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1 Construction of Clifford Algebras

In this section, a quadratic space (V, q) need not be regular.

Definition 1.1. Suppose (V, q) is a quadratic space. Let A be an F−algebra

with V ⊆ A. We say that A is compatible with (V, q), if

x ∈ V =⇒ x2 = q(x).

1. In this case,

∀ x, y ∈ V 2B(x, y) = q(x+y)−q(x)−q(y) = (x+y)2−x2−y2 = xy+yx.

2. In particular,

∀ x, y ∈ V x ⊥ y ⇐⇒ xy = −yx.

Lemma 1.2. For A as above and 0 6= x ∈ V , x is invertible in A if and only

if x is anisotropic in V .
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Proof. Suppose x is anisotropic. Then, q(x) = x2 6= 0. So, x−1 = x
q(x)

.
Conversely, suppose x is invertible and xy = 1 for some y ∈ A. Then,
q(x)y = x2y = x 6= 0.

Lemma 1.3. let A be as above and 0 6= u ∈ V be anisotropic. Then, the

hyperboloc reflection

τu(x) = −uxu−1 ∀ x ∈ V.

So, τu is negative of the conjugation by u.

Proof. Straight forward computation:

τu(x) = x− 2B(x, u)

q(u)
· u = x− xu+ ux

u2
· u = −uxu−1

Definition 1.4. Given a quadratic form (V, q), the Clifford algebra C of

(V, q) is the universal object in the category of all F−algebras A containing

V . That means, given any F−algebra A containing V , there is a unique

algebra homomorphism ϕ : C −→ A such that the diagram

V
�
�

//
� o

��
@

@
@

@
@

@
@

C

∃! ϕ

��
�

�

�

A

commutes. That means ϕ(x) = x ∀ x ∈ V.

1. Since, it is defined by the universal property, "any two" Clifford alge-

bras are naturally isomorphic.

2. Construction: Define the tensor algebra

T (V ) = ⊕∞
n=0T

nV where T nV = V⊗V⊗· · ·⊗V n−fold tensor product.

Let I(q) be the two sider ideal of T (V ) generated by {x⊗x−q(x) : x ∈
V }. Now define, C(q) = T (V )

I(q)
. Then, C(q) has the universal property

of the definition. We also use the notations C(q) = C(V ) = C(V, q).
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3. Note, V generates C(q).

4. The product in C(q) is expressed by juxtaposition.

5. Write T (V ) = T0(V )⊕ T1(V ), where T0(V ) = ⊕∞
n=0T

2nV and T0(V ) =

⊕∞
n=0T

2n+1V . This gives T (V ) a Z2−grading.

6. I(q) is a Z2−graded ideal.

7. So, C(q) = C0(q)⊕C1(q) has a Z2−grading. That means Ci(q)Cj(q) ⊆
Ci+j(q).

8. C0(q) is called the even part of C(q), which is a subalgebra.

Examples. Here is a list of examples.

1. Let (V, q) = 〈x〉. Write V = Fx. Then, C(q) = F [x]
(x2−a)

= F (
√
a), if

a 6= 0.

2. If q = 0 on V , then I(q) is generated by x⊗ x with x ∈ V . So, C(q) is
the exterior algebra.

3. Let q = 〈a, b〉 with a, b ∈ Ḟ . Write Let V = Fx ⊥ Fy with q(x) =
a, q(y) = b. Then,

C(q) = 〈a, b
F

〉 = The graded quarternion

with usual basis {1, i, j, k} and ∂(1) = ∂(k) = 0 and ∂(i) = ∂(j) = 1.
Proof. The map V −→ C(q) with x 7→ i, y 7→ j has th universal
property.

Alternately: One can check that the ideal I of the definition of the
quaternion algebra and I(q) are same.

4. It follows from above C(H) = 〈1,−1
F

〉, where H = 〈1,−1〉 is the hyper-
bolic plane. Hence also, C(H) = M2(F ).
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1.1 Dimension and Basis of C(q)

Corollary 1.5. Let (V, q) be any quadratic from, with dimV = n. Then

dimC(q) ≤ 2n.

Proof. Let {x1, . . . , xn} be an orthogonal basis of V .

(x1 + x2)
2 − q(x1 + x2) = 0,=⇒ x21 + x22 + x1x2 + x2x1 − q(x1)− q(x2) = 0

=⇒ x1x2 + x2x1 = 0. hence xixj = xjxi ∀i 6= j.

Therefore, C(q) is generated, as a vector space, by

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1}

The proof is complete.

In fact, we will prove,

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1} is a basis of C(q).

Following is a more general lemma.

Lemma 1.6. Let (V, q), (W,Q) be quadratic spaces. Then, there is an iso-

morphism

C(V ⊥ W )
∼−→ C(V )⊗̂C(W ) as Z2 − graded algebras.

