Chapter I
 Foundations of Quadratic Forms

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

Fall 2013

1 Quadratic Forms and Quadratic Spaces

In this course we assume all fields F have $\operatorname{char}(F) \neq 2$.
Definition 1.1. Let F be a field.

1. A quadratic form over F is a homogeneous polynomial

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i, j=1}^{n} \alpha_{i j} X_{i} X_{j} \quad \alpha_{i j} \in F
$$

This is a form in n variables and may also be called an n-ary quadratic form.

With $a_{i j}=\frac{\alpha_{i j}+\alpha_{j i}}{2}$ we have

$$
f=\sum_{i, j=1}^{n} a_{i j} X_{i} X_{j}=\left(\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
X_{n}
\end{array}\right)
$$

$=X^{t} M_{f} X \quad$ where $\quad X=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \ldots \\ X_{n}\end{array}\right), \quad M_{f}=\left(a_{i j}\right) \quad$ is symmetric.
2. This association

$$
f \longleftrightarrow M_{f} \text { establises a bijection }
$$

between the set of all quadratic forms over F and the set of all symmetric $n \times n$ matrices.
3. Suppose f, g are two n-ary quadratic forms over F. We say f is equivalent to g (write $f \simeq g$), if there is a change of varaibles

$$
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right)=C\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\cdot \\
\cdot \\
\cdot \\
X_{n}
\end{array}\right) \quad \text { with } C \in G L_{n}(F)
$$

such that $f(X)=g(C X)=g(Y)$. In the matrix form it means,

$$
f \simeq g \Longleftrightarrow M_{f}=C^{t} M_{g} C
$$

4. This relation \simeq is an equivalence relation.
5. Example: We have

$$
f=X_{1}^{2}-X_{2}^{2} \simeq g=X_{1} X_{2} .
$$

Proof. We do the change of variables:

$$
X_{1} \mapsto X_{1}+X_{2}, \quad X_{2} \mapsto X_{1}-X_{2} \quad \text { or } \quad\binom{Y_{1}}{Y_{2}}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{X_{1}}{X_{2}} .
$$

6. Consider the vector space F^{n} and denote the standard basis by $e_{1}, e_{2}, \ldots, e_{n}$. Given a quadratic form f, define

$$
Q_{f}: F^{n} \longrightarrow F \quad \text { by } \quad Q_{f}\left(\sum_{i=1}^{n} x_{i} e_{i}\right)=x^{t} M_{f} x \quad \text { where } \quad x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right) .
$$

This map Q_{f} is called the qudratic map of f.
Lemma 1.2. Assume char $(F) \neq 2$ (as always).

$$
Q_{f}=Q_{g} \Longleftrightarrow f=g .
$$

Proof. Write $M_{f}=\left(a_{i j}\right), M_{g}=\left(b_{i j}\right)$. Suppose $Q_{f}=Q_{g}$. Then

$$
\begin{gathered}
a_{i i}=Q_{f}\left(e_{i}\right)=Q_{g}\left(e_{i}\right)=b_{i i}, \quad \text { and } \\
\forall i \neq j \quad Q_{f}\left(e_{i}+e_{j}\right)=(1,1)\left(\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{i j} & a_{j j}
\end{array}\right)\binom{1}{1}=a_{i i}+a_{j j}+2 a_{i j}
\end{gathered}
$$

which is

$$
=Q_{g}\left(e_{i}+e_{j}\right)=b_{i i}+b_{j j}+2 b_{i j} . \quad \text { Hence } \quad a_{i j}=b_{i j} \text { and } f=g .
$$

There other way is obvious. The proof is complete.

Lemma 1.3. Let f be a quadratic form. Then the quadratic map has the following properties:

1. Q_{f} is "quadratatic" in the following sense:

$$
Q_{f}(a x)=a^{2} Q_{f}(x) \quad \forall \quad x \in F^{n} .
$$

2. Define (polarize)

$$
B_{f}: F^{n} \times F^{n} \longrightarrow F \quad \text { by } \quad B_{f}(x, y)=\frac{Q_{f}(x+y)-Q_{f}(x)-Q_{f}(y)}{2} \forall x, y \in F^{n}
$$

Then, B_{f} is a symmetric and bilinear pairing, meaning
(a) It is symmetric: $B_{f}(x, y)=B_{f}(y, x)$ for all $x, y \in F^{n}$.
(b) It is bilinear:

$$
\begin{gathered}
B_{f}\left(a x_{1}+b x_{1}, y\right)=a B_{f}\left(x_{1}, y\right)+b B_{f}\left(x_{2}, y\right) \\
\text { and } \quad B_{f}\left(x, c y_{1}+d y_{2}\right)=c B_{f}\left(x, y_{1}\right)+d B_{f}\left(x, y_{2}\right) .
\end{gathered}
$$

