Chapter V The Clifford Algebras

Satya Mandal University of Kansas, Lawrence KS 66045 USA

Septemebr 30, 2013

1 Construction of Clifford Algebras

In this section, a quadratic space (V, q) need not be regular.

Definition 1.1. Suppose (V, q) is a quadratic space. Let A be an F-algebra with $V \subseteq A$. We say that A is compatible with (V, q), if

$$x \in V \implies x^2 = q(x).$$

1. In this case,

$$\forall \, x,y \in V \qquad 2B(x,y) = q(x+y) - q(x) - q(y) = (x+y)^2 - x^2 - y^2 = xy + yx.$$

2. In particular,

$$\forall x, y \in V \qquad x \perp y \Longleftrightarrow xy = -yx.$$

Lemma 1.2. For A as above and $0 \neq x \in V$, x is invertible in A if and only if x is anisotropic in V.

Proof. Suppose x is anisotropic. Then, $q(x) = x^2 \neq 0$. So, $x^{-1} = \frac{x}{q(x)}$. Conversely, suppose x is invertible and xy = 1 for some $y \in A$. Then, $q(x)y = x^2y = x \neq 0$.

Lemma 1.3. let A be as above and $0 \neq u \in V$ be anisotropic. Then, the hyperboloc reflection

$$\tau_u(x) = -uxu^{-1} \qquad \forall \ x \in V.$$

So, τ_u is negative of the conjugation by u.

Proof. Straight forward computation:

$$\tau_u(x) = x - \frac{2B(x,u)}{q(u)} \cdot u = x - \frac{xu + ux}{u^2} \cdot u = -uxu^{-1}$$

Definition 1.4. Given a quadratic form (V,q), the Clifford algebra C of (V,q) is the universal object in the category of all F-algebras A containing V. That means, given any F-algebra A containing V, there is a unique algebra homomorphism $\varphi: C \longrightarrow A$ such that the diagram

$$V \xrightarrow{} C \quad \text{commutes.} \quad \text{That means} \quad \varphi(x) = x \ \forall \ x \in V.$$

- 1. Since, it is defined by the universal property, "any two" Clifford algebras are naturally isomorphic.
- 2. Construction: Define the tensor algebra

$$T(V) = \bigoplus_{n=0}^{\infty} T^n V$$
 where $T^n V = V \otimes V \otimes \cdots \otimes V$ $n-fold tensor product.$

Let $\mathcal{I}(q)$ be the two sider ideal of T(V) generated by $\{x \otimes x - q(x) : x \in V\}$. Now define, $C(q) = \frac{T(V)}{\mathcal{I}(q)}$. Then, C(q) has the universal property of the definition. We also use the notations C(q) = C(V) = C(V,q).

- 3. Note, V generates C(q).
- 4. The product in C(q) is expressed by juxtaposition.
- 5. Write $T(V) = T_0(V) \oplus T_1(V)$, where $T_0(V) = \bigoplus_{n=0}^{\infty} T^{2n}V$ and $T_0(V) = \bigoplus_{n=0}^{\infty} T^{2n+1}V$. This gives T(V) a \mathbb{Z}_2 -grading.
- 6. $\mathcal{I}(q)$ is a \mathbb{Z}_2 -graded ideal.
- 7. So, $C(q) = C_0(q) \oplus C_1(q)$ has a \mathbb{Z}_2 -grading. That means $C_i(q)C_j(q) \subseteq C_{i+j}(q)$.
- 8. $C_0(q)$ is called the even part of C(q), which is a subalgebra.

Examples. Here is a list of examples.

- 1. Let $(V,q) = \langle x \rangle$. Write V = Fx. Then, $C(q) = \frac{F[x]}{(x^2-a)} = F(\sqrt{a})$, if $a \neq 0$.
- 2. If q = 0 on V, then $\mathcal{I}(q)$ is generated by $x \otimes x$ with $x \in V$. So, C(q) is the exterior algebra.
- 3. Let $q = \langle a, b \rangle$ with $a, b \in \dot{F}$. Write Let $V = Fx \perp Fy$ with q(x) = a, q(y) = b. Then,

$$C(q) = \langle \frac{a, b}{F} \rangle$$
 = The graded quarternion

with usual basis $\{1, i, j, k\}$ and $\partial(1) = \partial(k) = 0$ and $\partial(i) = \partial(j) = 1$. **Proof.** The map $V \longrightarrow C(q)$ with $x \mapsto i, y \mapsto j$ has th universal property.