Proof. Since V →֒ C(V ),W →֒ C(W ) there is a homomorphism of vector
spaces V ⊕W −→ C(V )⊗̂C(W ). By universal propoerty, this map extends
to a F−algebra homomorphism C(V ⊥ W ) −→ C(V )⊗̂C(W ) such that the
diagram

V ⊕W
�
�

//
� t

''OOOOOOOOOOOO
C(V ⊥ W )

ϕ

��
�

�

�

C(V )⊗̂C(W )

commutes.

In proof of lemma 1.5 generators of these algebras were given. From this
it follows that ϕ is surjective. It follows from theorem 1.7 that ϕ is an
isomorphism.
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Theorem 1.7. Suppose (V, q) is a quadratic space and dimV = n. Then,

dimC(q) = 2n. In particular, if {x1, . . . , xn} is an orthogonal basis of V ,

then

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1} is a basis of C(q).

Proof. The latter statement follows form the first one. We prove the first
statement, by induction. In dimV = 1 then, by the example above dimC(q) =
21. If n > 1, take an orthogonal basis of V and write V = U ⊥ W , where
dimW = 1. Since C(V ) maps onto C(U)⊗̂C(W ), we have

dimC(V ) ≥ dim(C(U)⊗̂C(W )) = dim(C(U)) dim(C(W )) = 2n.

Also dimC(V ) ≤ 2n. The proof is complete.

Corollary 1.8. dimC0(q) = dimC1(q) = 2n−1.

Proof. Let {x1, . . . , xn} be an orthogonal basis of V . Then,

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1} is a basis of C(q).

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1
∑

ǫi ∈ 2Z} is a basis of C0(q).

{xǫ11 xǫ22 · · · xǫnn : ǫi = 0, 1
∑

ǫi ∈ 1 + 2Z} is a basis of C1(q).

If q is totally isotropic, C(q) is the exterior algebra. In this case the corollary
holds. Assume q is not totally isotropic. So, we can assume q(x1) = a1 6= 0.
Consider two multiplication maps

x1 : C0(q) −→ C1(q), x1 : C1(q) −→ C0(q).

Two compositions of these two maps is multiplication by a1. So, each one is
an isomorphism. So,

dimC0(q) = dimC1(q) =
dimC(q)

2
= 2n−1

The proof is complete.

Corollary 1.9. C(mH) ∼= M2(F )⊗̂M2(F )⊗̂ · · · ⊗̂M2(F ).

Proof. Follows from (1.6).
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1.2 Spinor Norm (Skip)

Proposition 1.10. There is a unique anti-siomorphism ǫ : C(q)
∼−→ C(q)

such that ǫ|V = IdV . Also, ǫ stabilizes both C0(q) and C1(q).

Proof. Since C(q)op is a Z2−graded algebra, by universal property, there is
an homomorphism ǫ as follows:

V � q

""EE
EE

EE
EE

E

�
�

// C(q)

ǫ

��

C(q)op

the diagram commutes.

ǫ is clearly surjective. So, it is an isomorphism, by dimension consideration.
Clearly, ǫ(u1 · · · um) = um · · · u1.

Proposition 1.11. Let (V, q) be a regular quadratic form. Suppose u1, u2, . . . , ur ∈
V are anisotropic. Then,

τu1τu2 · · · τur = Id =⇒ q(u1)q(u2) · · · q(u2) ∈ Ḟ 2.

Proof. For any anisotropic u ∈ V let c(u) : C(q)
∼−→ C(q) be conjugation

c(u)(z) = uzu−1. By (1.3)

τu = −c(u)|V . Also c(ui)c(uj) = c(uiuj).

Since (−1)r = det(τu1τu2 · · · τur) = 1, r is even. So, x := u1u2 · · · ur ∈ C0(q).
Also,

τu1τu2 · · · τur = Id =⇒ (−1)rc(u1u2 · · · ur)|V = IdV .

Hence, xvx−1 = v ∀ v ∈ V . That means xv = vx ∀ v ∈ V . Since V
generates C(q), x ∈ Z(C(q)) ∩C0(q). We will prove (2.1) C(q) is F−central
graded algebra. So,

x ∈ Z(C(q)) ∩ C0(q) = F.

We use the anti-isomorphism in (1.10). We have ǫ(x) = x. So,

q(u1)q(u2) · · · q(ur) = (u1u2 · · · ur)(urur−1 · · · u1) = xǫ(x) = x2 ∈ Ḟ 2.

The first equality holds because q(ui) = u∈i F . The proof is complete.
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Definition 1.12. Let σ ∈ O(V, q). We can write σ = τu1τu2 · · · τum where

ui ∈ V are anisotropic. Define,

θ(σ) := q(u1)q(u2) · · · q(ur)Ḟ 2 ∈ Ḟ

Ḟ 2
. This is well defined by 1.11.

