Chapter V
 The Clifford Algebras

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

Septemebr 30, 2013

1 Construction of Clifford Algebras

In this section, a quadratic space (V, q) need not be regular.
Definition 1.1. Suppose (V, q) is a quadratic space. Let A be an F-algebra with $V \subseteq A$. We say that A is compatible with (V, q), if

$$
x \in V \quad \Longrightarrow \quad x^{2}=q(x) .
$$

1. In this case,

$$
\forall x, y \in V \quad 2 B(x, y)=q(x+y)-q(x)-q(y)=(x+y)^{2}-x^{2}-y^{2}=x y+y x
$$

2. In particular,

$$
\forall x, y \in V \quad x \perp y \Longleftrightarrow x y=-y x .
$$

Lemma 1.2. For A as above and $0 \neq x \in V, x$ is invertible in A if and only if x is anisotropic in V.

Proof. Suppose x is anisotropic. Then, $q(x)=x^{2} \neq 0$. So, $x^{-1}=\frac{x}{q(x)}$. Conversely, suppose x is invertible and $x y=1$ for some $y \in A$. Then, $q(x) y=x^{2} y=x \neq 0$.

Lemma 1.3. let A be as above and $0 \neq u \in V$ be anisotropic. Then, the hyperboloc reflection

$$
\tau_{u}(x)=-u x u^{-1} \quad \forall x \in V .
$$

So, τ_{u} is negative of the conjugation by u.
Proof. Straight forward computation:

$$
\tau_{u}(x)=x-\frac{2 B(x, u)}{q(u)} \cdot u=x-\frac{x u+u x}{u^{2}} \cdot u=-u x u^{-1}
$$

Definition 1.4. Given a quadratic form (V, q), the Clifford algebra C of (V, q) is the universal object in the category of all F-algebras A containing V. That means, given any F-algebra A containing V, there is a unique algebra homomorphism $\varphi: C \longrightarrow A$ such that the diagram

1. Since, it is defined by the universal property, "any two" Clifford algebras are naturally isomorphic.
2. Construction: Define the tensor algebra

$$
T(V)=\oplus_{n=0}^{\infty} T^{n} V \quad \text { where } T^{n} V=V \otimes V \otimes \cdots \otimes V \quad n-\text { fold tensor product. }
$$

Let $\mathcal{I}(q)$ be the two sider ideal of $T(V)$ generated by $\{x \otimes x-q(x): x \in$ $V\}$. Now define, $C(q)=\frac{T(V)}{\mathcal{I}(q)}$. Then, $C(q)$ has the universal property of the definition. We also use the notations $C(q)=C(V)=C(V, q)$.
3. Note, V generates $C(q)$.
4. The product in $C(q)$ is expressed by juxtaposition.
5. Write $T(V)=T_{0}(V) \oplus T_{1}(V)$, where $T_{0}(V)=\oplus_{n=0}^{\infty} T^{2 n} V$ and $T_{0}(V)=$ $\oplus_{n=0}^{\infty} T^{2 n+1} V$. This gives $T(V)$ a $\mathbb{Z}_{2}-$ grading.
6. $\mathcal{I}(q)$ is a \mathbb{Z}_{2}-graded ideal.
7. So, $C(q)=C_{0}(q) \oplus C_{1}(q)$ has a \mathbb{Z}_{2}-grading. That means $C_{i}(q) C_{j}(q) \subseteq$ $C_{i+j}(q)$.
8. $C_{0}(q)$ is called the even part of $C(q)$, which is a subalgebra.

Examples. Here is a list of examples.

1. Let $(V, q)=\langle x\rangle$. Write $V=F x$. Then, $C(q)=\frac{F[x]}{\left(x^{2}-a\right)}=F(\sqrt{a})$, if $a \neq 0$.
2. If $q=0$ on V, then $\mathcal{I}(q)$ is generated by $x \otimes x$ with $x \in V$. So, $C(q)$ is the exterior algebra.
3. Let $q=\langle a, b\rangle$ with $a, b \in \dot{F}$. Write Let $V=F x \perp F y$ with $q(x)=$ $a, q(y)=b$. Then,

$$
C(q)=\left\langle\frac{a, b}{F}\right\rangle=\text { The graded quarternion }
$$

with usual basis $\{1, i, j, k\}$ and $\partial(1)=\partial(k)=0$ and $\partial(i)=\partial(j)=1$. Proof. The map $V \longrightarrow C(q)$ with $x \mapsto i, y \mapsto j$ has th universal property.
Alternately: One can check that the ideal \mathcal{I} of the definition of the quaternion algebra and $\mathcal{I}(q)$ are same.
4. It follows from above $C(\mathbb{H})=\left\langle\frac{1,-1}{F}\right\rangle$, where $\mathbb{H}=\langle 1,-1\rangle$ is the hyperbolic plane. Hence also, $C(\mathbb{H})=\mathbb{M}_{2}(F)$.