Alternately: One can check that the ideal \mathcal{I} of the definition of the quaternion algebra and $\mathcal{I}(q)$ are same.

4. It follows from above $C(\mathbb{H}) = \langle \frac{1,-1}{F} \rangle$, where $\mathbb{H} = \langle 1,-1 \rangle$ is the hyperbolic plane. Hence also, $C(\mathbb{H}) = \mathbb{M}_2(F)$.

1.1 Dimension and Basis of C(q)

Corollary 1.5. Let (V,q) be any quadratic from, with dim V = n. Then dim $C(q) \leq 2^n$.

Proof. Let $\{x_1, \ldots, x_n\}$ be an orthogonal basis of V.

$$(x_1 + x_2)^2 - q(x_1 + x_2) = 0, \implies x_1^2 + x_2^2 + x_1x_2 + x_2x_1 - q(x_1) - q(x_2) = 0$$

 $\implies x_1x_2 + x_2x_1 = 0.$ hence $x_ix_j = x_jx_i \quad \forall i \neq j.$

Therefore, C(q) is generated, as a vector space, by

$$\left\{x_1^{\epsilon_1}x_2^{\epsilon_2}\cdots x_n^{\epsilon_n}:\epsilon_i=0,1\right\}$$

The proof is complete.

In fact, we will prove,

$$\{x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n} : \epsilon_i = 0, 1\}$$
 is a basis of $C(q)$.

Following is a more general lemma.

Lemma 1.6. Let (V,q), (W,Q) be quadratic spaces. Then, there is an isomorphism

$$C(V \perp W) \xrightarrow{\sim} C(V) \hat{\otimes} C(W)$$
 as \mathbb{Z}_2 – graded algebras.

Proof. Since $V \hookrightarrow C(V), W \hookrightarrow C(W)$ there is a homomorphism of vector spaces $V \oplus W \longrightarrow C(V) \hat{\otimes} C(W)$. By universal proporty, this map extends to a F-algebra homomorphism $C(V \perp W) \longrightarrow C(V) \hat{\otimes} C(W)$ such that the diagram

In proof of lemma 1.5 generators of these algebras were given. From this it follows that φ is surjective. It follows from theorem 1.7 that φ is an isomorphism.

Theorem 1.7. Suppose (V,q) is a quadratic space and dim V = n. Then, dim $C(q) = 2^n$. In particular, if $\{x_1, \ldots, x_n\}$ is an orthogonal basis of V, then

$$\{x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n} : \epsilon_i = 0, 1\}$$
 is a basis of $C(q)$.

Proof. The latter statement follows form the first one. We prove the first statement, by induction. In dim V = 1 then, by the example above dim $C(q) = 2^1$. If n > 1, take an orthogonal basis of V and write $V = U \perp W$, where dim W = 1. Since C(V) maps onto $C(U) \otimes C(W)$, we have

$$\dim C(V) \ge \dim(C(U)\hat{\otimes}C(W)) = \dim(C(U))\dim(C(W)) = 2^n.$$

Also dim $C(V) \leq 2^n$. The proof is complete.

Corollary 1.8. dim $C_0(q) = \dim C_1(q) = 2^{n-1}$.

Proof. Let $\{x_1, \ldots, x_n\}$ be an orthogonal basis of V. Then,

$$\{x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n} : \epsilon_i = 0, 1\}$$
 is a basis of $C(q)$.

$$\{x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n} : \epsilon_i = 0, 1$$
 $\sum \epsilon_i \in 2\mathbb{Z}\}$ is a basis of $C_0(q)$.

$$\{x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n} : \epsilon_i = 0, 1$$
 $\sum \epsilon_i \in 1 + 2\mathbb{Z}\}$ is a basis of $C_1(q)$.