We say θ(σ) is the spenoir norm of σ.

Theorem 1.13. θ : O(V, q) −→ Ḟ

Ḟ 2
is a group homomorphism.
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2 Structure Theorem

We have the main theorem:

Theorem 2.1. Suppose (V, q) is a regular quadratic form. Then, C(q) is a

CSGA.

Proof. If dimV = 1 then C(q) = F (
√
a) where A = Fx and q(x) = a. So,

C(q) is CSGA. (Confusing Notations: By definition F (
√
a) = F [x]

x2−a
, which

need not be a field. Also, by notation
√
a := x.) Here ∂(

√
a) = 1. It follow,

C(q) is CGSA. Not the theorem follows from Theorem IV.2.3 that graded
tensor product of CGSA is a CGSA.

3 The Clifford Invariant

Let (V, q), (W,Q) be two regular quadratic spaces.

1. By lemma 1.6, C(q ⊥ Q) ∼= C(q)⊗̂C(Q).

2. Then (V, q) 7→ 〈C(q)〉 ∈ BW (F ) is a monoid hemomorphism.

3. So, it indueces a homomorphism Γ so that the diagram

M(F ) ι
//

ζ
$$JJJJJJJJJJ
Ŵ (F )

Γ

��

BW (F )

commutes.

4. In fact ζ(H) = M̂2(F ) = 0 ∈ BW (F ).

5. So, Γ factors through the Witt groups:

M(F ) ι
//

ζ
$$JJJJJJJJJJ
Ŵ (F )

Γ

��

// W (F )

Γ
zztttttttttt

BW (F )

commutes. (We use same notation Γ)

6. Γ is called the Clifford Invariant map.
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4 Real Periodicity and Clifford Modules

Let F be any field with char(F ) 6= 2. Let

ϕp,q = p〈−1〉 ⊥ q〈1〉 = −
p∑

i=1

X2
i +

q∑

j=1

Y 2
j and Cp,q = C(ϕp,q).

Theorem 4.1. There is a graded algebra isomorphism

Cp+n,q+n ∼= M̂2n(C
p,q)

Proof. We have

1. Note ϕn,n = nH. So, Cn,n = M̂2n(F ).

2. ϕp+n,q+n ∼= ϕp,q ⊥ ϕn,n

3. So, Cp+n,q+n ∼= Cp,q⊗̂Cn,n ∼= Cp,q⊗̂M̂2n(F ) ∼= M̂2n(C
p,q).

The proof is complete.

We prove the following lemma that we use latter.

Lemma 4.2 ([ABS]). We have

1. C2,0⊗̂C0,2 ∼−→ C0,4.

2. More generally, Cp,0⊗̂C0,2 ∼−→ C0,p+2.

3. And C0,q⊗C2,0 ∼−→ Cq+2,0

Proof. Define

ψ : F 4 −→ C2,0⊗̂C0,2 by





ψ(e1) = 1⊗ e1
ψ(e2) = 1⊗ e2
ψ(e3) = e1 ⊗ e1e2
ψ(e4) = e2 ⊗ e1e2
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Frm the description of the standard bases of C2,0, C0,2, we see that ψ is
injective. Also

ψ(e1)
2−ϕ0,4(e1) = (1⊗e1)(1⊗e1)−1 = (−1)∂(e1)∂(1)1⊗e21−1 = 1⊗ϕ0,2(e1)−1 = 0.

Also,

ψ(e3)
2−ϕ0,4(e3) = (e1⊗e1e2)(e1⊗e1e2)−1 = (−1)∂(e1e2)∂(e1)e21⊗e1e2e1e2−1

= ϕ2,0(e1)⊗ (−e21e22)− 1 = (−1)⊗ (−ϕ0,2(e1)ϕ0,2(e2))− 1 = 0

So, there is a homomorphism

η : C0,4 −→ C2,0⊗̂C0,2 ∋ F 4

ψ
%%JJJJJJJJJJ
// C0,4

η

��

C2,0⊗̂C0,2

commutes.

It is easy to check that ψ is surjective. Since they have same dimension, η is
an isomorphism. The proof is complete.

Proposition 4.3 (Periodicity 8).

Cp+8,q ∼= M̂16(C
p,q) ∼= Cp,q+8

Proof. We prove the first one only. Suppose p = q = 0. First note C4,0 ∼=
C4,0 (see lemma 4.2). Then

C8,0 ∼= C4,0⊗̂C4,0 ∼= C4,0⊗̂C0,4 ∼= C4,4 ∼= M̂16(F ).

Therefore,
Cp+8,q ∼= C8,0⊗̂Cp,q ∼= M̂16(C

p,q)

The proof is complete.

