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1 Construction of Clifford Algebras

In this section, a quadratic space (V, ) need not be regular.

Definition 1.1. Suppose (V, q) is a quadratic space. Let A be an F'—algebra
with V' C A. We say that A is compatible with (V,q), if

reV = 2*=q).

1. In this case,

Vo,yeV  2B(z,y) = q(z+y)—q(z)—q(y) = (z+y)*—2’—y* = zy+yz.

2. In particular,
Vz,yeV rly<= ry=—yx.

Lemma 1.2. For A as above and 0 # x € V', x is invertible in A if and only

if x is anisotropic in V.



Proof. Suppose x is anisotropic. Then, ¢(z) = 2? # 0. So, 27! = qix_

(x)
Conversely, suppose x is invertible and xy = 1 for some y € A. Then,
q(x)y =2y =z #0. n
Lemma 1.3. let A be as above and 0 # uw € V' be anisotropic. Then, the
hyperboloc reflection
Tu(z) = —uzu~! VzelV.

So, 7, is negative of the conjugation by wu.

Proof. Straight forward computation:

2B(x,u) U+ ux _
TWr)=0————— u=0r— ———  u=—uru
q(u) u?
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Definition 1.4. Given a quadratic form (V) ¢q), the Clifford algebra C' of
(V,q) is the universal object in the category of all F'—algebras A containing
V. That means, given any F'—algebra A containing V, there is a unique

algebra homomorphism ¢ : C' — A such that the diagram

V&—(C  commutes. That means ¢(z) =z VaxeV.
|

\\HIISD
Y

A

1. Since, it is defined by the universal property, "any two" Clifford alge-

bras are naturally isomorphic.
2. Construction: Define the tensor algebra
T(V) =@y I"V  where T"V = VRV®---QV  n—foldtensor product.

Let Z(q) be the two sider ideal of T'(V') generated by {xr®@x —q(z) : x €

V'}. Now define, C'(q) = 7;8:)). Then, C(q) has the universal property

of the definition. We also use the notations C'(¢) = C(V) =C(V,q). m
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3. Note, V generates C(q).
4. The product in C(q) is expressed by juxtaposition.

5. Write T(V) = T()(V> ) T1<V), where T()(V) = ;L.O:OTQnV and TO(V) =
@02 T?" V. This gives T(V) a Zy—grading.

6. Z(q) is a Zo—graded ideal.

7. So, C(q) = Co(q) ® C1(q) has a Zy—grading. That means C;(q)C;(q) C
Citj(q)-

8. Co(q) is called the even part of C(q), which is a subalgebra.

Examples. Here is a list of examples.

1. Let (V,q) = (x). Write V. = Fz. Then, C(q) = (;;[f]a) = F(ya), if
a # 0.

2. If g=0o0n V, then Z(q) is generated by x ® x with z € V. So, C(q) is
the exterior algebra.

3. Let ¢ = (a,b) with a,b € F. Write Let V = Fz 1 Fy with ¢(z) =
a,q(y) =b. Then,

(@0

with usual basis {1,4,j,k} and 9(1) = 9(k) = 0 and (i) = I(j) =
Proof. The map V. — C(q) with = — ¢, y — j has th universal

Clq) =

= The graded quarternion

property.
Alternately: One can check that the ideal Z of the definition of the
quaternion algebra and Z(q) are same. n

1) where H = (1, —1) is the hyper-

4. Tt follows from above C'(H) = (1% =
= M, (F).

bolic plane. Hence also, C'(H)



1.1 Dimension and Basis of C(q)

Corollary 1.5. Let (V,q) be any quadratic from, with dimV" = n. Then
dim C(q) < 2™.

Proof. Let {zi,...,2z,} be an orthogonal basis of V.
(z1 +12)* — q(21 + 22) = 0,=> 27 + 25 + 2129 + 2211 — q(21) — q(22) = 0

— 1Ty + 2921 =0. hence wx; = x;m; ViF ],

Therefore, C(q) is generated, as a vector space, by

{oi'ay - =0,1}
The proof is complete. |
In fact, we will prove,
{a{taxs? - =0,1} is a basis of C(q).