If q is totally isotropic, C(q) is the exterior algebra. In this case the corollary holds. Assume q is not totally isotropic. So, we can assume $q(x_1) = a_1 \neq 0$. Consider two multiplication maps

$$x_1: C_0(q) \longrightarrow C_1(q), \quad x_1: C_1(q) \longrightarrow C_0(q).$$

Two compositions of these two maps is multiplication by a_1 . So, each one is an isomorphism. So,

dim
$$C_0(q)$$
 = dim $C_1(q)$ = $\frac{\dim C(q)}{2}$ = 2^{n-1}

The proof is complete.

Corollary 1.9. $C(m\mathbb{H}) \cong \mathbb{M}_2(F) \hat{\otimes} \mathbb{M}_2(F) \hat{\otimes} \cdots \hat{\otimes} \mathbb{M}_2(F)$.

Proof. Follows from (1.6).

1.2 Spinor Norm (Skip)

Proposition 1.10. There is a unique anti-siomorphism $\epsilon : C(q) \xrightarrow{\sim} C(q)$ such that $\epsilon_{|V} = Id_V$. Also, ϵ stabilizes both $C_0(q)$ and $C_1(q)$.

Proof. Since $C(q)^{op}$ is a \mathbb{Z}_2 -graded algebra, by universal property, there is an homomorphism ϵ as follows:

$$V \xrightarrow{} C(q) \quad \text{the diagram commutes.}$$

$$\downarrow^{\epsilon} \\ C(q)^{op}$$

 ϵ is clearly surjective. So, it is an isomorphism, by dimension consideration. Clearly, $\epsilon(u_1 \cdots u_m) = u_m \cdots u_1$.

Proposition 1.11. Let (V, q) be a regular quadratic form. Suppose $u_1, u_2, \ldots, u_r \in V$ are anisotropic. Then,

$$\tau_{u_1}\tau_{u_2}\cdots\tau_{u_r} = Id \Longrightarrow q(u_1)q(u_2)\cdots q(u_2) \in \dot{F}^2$$

Proof. For any anisotropic $u \in V$ let $c(u) : C(q) \xrightarrow{\sim} C(q)$ be conjugation $c(u)(z) = uzu^{-1}$. By (1.3)

$$\tau_u = -c(u)_{|V}$$
. Also $c(u_i)c(u_j) = c(u_i u_j)$.

Since $(-1)^r = \det(\tau_{u_1}\tau_{u_2}\cdots\tau_{u_r}) = 1$, *r* is even. So, $x := u_1u_2\cdots u_r \in C_0(q)$. Also,

$$\tau_{u_1}\tau_{u_2}\cdots\tau_{u_r}=Id\Longrightarrow (-1)^r c(u_1u_2\cdots u_r)|_V=Id_V$$

Hence, $xvx^{-1} = v \quad \forall v \in V$. That means $xv = vx \quad \forall v \in V$. Since V generates $C(q), x \in Z(C(q)) \cap C_0(q)$. We will prove (2.1) C(q) is F-central graded algebra. So,

$$x \in Z(C(q)) \cap C_0(q) = F$$

We use the anti-isomorphism in (1.10). We have $\epsilon(x) = x$. So,

$$q(u_1)q(u_2)\cdots q(u_r) = (u_1u_2\cdots u_r)(u_ru_{r-1}\cdots u_1) = x\epsilon(x) = x^2 \in \dot{F}^2.$$

The first equality holds because $q(u_i) = u_i^{\in} F$. The proof is complete.

Definition 1.12. Let $\sigma \in O(V,q)$. We can write $\sigma = \tau_{u_1}\tau_{u_2}\cdots\tau_{u_m}$ where $u_i \in V$ are anisotropic. Define,

$$\theta(\sigma) := q(u_1)q(u_2)\cdots q(u_r)\dot{F}^2 \in \frac{\dot{F}}{\dot{F}^2}.$$
 This is well defined by 1.11.

We say $\theta(\sigma)$ is the spenoir norm of σ .

Theorem 1.13. $\theta: O(V,q) \longrightarrow \frac{\dot{F}}{\dot{F}^2}$ is a group homomorphism.

2 Structure Theorem

We have the main theorem:

Theorem 2.1. Suppose (V,q) is a regular quadratic form. Then, C(q) is a CSGA.

