if F = Z(A).

. A is said to be graded simple algerba (GSA), if it has no nontrivial
graded two-sided ideal.

. A s said to be graded simple central algerba (GSCA), if it is both GSA
and GCA.

Graded Tensor Product

Definition 2.3. Suppose A = AgP Ay, B = By® B are two graded algebras

over F'. Define

ASB = (Ag® By @ A1 @ B1) D(A) @ By & A, ® By)

Define the multiplication,that is induced by,

(a ®b)(x®y):=(—1)"P@ (4z @ by) YV a,z € h(A) and b,y € h(B).



1. Remark. Clearly, as vector spaces A®B is same as A ® B. Only the

multiplication structure is different.
2. ALso A — A®DB and B — A®B as graded rings.

The following is the graded version of theorem 1.1.

Theorem 2.4. Let A, B be graded F—algebras.

1. Let S C A, T C B be graded subalgebras. Then
Caep(SOT) = Ca(S)2Cp(T).
2. In particular, if A, B are GSCA then so is AQB.
Proof. The following is a commutative diagram of injective homomorphism
Cu(8) ® Cp(T) - - > Chep(ASB)  of graded rings.

The rest of the proof is routine or long, which I skip. |

3 Structure of CSGA

skip

4 Brauer-Wall Group

Give a field F, the Brauer-Wall Group BW (F') is constructed in the same
way that the Brauer Group B(F') was defined. Only difference:

1. Replace ® by ®.
2. Given two GSCAs A, B define A ~ B if
A®End(V) =~ Bhat®End(W)

for some graded vector spaces V,W. There is a way to give a graded
structure to End(V).