1.1 Dimension and Basis of $C(q)$

Corollary 1.5. Let (V, q) be any quadratic from, with $\operatorname{dim} V=n$. Then $\operatorname{dim} C(q) \leq 2^{n}$.

Proof. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be an orthogonal basis of V.

$$
\begin{gathered}
\left(x_{1}+x_{2}\right)^{2}-q\left(x_{1}+x_{2}\right)=0 \Longrightarrow \quad x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}+x_{2} x_{1}-q\left(x_{1}\right)-q\left(x_{2}\right)=0 \\
\Longrightarrow \quad x_{1} x_{2}+x_{2} x_{1}=0 . \quad \text { hence } \quad x_{i} x_{j}=x_{j} x_{i} \forall i \neq j .
\end{gathered}
$$

Therefore, $C(q)$ is generated, as a vector space, by

$$
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1\right\}
$$

The proof is complete.
In fact, we will prove,

$$
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1\right\} \quad \text { is a basis of } C(q) .
$$

Following is a more general lemma.
Lemma 1.6. Let $(V, q),(W, Q)$ be quadratic spaces. Then, there is an isomorphism

$$
C(V \perp W) \xrightarrow{\sim} C(V) \hat{\otimes} C(W) \quad \text { as } \mathbb{Z}_{2} \text { - graded algebras. }
$$

Proof. Since $V \hookrightarrow C(V), W \hookrightarrow C(W)$ there is a homomorphism of vector spaces $V \oplus W \longrightarrow C(V) \hat{\otimes} C(W)$. By universal propoerty, this map extends to a F-algebra homomorphism $C(V \perp W) \longrightarrow C(V) \hat{\otimes} C(W)$ such that the diagram

In proof of lemma 1.5 generators of these algebras were given. From this it follows that φ is surjective. It follows from theorem 1.7 that φ is an isomorphism.

Theorem 1.7. Suppose (V, q) is a quadratic space and $\operatorname{dim} V=n$. Then, $\operatorname{dim} C(q)=2^{n}$. In particular, if $\left\{x_{1}, \ldots, x_{n}\right\}$ is an orthogonal basis of V, then

$$
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1\right\} \quad \text { is a basis of } C(q)
$$

Proof. The latter statement follows form the first one. We prove the first statement, by induction. In $\operatorname{dim} V=1$ then, by the example above $\operatorname{dim} C(q)=$ 2^{1}. If $n>1$, take an orthogonal basis of V and write $V=U \perp W$, where $\operatorname{dim} W=1$. Since $C(V)$ maps onto $C(U) \hat{\otimes} C(W)$, we have

$$
\operatorname{dim} C(V) \geq \operatorname{dim}(C(U) \hat{\otimes} C(W))=\operatorname{dim}(C(U)) \operatorname{dim}(C(W))=2^{n}
$$

Also $\operatorname{dim} C(V) \leq 2^{n}$. The proof is complete.
Corollary 1.8. $\operatorname{dim} C_{0}(q)=\operatorname{dim} C_{1}(q)=2^{n-1}$.
Proof. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be an orthogonal basis of V. Then,

$$
\begin{gathered}
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1\right\} \quad \text { is a basis of } C(q) \\
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1 \quad \sum \epsilon_{i} \in 2 \mathbb{Z}\right\} \quad \text { is a basis of } C_{0}(q) \\
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}}: \epsilon_{i}=0,1 \quad \sum \epsilon_{i} \in 1+2 \mathbb{Z}\right\} \quad \text { is a basis of } C_{1}(q) .
\end{gathered}
$$

If q is totally isotropic, $C(q)$ is the exterior algebra. In this case the corollary holds. Assume q is not totally isotropic. So, we can assume $q\left(x_{1}\right)=a_{1} \neq 0$. Consider two multiplication maps

$$
x_{1}: C_{0}(q) \longrightarrow C_{1}(q), \quad x_{1}: C_{1}(q) \longrightarrow C_{0}(q) .
$$

Two compositions of these two maps is multiplication by a_{1}. So, each one is an isomorphism. So,

$$
\operatorname{dim} C_{0}(q)=\operatorname{dim} C_{1}(q)=\frac{\operatorname{dim} C(q)}{2}=2^{n-1}
$$

The proof is complete.
Corollary 1.9. $C(m \mathbb{H}) \cong \mathbb{M}_{2}(F) \hat{\otimes} \mathbb{M}_{2}(F) \hat{\otimes} \cdots \hat{\otimes} \mathbb{M}_{2}(F)$.
Proof. Follows from (1.6).