Equivalently:

$$
y \mapsto B_{f}(*, y) \quad \text { is linear transformation from } \quad F^{n} \longrightarrow \operatorname{Hom}\left(F^{n}, F\right) .
$$

3. We have ("depolarization")

$$
Q_{f}(x)=B_{f}(x, x) \quad \forall \quad x \in F^{n} .
$$

Proof. (1) is obvious. Clearly, $B(x, y)=B(y, x)$ for all $x, y \in F^{n}$. Now

$$
B(x, y)=\frac{(x+y)^{t} M_{f}(x+y)-x^{t} M_{f} x-y^{t} M_{f} y}{2}=x^{t} M_{f} y .
$$

Rest follows. The proof is complete.
Remark. Four items f, M_{f}, Q_{f}, B_{f} are retrievable fmom each other.

1.1 Coordiante free Approach

Definition 1.4. Let V be a finite dimensional vector spave over a field F.

1. A map $B: V \times V \longrightarrow F$ is called a symmetric bilinear pairing, if
(a) $B(x, y)=B(y, x) \quad \forall x, y \in V$,
(b) For any fixed $x \in V$ the map

$$
B(x, *): V \longrightarrow V \quad \text { is linear. }
$$

Equivalently:

$$
y \mapsto B(*, y) \quad \text { is linear transformation from } \quad F^{n} \longrightarrow \operatorname{Hom}\left(F^{n}, F\right) .
$$

2. A quadratic space is an ordered pair (V, B) where V is as above and B is a symmetric bilinear pairing.
3. Associated to a quadratic space (V, B) we define a quadratic map

$$
q=q_{b}: V \longrightarrow F \quad \text { by } \quad q(x)=B(x, x) \quad \forall x \in V
$$

We have the following properties:
(a) $q(a x)=a^{2} q(x)$ for all $x \in V$,
(b)

$$
2 B(x, y)=q(x+y)-q(x)-q(y) \quad \forall \quad x, y \in V .
$$

Therefore, q and B determine each other. So, we say (V, q) represents the quadratic space (V, B).
4. Given a basis e_{1}, \ldots, e_{n} of V, there is a quadratic form

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i, j=1}^{n} B\left(e_{i}, e_{j}\right) X_{i} X_{j} . \quad \text { So, } \quad M_{f}=\left(B\left(e_{i}, e_{j}\right)\right) .
$$

Lemma 1.5. Suppose $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ is another basis of V and f^{\prime} be the corresponding quadratic form

$$
f^{\prime}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i, j=1}^{n} B\left(e_{i}^{\prime}, e_{j}^{\prime}\right) X_{i} X_{j} .
$$

Then

$$
M_{f^{\prime}}=C^{t} M_{f} C \quad \text { where }\left(\begin{array}{c}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
\ldots \\
e_{n}^{\prime}
\end{array}\right)=C\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\ldots \\
e_{n}
\end{array}\right)
$$

In particular,

$$
f \simeq f^{\prime} \text { determines an equivalence class of quadratic form }\left(f_{B}\right) .
$$

Proof. We have

$$
\begin{aligned}
& X^{t}\left(B\left(e_{i}^{\prime} e_{j}^{\prime}\right)\right) X=X^{t}\left(B\left(\sum_{k=1}^{n} c_{k i} e_{k}, \sum_{l=1}^{n} c_{j l} e_{l}\right)\right) X \\
= & X^{t}\left(\sum_{k, l=1}^{n} c_{k i} B\left(e_{k}, e_{l}\right) c_{l k}\right) X=X^{t} C^{t}\left(B\left(e_{k}, e_{l}\right)\right) C X
\end{aligned}
$$

The proof is complete.
Definition 1.6. Suppose $(V, B),\left(V^{\prime}, B^{\prime}\right)$ are two quadratic spaces. We say they are isometric (\simeq), if there is a linear isomorphism

$$
\tau: V \xrightarrow{\sim} V^{\prime} \quad \ni \quad B(x, y)=B^{\prime}(\tau(x), \tau(y)) \quad \forall x, y \in V .
$$

1. Isometry is an equivalence relation.
2. It follows,

$$
(V, B) \simeq\left(V^{\prime}, B^{\prime}\right) \quad \Longleftrightarrow \quad\left(f_{B}\right) \simeq\left(f_{B^{\prime}}\right)
$$

3. So, the association $[(V, B)] \mapsto\left[f_{B}\right]$ establishes an $1-1$ correspondence between the isometry classes of n-dimensional quadratic spaces and (to) the equivalence classes of n-ary quadratic forms.