Proof. If dim V = 1 then $C(q) = F(\sqrt{a})$ where A = Fx and q(x) = a. So, C(q) is CSGA. (*Confusing Notations: By definition* $F(\sqrt{a}) = \frac{F[x]}{x^2 - a}$, which need not be a field. Also, by notation $\sqrt{a} := \overline{x}$.) Here $\partial(\sqrt{a}) = 1$. It follow, C(q) is CGSA. Not the theorem follows from Theorem IV.2.3 that graded tensor product of CGSA is a CGSA.

3 The Clifford Invariant

Let (V,q), (W,Q) be two regular quadratic spaces.

- 1. By lemma 1.6, $C(q \perp Q) \cong C(q) \hat{\otimes} C(Q)$.
- 2. Then $(V,q) \mapsto \langle C(q) \rangle \in BW(F)$ is a monoid hemomorphism.
- 3. So, it induces a homomorphism Γ so that the diagram

- 4. In fact $\zeta(\mathbb{H}) = \hat{\mathbb{M}}_2(F) = 0 \in BW(F)$.
- 5. So, Γ factors through the Witt groups:

$$\begin{array}{cccc} M(F) & \stackrel{\iota}{\longrightarrow} \widehat{W}(F) & \longrightarrow W(F) & commutes. & (We use same notation \ \Gamma) \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

6. Γ is called the Clifford Invariant map.

4 Real Periodicity and Clifford Modules

Let F be any field with $char(F) \neq 2$. Let

$$\varphi_{p,q} = p\langle -1 \rangle \perp q\langle 1 \rangle = -\sum_{i=1}^{p} X_i^2 + \sum_{j=1}^{q} Y_j^2 \quad and \quad C^{p,q} = C(\varphi_{p,q}).$$

Theorem 4.1. There is a graded algebra isomorphism

$$C^{p+n,q+n} \cong \hat{\mathbb{M}}_{2^n}(C^{p,q})$$

Proof. We have

- 1. Note $\varphi_{n,n} = n\mathbb{H}$. So, $C^{n,n} = \hat{\mathbb{M}}_{2^n}(F)$.
- 2. $\varphi_{p+n,q+n} \cong \varphi_{p,q} \perp \varphi_{n,n}$
- 3. So, $C^{p+n,q+n} \cong C^{p,q} \hat{\otimes} C^{n,n} \cong C^{p,q} \hat{\otimes} \hat{\mathbb{M}}_{2^n}(F) \cong \hat{\mathbb{M}}_{2^n}(C^{p,q}).$

The proof is complete.

We prove the following lemma that we use latter.

Lemma 4.2 ([ABS]). We have

- 1. $C^{2,0} \hat{\otimes} C^{0,2} \xrightarrow{\sim} C^{0,4}$.
- 2. More generally, $C^{p,0} \hat{\otimes} C^{0,2} \xrightarrow{\sim} C^{0,p+2}$.
- 3. And $C^{0,q} \otimes C^{2,0} \xrightarrow{\sim} C^{q+2,0}$

Proof. Define

$$\psi: F^4 \longrightarrow C^{2,0} \hat{\otimes} C^{0,2} \quad by \quad \begin{cases} \psi(e_1) = 1 \otimes e_1 \\ \psi(e_2) = 1 \otimes e_2 \\ \psi(e_3) = e_1 \otimes e_1 e_2 \\ \psi(e_4) = e_2 \otimes e_1 e_2 \end{cases}$$

Frm the description of the standard bases of $C^{2,0}, C^{0,2}$, we see that ψ is injective. Also

$$\psi(e_1)^2 - \varphi_{0,4}(e_1) = (1 \otimes e_1)(1 \otimes e_1) - 1 = (-1)^{\partial(e_1)\partial(1)} 1 \otimes e_1^2 - 1 = 1 \otimes \varphi_{0,2}(e_1) - 1 = 0.$$

Also,

$$\psi(e_3)^2 - \varphi_{0,4}(e_3) = (e_1 \otimes e_1 e_2)(e_1 \otimes e_1 e_2) - 1 = (-1)^{\partial(e_1 e_2)\partial(e_1)} e_1^2 \otimes e_1 e_2 e_1 e_2 - 1$$
$$= \varphi_{2,0}(e_1) \otimes (-e_1^2 e_2^2) - 1 = (-1) \otimes (-\varphi_{0,2}(e_1)\varphi_{0,2}(e_2)) - 1 = 0$$

So, there is a homomorphism

$$\eta: C^{0,4} \longrightarrow C^{2,0} \hat{\otimes} C^{0,2} \quad \ni \quad F^4 \xrightarrow{} C^{0,4} \quad commutes.$$

It is easy to check that ψ is surjective. Since they have same dimension, η is an isomorphism. The proof is complete.