1.2 Spinor Norm (Skip)

Proposition 1.10. There is a unique anti-siomorphism $\epsilon: C(q) \xrightarrow{\sim} C(q)$ such that $\epsilon_{\mid V}=I d_{V}$. Also, ϵ stabilizes both $C_{0}(q)$ and $C_{1}(q)$.

Proof. Since $C(q)^{o p}$ is a \mathbb{Z}_{2}-graded algebra, by universal property, there is an homomorphism ϵ as follows:

ϵ is clearly surjective. So, it is an isomorphism, by dimension consideration. Clearly, $\epsilon\left(u_{1} \cdots u_{m}\right)=u_{m} \cdots u_{1}$.

Proposition 1.11. Let (V, q) be a regular quadratic form. Suppose $u_{1}, u_{2}, \ldots, u_{r} \in$ V are anisotropic. Then,

$$
\tau_{u_{1}} \tau_{u_{2}} \cdots \tau_{u_{r}}=I d \Longrightarrow q\left(u_{1}\right) q\left(u_{2}\right) \cdots q\left(u_{2}\right) \in \dot{F}^{2}
$$

Proof. For any anisotropic $u \in V$ let $c(u): C(q) \xrightarrow{\sim} C(q)$ be conjugation $c(u)(z)=u z u^{-1}$. By (1.3)

$$
\tau_{u}=-c(u)_{\mid V .} . \quad \text { Also } \quad c\left(u_{i}\right) c\left(u_{j}\right)=c\left(u_{i} u_{j}\right) .
$$

Since $(-1)^{r}=\operatorname{det}\left(\tau_{u_{1}} \tau_{u_{2}} \cdots \tau_{u_{r}}\right)=1$, r is even. So, $x:=u_{1} u_{2} \cdots u_{r} \in C_{0}(q)$. Also,

$$
\tau_{u_{1}} \tau_{u_{2}} \cdots \tau_{u_{r}}=I d \Longrightarrow(-1)^{r} c\left(u_{1} u_{2} \cdots u_{r}\right)_{\mid V}=I d_{V}
$$

Hence, $x v x^{-1}=v \quad \forall v \in V$. That means $x v=v x \quad \forall v \in V$. Since V generates $C(q), x \in Z(C(q)) \cap C_{0}(q)$. We will prove (2.1) $C(q)$ is F-central graded algebra. So,

$$
x \in Z(C(q)) \cap C_{0}(q)=F .
$$

We use the anti-isomorphism in (1.10). We have $\epsilon(x)=x$. So,

$$
q\left(u_{1}\right) q\left(u_{2}\right) \cdots q\left(u_{r}\right)=\left(u_{1} u_{2} \cdots u_{r}\right)\left(u_{r} u_{r-1} \cdots u_{1}\right)=x \epsilon(x)=x^{2} \in \dot{F}^{2} .
$$

The first equality holds because $q\left(u_{i}\right)=u_{i}^{\in} F$. The proof is complete.

Definition 1.12. Let $\sigma \in O(V, q)$. We can write $\sigma=\tau_{u_{1}} \tau_{u_{2}} \cdots \tau_{u_{m}}$ where $u_{i} \in V$ are anisotropic. Define,

$$
\theta(\sigma):=q\left(u_{1}\right) q\left(u_{2}\right) \cdots q\left(u_{r}\right) \dot{F}^{2} \in \frac{\dot{F}}{\dot{F}^{2}} . \quad \text { This is well defined by } 1.11
$$

We say $\theta(\sigma)$ is the spenoir norm of σ.
Theorem 1.13. $\theta: O(V, q) \longrightarrow \frac{\dot{F}}{F^{2}}$ is a group homomorphism.

2 Structure Theorem

We have the main theorem:
Theorem 2.1. Suppose (V, q) is a regular quadratic form. Then, $C(q)$ is a CSGA.