We will compute
Cp,0, C0,q 0 ≤ p, q ≤ 7.

Denote

X ∼= F 〈
√
−1〉, Y := C(〈−1,−1〉) = 〈−1,−1

F
〉, Z ∼= F 〈

√
1〉, W := C(〈1, 1〉) ∼= 〈1, 1

F
〉
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Also note, by (III.2.6)

W = 〈1, 1
F

〉 ∼= 〈1,−1

F
〉 ∼= M̂2(F )

Now, we have the following table of Cp,q.

n 0 1 2 3 4 5 6 7

Cn,0 F X Y Y ⊗̂Z Y ⊗̂W M̂2(X⊗̂W ) M̂4(W ) M̂8(Z)

C0,n F Z W X⊗̂W Y ⊗̂W M̂2(Y ⊗̂Z) M̂4(Y ) M̂8(X)

We rewrite it:

n 0 1 2 3 4 5 6 7

Cn,0 F X Y Y × Y M̂2(Y ) M̂4(X) M̂8(F ) M̂8(F )× M̂8(F )

C0,n F F × F M̂2(F ) M̂2(X) M̂2(Y ) M̂2(Y )× M̂2(Y ) M̂4(Y ) M̂8(X)

Proof. We will establish one by one.

1. C0,0 = F is more like a convention. It makes more sense to compute
C0,8 ∼= M̂16(F ).

2. C0,1 = C(Y 2
1 ) =

F [[x]]
x2−1

= F [x
x2−1

= Z. Similalry, C1,0 ∼= X.

3. C0,2 = C(Y 2
1 + Y 2

2 ) =
F [[x1,x2]]

(x2
1
−1,x2

2
−1)

∼= W . Similalry, C2,0 ∼= Y . by one of

the examples above.

4. Now C0,3 = C(Y 2
1 + Y 2

2 + Y 3
3 ) = C1,0⊗̂C0,2 ∼= X ⊗ W . Similalry,

C3,0 ∼= Y ⊗ Z.

5. Similarly, C0,4 = C2,0⊗̂C0,2 ∼= Y ⊗W , Similalry, C4,0Y ⊗W . (In fact,

we proved C0,4 ∼= C4,0.)

6. Now, for q ≤ 3 we have

C0,q+4 ∼= C0,q⊗̂C0,4 ∼= C0,q⊗̂C4,0 ∼= C4,q ∼= M̂2q(C
4−q,0) by (4.1).

This completely establishes the last line. We establish the first line
similalry. The proof is complete.

Complex Case: More generally, when −1 ∈ Ḟ 2. In this case
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1. X = F
√
−1 ∼= F [x]

X2+1
∼= F × F .

2. Also ϕn,0 ∼= ϕ0,n and so Cn,0 ∼= C0,n.

3. Also, ϕ2,0 = 〈−1,−1〉 ∼= 〈1,−1〉 ∼= H. Similarly, ϕ0,2 = 〈1, 1〉 ∼=
〈1,−(

√
−1)2〉 ∼= H. Therefore

Y = W = M̂2(F )

4. So,

Cp+2,0 ∼= C0,p⊗̂C2,0 ∼= Cp,0⊗̂C(H) ∼= Cp,0⊗̂M̂2(F ) ∼= M̂2(C
p,0).

Therefore,

n 0 1 2 3 4 5 6 7

C0,n F F × F M̂2(F ) M̂2(F )× M̂2(F ) M̂4(F ) M̂4(F )× M̂4(F ) M̂8(F ) M̂8(F )× M̂8(F )

Lam is ignoring thae grading. We should discuss if my grading is alright.

Case: −1 /∈ Ḟ 2 and −1 = α2 + β2 In this case,

1. X = F 〈
√
−1〉 is a field.

2. By (I.5.1), since 〈1, 1〉 ∼= 〈−1,−1〉.

3. So, Y ∼= W ∼= M̂2(F ).

4. Also C4,0 ∼= 〈−1,−1〉 ⊥ 〈−1,−1〉 ∼= 〈1, 1〉 ⊥ 〈1, 1〉 = C0,4.

5. Hence Cp+4,0 ∼= Cp,0⊗̂C4,0 ∼= Cp,0⊗̂C0,4 ∼= M̂2(C
p,0)

The table reduces to:

n 0 1 2 3 4 5 6 7

Cn,0 F X M̂2(F ) M̂2(F )× M̂2(F ) M̂4(F ) M̂4(X) M̂8(F ) M̂8(F )× M̂8(

C0,n F F × F M̂2(F ) M̂2(X) M̂4(F ) M̂4(F )× M̂4(F ) M̂8(F ) M̂8(X)

The Real Case: More generally −1 is not sum of two squares: In
this case, we have no furhter simplication of the original table.
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