Proposition 4.3 (Periodicity 8).

$$C^{p+8,q} \cong \widehat{\mathbb{M}}_{16}(C^{p,q}) \cong C^{p,q+8}$$

Proof. We prove the first one only. Suppose p = q = 0. First note $C^{4,0} \cong C^{4,0}$ (see lemma 4.2). Then

$$C^{8,0} \cong C^{4,0} \hat{\otimes} C^{4,0} \cong C^{4,0} \hat{\otimes} C^{0,4} \cong C^{4,4} \cong \hat{\mathbb{M}}_{16}(F).$$

Therefore,

$$C^{p+8,q} \cong C^{8,0} \hat{\otimes} C^{p,q} \cong \hat{\mathbb{M}}_{16}(C^{p,q})$$

The proof is complete.

We will compute

$$C^{p,0}, C^{0,q} \qquad 0 \le p, q \le 7.$$

Denote

$$X \cong F\langle \sqrt{-1} \rangle, \ Y := C(\langle -1, -1 \rangle) = \langle \frac{-1, -1}{F} \rangle, \ Z \cong F\langle \sqrt{1} \rangle, \ W := C(\langle 1, 1 \rangle) \cong \langle \frac{1, 1}{F} \rangle$$

Also note, by (III.2.6)

$$W = \langle \frac{1,1}{F} \rangle \cong \langle \frac{1,-1}{F} \rangle \cong \hat{\mathbb{M}}_2(F)$$

Now, we have the following table of $C^{p,q}$.

n	0	1	2	3	4	5	6	7
$C^{n,0}$	F	X	Y	$Y \hat{\otimes} Z$	$Y \hat{\otimes} W$	$\hat{\mathbb{M}}_2(X \hat{\otimes} W)$	$\hat{\mathbb{M}}_4(W)$	$\hat{\mathbb{M}}_8(Z)$
$C^{0,n}$	F	Z	W	$X \hat{\otimes} W$	$Y \hat{\otimes} W$	$\hat{\mathbb{M}}_2(Y\hat{\otimes}Z)$	$\hat{\mathbb{M}}_4(Y)$	$\hat{\mathbb{M}}_8(X)$

We rewrite it:

n	0	1	2	3	4	5	6	7
$C^{n,0}$	F	X	Y	$Y \times Y$	$\hat{\mathbb{M}}_2(Y)$	$\hat{\mathbb{M}}_4(X)$	$\hat{\mathbb{M}}_8(F)$	$\hat{\mathbb{M}}_8(F) \times \hat{\mathbb{M}}_8(F)$
$C^{0,n}$	F	$F \times F$	$\hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_2(X)$	$\hat{\mathbb{M}}_2(Y)$	$\hat{\mathbb{M}}_2(Y) \times \hat{\mathbb{M}}_2(Y)$	$\hat{\mathbb{M}}_4(Y)$	$\hat{\mathbb{M}}_8(X)$

Proof. We will establish one by one.

- 1. $C^{0,0} = F$ is more like a convention. It makes more sense to compute $C^{0,8} \cong \hat{\mathbb{M}}_{16}(F)$.
- 2. $C^{0,1} = C(Y_1^2) = \frac{F[[x]]}{x^2 1} = \frac{F[x]}{x^2 1} = Z$. Similally, $C^{1,0} \cong X$.
- 3. $C^{0,2} = C(Y_1^2 + Y_2^2) = \frac{F[[x_1, x_2]]}{(x_1^2 1, x_2^2 1)} \cong W$. Similalry, $C^{2,0} \cong Y$. by one of the examples above.
- 4. Now $C^{0,3} = C(Y_1^2 + Y_2^2 + Y_3^3) = C^{1,0} \hat{\otimes} C^{0,2} \cong X \otimes W$. Similalry, $C^{3,0} \cong Y \otimes Z$.
- 5. Similarly, $C^{0,4} = C^{2,0} \hat{\otimes} C^{0,2} \cong Y \otimes W$, Similalry, $C^{4,0}Y \otimes W$. (In fact, we proved $C^{0,4} \cong C^{4,0}$.)
- 6. Now, for $q \leq 3$ we have