Proof. If $\operatorname{dim} V=1$ then $C(q)=F(\sqrt{a})$ where $A=F x$ and $q(x)=a$. So, $C(q)$ is CSGA. (Confusing Notations: By definition $F(\sqrt{a})=\frac{F[x]}{x^{2}-a}$, which need not be a field. Also, by notation $\sqrt{a}:=\bar{x}$.) Here $\partial(\sqrt{a})=1$. It follow, $C(q)$ is CGSA. Not the theorem follows from Theorem IV.2.3 that graded tensor product of CGSA is a CGSA.

3 The Clifford Invariant

Let $(V, q),(W, Q)$ be two regular quadratic spaces.

1. By lemma 1.6, $C(q \perp Q) \cong C(q) \hat{\otimes} C(Q)$.
2. Then $(V, q) \mapsto\langle C(q)\rangle \in B W(F)$ is a monoid hemomorphism.
3. So, it indueces a homomorphism Γ so that the diagram

4. In fact $\zeta(\mathbb{H})=\hat{\mathbb{M}}_{2}(F)=0 \in B W(F)$.
5. So, Γ factors through the Witt groups:

6. Γ is called the Clifford Invariant map.

4 Real Periodicity and Clifford Modules

Let F be any field with $\operatorname{char}(F) \neq 2$. Let

$$
\varphi_{p, q}=p\langle-1\rangle \perp q\langle 1\rangle=-\sum_{i=1}^{p} X_{i}^{2}+\sum_{j=1}^{q} Y_{j}^{2} \quad \text { and } \quad C^{p, q}=C\left(\varphi_{p, q}\right)
$$

Theorem 4.1. There is a graded algebra isomorphism

$$
C^{p+n, q+n} \cong \hat{\mathbb{M}}_{2^{n}}\left(C^{p, q}\right)
$$

Proof. We have

1. Note $\varphi_{n, n}=n \mathbb{H}$. So, $C^{n, n}=\hat{\mathbb{M}}_{2^{n}}(F)$.
2. $\varphi_{p+n, q+n} \cong \varphi_{p, q} \perp \varphi_{n, n}$
3. So, $C^{p+n, q+n} \cong C^{p, q} \hat{\otimes} C^{n, n} \cong C^{p, q} \hat{\otimes} \hat{\mathbb{M}}_{2^{n}}(F) \cong \hat{\mathbb{M}}_{2^{n}}\left(C^{p, q}\right)$.

The proof is complete.
We prove the following lemma that we use latter.
Lemma 4.2 ([ABS]). We have

1. $C^{2,0} \hat{\otimes} C^{0,2} \xrightarrow{\sim} C^{0,4}$.
2. More generally, $C^{p, 0} \hat{\otimes} C^{0,2} \xrightarrow{\sim} C^{0, p+2}$.
3. And $C^{0, q} \otimes C^{2,0} \xrightarrow{\sim} C^{q+2,0}$

Proof. Define

$$
\psi: F^{4} \longrightarrow C^{2,0} \hat{\otimes} C^{0,2} \quad \text { by } \quad\left\{\begin{array}{l}
\psi\left(e_{1}\right)=1 \otimes e_{1} \\
\psi\left(e_{2}\right)=1 \otimes e_{2} \\
\psi\left(e_{3}\right)=e_{1} \otimes e_{1} e_{2} \\
\psi\left(e_{4}\right)=e_{2} \otimes e_{1} e_{2}
\end{array}\right.
$$

Frm the description of the standard bases of $C^{2,0}, C^{0,2}$, we see that ψ is injective. Also
$\psi\left(e_{1}\right)^{2}-\varphi_{0,4}\left(e_{1}\right)=\left(1 \otimes e_{1}\right)\left(1 \otimes e_{1}\right)-1=(-1)^{\partial\left(e_{1}\right) \partial(1)} 1 \otimes e_{1}^{2}-1=1 \otimes \varphi_{0,2}\left(e_{1}\right)-1=0$.
Also,

$$
\begin{gathered}
\psi\left(e_{3}\right)^{2}-\varphi_{0,4}\left(e_{3}\right)=\left(e_{1} \otimes e_{1} e_{2}\right)\left(e_{1} \otimes e_{1} e_{2}\right)-1=(-1)^{\partial\left(e_{1} e_{2}\right) \partial\left(e_{1}\right)} e_{1}^{2} \otimes e_{1} e_{2} e_{1} e_{2}-1 \\
=\varphi_{2,0}\left(e_{1}\right) \otimes\left(-e_{1}^{2} e_{2}^{2}\right)-1=(-1) \otimes\left(-\varphi_{0,2}\left(e_{1}\right) \varphi_{0,2}\left(e_{2}\right)\right)-1=0
\end{gathered}
$$

So, there is a homomorphism

$$
\eta: C^{0,4} \longrightarrow C^{2,0} \hat{\otimes} C^{0,2} \quad \ni \quad F^{4} \longrightarrow>C^{2,4} \quad \text { commutes. }
$$

It is easy to check that ψ is surjective. Since they have same dimension, η is an isomorphism. The proof is complete.