Following is a more general lemma.

Lemma 1.6. Let (V,q),(W,Q) be quadratic spaces. Then, there is an iso-

morphism
C(VLW) = CO(V)RC(W)  as Zy — graded algebras.

Proof. Since V. — C(V),W «— C(W) there is a homomorphism of vector
spaces V @ W — C(V)®C(W). By universal propoerty, this map extends
to a F—algebra homomorphism C(V L W) — C(V)&C (W) such that the
diagram

VeW——=C(V LW) commutes.

|
\ B
N
C(V)eC(W)
In proof of lemma 1.5 generators of these algebras were given. From this

it follows that ¢ is surjective. It follows from theorem 1.7 that ¢ is an
isomorphism. n



Theorem 1.7. Suppose (V,q) is a quadratic space and dim'V = n. Then,
dim C(q) = 2". In particular, if {xq,...,x,} is an orthogonal basis of V,
then

{xfxs?--- =0,1} is a basis of C(q).

Proof. The latter statement follows form the first one. We prove the first
statement, by induction. In dim V' = 1 then, by the example above dim C'(q) =
2L, If n > 1, take an orthogonal basis of V and write V. = U L W, where
dim W = 1. Since C(V) maps onto C(U)®C (W), we have

dim C(V) > dim(C(U)QC(W)) = dim(C(U)) dim(C(W)) = 2".
Also dim C(V') < 2™. The proof is complete. ]

Corollary 1.8. dim Cy(q) = dim C;(q) = 2" .

Proof. Let {zi,...,2,} be an orthogonal basis of V. Then,

x{trs - =0,1 is a basis of C(q).
12
{z{tx? - e, =0,1 Z € €27} is a basis of Cy(q).
{a{t x5 - =0,1 Z € €1+ 27} is a basis of C}(q).

If ¢ is totally isotropic, C'(q) is the exterior algebra. In this case the corollary
holds. Assume ¢ is not totally isotropic. So, we can assume ¢(x1) = a; # 0.
Consider two multiplication maps

x1: Colq) — Ci(q), z1:Ci(q) — Co(q).

Two compositions of these two maps is multiplication by a;. So, each one is

an isomorphism. So,

dim C(q)
2

dim Cy(¢q) = dim Cy(q) = =2t

The proof is complete. |
Corollary 1.9. C(mH) 2 My(F)®My(F)® - - - @My (F).

Proof. Follows from (1.6). ]



1.2 Spinor Norm (Skip)

Proposition 1.10. There is a unique anti-siomorphism ¢ : C(q) — C(q)
such that e;y = Idy. Also, € stabilizes both Cy(q) and Ci(q).

Proof. Since C(q)? is a Zs—graded algebra, by universal property, there is
an homomorphism € as follows:

V&e——=C(q) the diagram commutes.

S

Cq)*?

€ is clearly surjective. So, it is an isomorphism, by dimension consideration.
Clearly, €(uy « - Up) = Up, -+ U1 [

Proposition 1.11. Let (V, q) be a regular quadratic form. Suppose uy, us, . .., u, €

V' are anisotropic. Then,

T Tuy - Tu, = Id = q(u1)q(us) - - - q(ug) € F2.
Proof. For any anisotropic u € V let c(u) : C(q) — C(q) be conjugation
c(u)(z) = uzu™!. By (1.3)

Ty = —c(u)y. Also c(u;)c(uy) = c(uuy).

Since (—1)" = det(7y, Tuy  ** Tw,) = 1, 7 is even. So, = := ujus - - - u, € Cy(q).
Also,
Tuy Tug = Tu, = ld = (—1)TC(U1'LL2 e ur)|V = [dV

Hence, zvz™' = v Vv € V. That means zv = vx V v € V. Since V
generates C(q), x € Z(C(q)) N Cy(q). We will prove (2.1) C(q) is F'—central
graded algebra. So,

x € Z(Clq)) NColg) = F.