$$C^{0,q+4} \cong C^{0,q} \hat{\otimes} C^{0,4} \cong C^{0,q} \hat{\otimes} C^{4,0} \cong C^{4,q} \cong \hat{\mathbb{M}}_{2^q}(C^{4-q,0}) \quad by \quad (4.1).$$

This completely establishes the last line. We establish the first line similarly. The proof is complete.

Complex Case: More generally, when $-1 \in \dot{F}^2$. In this case

- 1. $X = F\sqrt{-1} \cong \frac{F[x]}{X^2+1} \cong F \times F.$
- 2. Also $\varphi_{n,0} \cong \varphi_{0,n}$ and so $C^{n,0} \cong C^{0,n}$.
- 3. Also, $\varphi_{2,0} = \langle -1, -1 \rangle \cong \langle 1, -1 \rangle \cong \mathbb{H}$. Similarly, $\varphi_{0,2} = \langle 1, 1 \rangle \cong \langle 1, -(\sqrt{-1})^2 \rangle \cong \mathbb{H}$. Therefore

$$Y = W = \hat{\mathbb{M}}_2(F)$$

4. So,

$$C^{p+2,0} \cong C^{0,p} \hat{\otimes} C^{2,0} \cong C^{p,0} \hat{\otimes} C(\mathbb{H}) \cong C^{p,0} \hat{\otimes} \hat{\mathbb{M}}_2(F) \cong \hat{\mathbb{M}}_2(C^{p,0}).$$

Therefore,

n	0	1	2	3	4	5	6	7
$C^{0,n}$	F	$F \times F$	$\hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_2(F) \times \hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_4(F)$	$\hat{\mathbb{M}}_4(F) \times \hat{\mathbb{M}}_4(F)$	$\hat{\mathbb{M}}_8(F)$	$\hat{\mathbb{M}}_8(F) \times \hat{\mathbb{M}}_8(F)$

Lam is ignoring that grading. We should discuss if my grading is alright.

Case: $-1 \notin \dot{F}^2$ and $-1 = \alpha^2 + \beta^2$ In this case,

- 1. $X = F\langle \sqrt{-1} \rangle$ is a field.
- 2. By (I.5.1), since $\langle 1, 1 \rangle \cong \langle -1, -1 \rangle$.
- 3. So, $Y \cong W \cong \hat{\mathbb{M}}_2(F)$.
- 4. Also $C^{4,0} \cong \langle -1, -1 \rangle \perp \langle -1, -1 \rangle \cong \langle 1, 1 \rangle \perp \langle 1, 1 \rangle = C^{0,4}$.
- 5. Hence $C^{p+4,0} \cong C^{p,0} \hat{\otimes} C^{4,0} \cong C^{p,0} \hat{\otimes} C^{0,4} \cong \hat{\mathbb{M}}_2(C^{p,0})$

The table reduces to:

n	0	1	2	3	4	5	6	7
$C^{n,0}$	F	X	$\hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_2(F) \times \hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_4(F)$	$\hat{\mathbb{M}}_4(X)$	$\hat{\mathbb{M}}_8(F)$	$\hat{\mathbb{M}}_8(F) \times \hat{\mathbb{M}}_8$
$C^{0,n}$	F	$F \times F$	$\hat{\mathbb{M}}_2(F)$	$\hat{\mathbb{M}}_2(X)$	$\hat{\mathbb{M}}_4(F)$	$\hat{\mathbb{M}}_4(F) \times \hat{\mathbb{M}}_4(F)$	$\hat{\mathbb{M}}_8(F)$	$\hat{\mathbb{M}}_8(X)$

The Real Case: More generally -1 is not sum of two squares: In this case, we have no further simplication of the original table.

References

[ABS] M. F. Atiyah, R. Bott, and A. Shapiro, *Clifford modules*, Topology 3 (1964), 3-38.