Proposition 4.3 (Periodicity 8).

$$
C^{p+8, q} \cong \hat{\mathbb{M}}_{16}\left(C^{p, q}\right) \cong C^{p, q+8}
$$

Proof. We prove the first one only. Suppose $p=q=0$. First note $C^{4,0} \cong$ $C^{4,0}$ (see lemma 4.2). Then

$$
C^{8,0} \cong C^{4,0} \hat{\otimes} C^{4,0} \cong C^{4,0} \hat{\otimes} C^{0,4} \cong C^{4,4} \cong \hat{\mathbb{M}}_{16}(F)
$$

Therefore,

$$
C^{p+8, q} \cong C^{8,0} \hat{\otimes} C^{p, q} \cong \hat{\mathbb{M}}_{16}\left(C^{p, q}\right)
$$

The proof is complete.
We will compute

$$
C^{p, 0}, C^{0, q} \quad 0 \leq p, q \leq 7
$$

Denote
$X \cong F\langle\sqrt{-1}\rangle, \quad Y:=C(\langle-1,-1\rangle)=\left\langle\frac{-1,-1}{F}\right\rangle, Z \cong F\langle\sqrt{1}\rangle, \quad W:=C(\langle 1,1\rangle) \cong\left\langle\frac{1,1}{F}\right\rangle$

Also note, by (III.2.6)

$$
W=\left\langle\frac{1,1}{F}\right\rangle \cong\left\langle\frac{1,-1}{F}\right\rangle \cong \hat{\mathbb{M}}_{2}(F)
$$

Now, we have the following table of $C^{p, q}$.

n	0	1	2	3	4	5	6	7
$C^{n, 0}$	F	X	Y	$Y \hat{\otimes} Z$	$Y \hat{\otimes} W$	$\hat{\mathbb{M}}_{2}(X \hat{\otimes} W)$	$\hat{\mathbb{M}}_{4}(W)$	$\hat{\mathbb{M}}_{8}(Z)$
$C^{0, n}$	F	Z	W	$X \hat{\otimes} W$	$Y \hat{\otimes} W$	$\hat{\mathbb{M}}_{2}(Y \hat{\otimes} Z)$	$\hat{\mathbb{M}}_{4}(Y)$	$\hat{\mathbb{M}}_{8}(X)$

We rewrite it:

n	0	1	2	3	4	5	6	7
$C^{n, 0}$	F	X	Y	$Y \times Y$	$\hat{\mathbb{M}}_{2}(Y)$	$\hat{\mathbb{M}}_{4}(X)$	$\hat{\mathbb{M}}_{8}(F)$	$\hat{\mathbb{M}}_{8}(F) \times \hat{\mathbb{M}}_{8}(F)$
$C^{0, n}$	F	$F \times F$	$\hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{2}(X)$	$\hat{\mathbb{M}}_{2}(Y)$	$\hat{\mathbb{M}}_{2}(Y) \times \hat{\mathbb{M}}_{2}(Y)$	$\hat{\mathbb{M}}_{4}(Y)$	$\hat{\mathbb{M}}_{8}(X)$

Proof. We will establish one by one.

1. $C^{0,0}=F$ is more like a convention. It makes more sense to compute $C^{0,8} \cong \hat{\mathbb{M}}_{16}(F)$.
2. $C^{0,1}=C\left(Y_{1}^{2}\right)=\frac{F[x x]}{x^{2}-1}=\frac{F[x}{x^{2}-1}=Z$. Similalry, $C^{1,0} \cong X$.
3. $C^{0,2}=C\left(Y_{1}^{2}+Y_{2}^{2}\right)=\frac{F\left[\left[x_{1}, x_{2}\right]\right]}{\left(x_{1}^{2}-1, x_{2}^{2}-1\right)} \cong W$. Similalry, $C^{2,0} \cong Y$. by one of the examples above.
4. Now $C^{0,3}=C\left(Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{3}\right)=C^{1,0} \hat{\otimes} C^{0,2} \cong X \otimes W$. Similalry, $C^{3,0} \cong Y \otimes Z$.
5. Similarly, $C^{0,4}=C^{2,0} \hat{\otimes} C^{0,2} \cong Y \otimes W$, Similalry, $C^{4,0} Y \otimes W$. (In fact, we proved $C^{0,4} \cong C^{4,0}$.)
6. Now, for $q \leq 3$ we have