We use the anti-isomorphism in (1.10). We have e(x) = x. So,
q(ur)q(us) -+ q(u,) = (ugug -+ - wp) (Upttp_q + - - up) = ze(x) = 22 e 2

The first equality holds because ¢(u;) = u§ F. The proof is complete. |
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Definition 1.12. Let 0 € O(V,q). We can write 0 = Ty Ty, -+ * Tu,, Where

u; € V' are anisotropic. Define,

. F
0(c) == q(u)q(ug) - - q(u, ) F? € I=h This is well defined by 1.11.
We say 0(o) is the spenoir norm of o.

Theorem 1.13. 6 : O(V,q) — % is a group homomorphism.



2 Structure Theorem

We have the main theorem:

Theorem 2.1. Suppose (V,q) is a reqular quadratic form. Then, C(q) is a
CSGA.

Proof. If dimV =1 then C(q) = F(y/a) where A = Fz and ¢(x) = a. So,
C(q) is CSGA. (Confusing Notations: By definition F(\/a) = ;;[f]a, which
need not be a field. Also, by notation y/a := Z.) Here d(y/a) = 1. Tt follow,
C(q) is CGSA. Not the theorem follows from Theorem IV.2.3 that graded

tensor product of CGSA is a CGSA. |

3 The Clifford Invariant

Let (V,q), (W, Q) be two regular quadratic spaces.
1. By lemma 1.6, C(q L Q) = C(q)®C(Q).
2. Then (V,q) — (C(q)) € BW(F) is a monoid hemomorphism.
3. So, it indueces a homomorphism I' so that the diagram
M(F)—=W(F) commutes.
ey
BW(F)
4. In fact C(H) = My(F) = 0 € BW(F).
5. So, I' factors through the Witt groups:

M(F)—— /W(F) ——W(F) commutes. (We use same notation I

o b AT

BW (F)

6. I is called the Clifford Invariant map.



4 Real Periodicity and Clifford Modules

Let F' be any field with char(F') # 2. Let

p q

Ppg =p(—1) L g(l) = — ZX’LZ + ZY;Z and  C"" = C(ppq).

i=1 j=1

Theorem 4.1. There is a graded algebra isomorphism
CPrmatn o M2n(c«p,q)
Proof. We have
1. Note ¢,,,, = nH. So, C™" = My (F).

2. SOern,qun = @p,q 1 Son,n
3. So, OPmatn o2 OPAQO™™ 22 OPIQMyn (F) 2 Myn (OP9).

The proof is complete.

We prove the following lemma that we use latter.

Lemma 4.2 (|ABS]). We have
1. C*0x0%? = 004,
2. More generally, CPP&C%? =5 CO»+2,
3. And C%™M@C?0 — CIt20

Proof. Define

@0261; =1®e

R =1®e

LY 0205002 ez 2

v ® Y Ples) = €1 @ eres
P(eq) = e2 @ eqeg



Frm the description of the standard bases of C%° C%2, we see that v is
injective. Also

1/1(61)2—@0’4(61) = (1@61)(1@61)-1 = (—1)8(61)8(1)1@)6%—1 = ].®g0072(61)—1 = 0

Also,
1/1(63)2 — 300’4<€3) = (61 ®€162>(61 ®€1€2) — ]. = (-1)8(8162)8(61)€% ®6162€162 — ]_

= pa0(e1) @ (—efey) = 1= (=1) ® (—poa(er)poa(e2) — 1 =0

So, there is a homomorphism

(04 commautes.

Ny

02’0®CO’2

n:C™ — C*C"? > pt

It is easy to check that v is surjective. Since they have same dimension, 7 is
an isomorphism. The proof is complete. |

Proposition 4.3 (Periodicity 8).