$$
C^{0, q+4} \cong C^{0, q} \hat{\otimes} C^{0,4} \cong C^{0, q} \hat{\otimes} C^{4,0} \cong C^{4, q} \cong \hat{\mathbb{M}}_{2^{q}}\left(C^{4-q, 0}\right) \quad \text { by } \text { (4.1) }
$$

This completely establishes the last line. We establish the first line similalry. The proof is complete.

Complex Case: More generally, when $-1 \in \dot{F}^{2}$. In this case

1. $X=F \sqrt{-1} \cong \frac{F[x]}{X^{2}+1} \cong F \times F$.
2. Also $\varphi_{n, 0} \cong \varphi_{0, n}$ and so $C^{n, 0} \cong C^{0, n}$.
3. Also, $\varphi_{2,0}=\langle-1,-1\rangle \cong\langle 1,-1\rangle \cong \mathbb{H}$. Similarly, $\varphi_{0,2}=\langle 1,1\rangle \cong$ $\left\langle 1,-(\sqrt{-1})^{2}\right\rangle \cong \mathbb{H}$. Therefore

$$
Y=W=\hat{\mathbb{M}}_{2}(F)
$$

4. So,

$$
C^{p+2,0} \cong C^{0, p} \hat{\otimes} C^{2,0} \cong C^{p, 0} \hat{\otimes} C(\mathbb{H}) \cong C^{p, 0} \hat{\otimes} \hat{\mathbb{M}}(F) \cong \hat{\mathbb{M}}_{2}\left(C^{p, 0}\right)
$$

Therefore,

n	0	1	2	3	4	5	6	7
$C^{0, n}$	F	$F \times F$	$\hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{2}(F) \times \hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{4}(F)$	$\hat{\mathbb{M}}_{4}(F) \times \hat{\mathbb{M}}_{4}(F)$	$\hat{\mathbb{M}}_{8}(F)$	$\hat{\mathbb{M}}_{8}(F) \times \hat{\mathbb{M}}_{8}(F)$

Lam is ignoring thae grading. We should discuss if my grading is alright.

Case: $-1 \notin \dot{F}^{2}$ and $-1=\alpha^{2}+\beta^{2}$ In this case,

1. $X=F\langle\sqrt{-1}\rangle$ is a field.
2. By (I.5.1), since $\langle 1,1\rangle \cong\langle-1,-1\rangle$.
3. So, $Y \cong W \cong \hat{\mathbb{M}}_{2}(F)$.
4. Also $C^{4,0} \cong\langle-1,-1\rangle \perp\langle-1,-1\rangle \cong\langle 1,1\rangle \perp\langle 1,1\rangle=C^{0,4}$.
5. Hence $C^{p+4,0} \cong C^{p, 0} \hat{\otimes} C^{4,0} \cong C^{p, 0} \hat{\otimes} C^{0,4} \cong \hat{\mathbb{M}}_{2}\left(C^{p, 0}\right)$

The table reduces to:

n	0	1	2	3	4	5	6	7
$C^{n, 0}$	F	X	$\hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{2}(F) \times \hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{4}(F)$	$\hat{\mathbb{M}}_{4}(X)$	$\hat{\mathbb{M}}_{8}(F)$	$\hat{\mathbb{M}}_{8}(F) \times \hat{\mathbb{M}}_{8}$
$C^{0, n}$	F	$F \times F$	$\hat{\mathbb{M}}_{2}(F)$	$\hat{\mathbb{M}}_{2}(X)$	$\hat{\mathbb{M}}_{4}(F)$	$\hat{\mathbb{M}}_{4}(F) \times \hat{\mathbb{M}}_{4}(F)$	$\hat{\mathbb{M}}_{8}(F)$	$\hat{\mathbb{M}}_{8}(X)$

The Real Case: More generally -1 is not sum of two squares: In this case, we have no furhter simplication of the original table.

References

[ABS] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.