OPt8a o~ MIG(CWJ) >~ OPats

Proof. We prove the first one only. Suppose p = ¢ = 0. First note C*? =
C*? (see lemma 4.2). Then

CS,O ~ C4,0®04,0 ~ C4,0®00,4 o~ 04,4 o~ M16<F)
Therefore,
CP84 =2 080G (OPa Mw(Cp,q)
The proof is complete. |

We will compute
CrO.C% 0<p,q<T.

Denote

~1,-1
F

X2 F(/-1), Y :=C({-1,-1)) = (

10

), Z=F(V1), W= 0((1,1) =



Also note, by (I11.2.6)

W= (1) & (P = W)

Now, we have the following table of CP1.

|

n Jojif2] 3 [ 4 | 5 [ 6 | 7 |

COTF]X YRZ [ YOW [ My(X&W) [ My (W) | Ms(2)

Y
COM | F I Z|W|XQW | YW | My(Y®Z) | My(Y) | Mg(X)

We rewrite it:

o fof 1t [ 2 [ 3 | 4 | 5 | 6 | 7
COlF] X | Y Y xY |My(Y) M, (X) M (F) | Mg(F) x Ms(F)
COM | F | Fx F | My(F) | Mo(X) | Ms(Y) | My(Y) x My(Y) | Mu(Y) Mz (X)

Proof. We will establish one by one.

1.

C% = F is more like a convention. It makes more sense to compute

00’8 = M16<F)

COt = Oo(vR) = Hell = Flo — 7. Similalry, C10 = X

z2—1

C02 = O(Y2 + YY) = m >~ W. Similalry, C*° =Y. by one of

x%—l,x%—l
the examples above.

Now C% = C(Y2 + Y +Y$) = CW0&C%? =~ X @ W. Similalry,
CH=Y®Z.

. Similarly, C%* = C*°®(C%? 2 Y @ W, Similalry, C*°Y @ W. (In fact,

we proved C%* = C*40))
Now, for ¢ < 3 we have
COatt =2 00O = OG0 2 04T = MLy, (CH7°) by (4.1).

This completely establishes the last line. We establish the first line
similalry. The proof is complete. |

Complex Case: More generally, when —1 € 2. In this case
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L X=Fy/=1= L ~pxF

2. Also ¢, 0 = o, and so C™0 =2 OO,

3. Also, @99 = (—1,-1) = (1,—1) = H. Similarly, poo = (1,1) =

(1, —(\/—1) ) = IHI Therefore
Y = W = My(F)
4. So,
CPH20 22 (OPGC20 = CPOZO(H) = CPOSML(F) 2 NIy(CP0),

Therefore,
nfof v [ 2] 8 [ 4] 5 |6 [ 7 |
| CO" | F| F x F | NIy(F) | Ma(F) x NIo(F) | Mu(F) | My (F) x NIy(F) | Ms(F) | Nis(F) x Nis(F) |

Lam is ignoring thae grading. We should discuss if my grading is alright.

Case: —1 ¢ F? and —1 = o? 4 42 In this case,

1.
2.
3.
4.
d.

X = F(v/—1) is a field.
By (I.5.1), since (1,1) = (—1,—1).

So, Y & W = M,(F).
Also C*0 = (—1,—1) L (—1,—1) (1,

1) L (1,

1) = CO4,

Hence CPH40 2 CPOQCH0 = OPOGC0A = M, (CPO)

The table reduces to:

| n JO] 1 | 2 | 3 K 5 6 7
CO|F| X |[My(F)|My(F) x My(F) | My(F) M, (X) Mg (F) | Mg(F) x Mg
Co" | F | F x F | My(F) My (X) M (F) | My(F) x My(F) | Mg(F) M (X)

The Real Case: More generally —1 is not sum of two squares: In
this case, we have no furhter simplication of the original table.
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