Suppose (V, B) is a quadratic space (I said some of the following before).

1. Notation: We denote $V^{*}:=\operatorname{Hom}_{F}(V, F)$.
2. For any fixed x then map $B(x, *): V \longrightarrow F$ is linear,

$$
\text { That means } \quad B(x, *), B(*, y) \in V^{*} \quad \forall \quad x, y \in V \text {. }
$$

3. Further, the map

$$
V \longrightarrow V^{*} \quad \text { sending } \quad y \mapsto B(*, y) \quad \text { is a linear map. }
$$

Proposition 1.7. Suppose (V, B) is a quadratic space and $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V. Let $M=\left(B\left(e_{i}, e_{j}\right)\right)$ ne the associateda symmetric matrix. Then the following are equivalent:

1. M is a nonsingular matrix.
2. The map

$$
V \longrightarrow V^{*} \quad \text { given by } \quad y \mapsto B(*, y) \quad \text { is an isomorphism. }
$$

3. For $x \in V$,

$$
B(x, y)=0 \quad \forall y \in V \quad \Longrightarrow x=0
$$

Proof. Since $\operatorname{dim} V=n<\infty$, we have $(2) \Longleftrightarrow(3)$. Suppose M is nonsingualr. Fix $x \in V$ and assume $B(x, y)=0 \quad \forall y \in V$. In particular, $B\left(x, e_{j}\right)=0$ for all j. Write $x=\sum_{i=1}^{n} x_{i} e_{i}$. So,

$$
\forall j \quad 0=B\left(x, e_{j}\right)=\sum_{i=1}^{n} x_{i} B\left(e_{i}, e_{j}\right) . \quad \text { So, } \quad M\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\mathbf{0} .
$$

So, $x_{i}=0$ and hence $x=0$. So, (3) is established. Now assume (3).

$$
\text { Assume } \quad M\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\mathbf{0} . \quad \text { We prove } \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)=\mathbf{0} .
$$

Write $x=\sum_{i=1}^{n} x_{i} e_{i}$. We have

$$
\left(\begin{array}{c}
B\left(x, e_{1}\right) \\
B\left(x, e_{2}\right) \\
\ldots \\
B\left(x, e_{n}\right)
\end{array}\right)=M\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\mathbf{0}
$$

So,

$$
\forall y=\sum_{j=1}^{n} y_{i} e_{i} \in V \quad \text { we have } \quad B(x, y)=\sum_{j=1}^{n} y_{i} B\left(x, e_{j}\right)=0 .
$$

By (3), $x=0$. The proof is complete.
Definition 1.8. Suppose (V, B) is a quadratic space, satisfying (1.7), then we say (V, B) is said to be regular or nonsingular and $q_{B}: V \longrightarrow F$ is said to be regular or nonsingular quadratic map.

The vector space $\{0\}$ is also considered a regular quadratic space.

1.2 Sub-Quadratic Spaces

Definition 1.9. Suppose (V, B) is a quadratic space and S be a subspace.

1. Then $\left(S, B_{\mid S \times S}\right)$ is a quadratic space.
2. The orthogonal complement of S is defined as

$$
S^{\perp}=\{x \in V: B(x, S)=0\}
$$

3. The radical of (V, B) is defined to be $\operatorname{rad}(V)=V^{\perp}$. So,

$$
(V, B) \text { is regular } \Longleftrightarrow \operatorname{rad}(V)=0 .
$$

Proposition 1.10. Suppose (V, B) is a regular quadratic space and S be subspace of V. Then,

1. (Dimension formula) We have

$$
\operatorname{dim} S+\operatorname{dim} S^{\perp}=\operatorname{dim} V
$$

2. $\left(S^{\perp}\right)^{\perp}=S$.

Proof. Consider the linear isomorphism

$$
\varphi: V \xrightarrow{\sim} V^{*} \varphi(x)=B(*, x) .
$$

We have an exact sequence
$0 \longrightarrow \varphi\left(S^{\perp}\right) \longrightarrow V^{*} \xrightarrow{\eta} S^{*} \longrightarrow 0 \quad$ where η is the restriction.
So,

$$
\operatorname{dim} \varphi\left(S^{\perp}\right)+\operatorname{dim} S^{*}=\operatorname{dim} V^{*} \quad \text { or } \quad \operatorname{dim} S^{\perp}+\operatorname{dim} S=\operatorname{dim} V .
$$

Apply (1) twice

$$
\operatorname{dim}\left(S^{\perp}\right)^{\perp}=\operatorname{dim} V-\operatorname{dim} S^{\perp}=\operatorname{dim} V-(\operatorname{dim} V-\operatorname{dim} S)=\operatorname{dim} S
$$

Since $S \subseteq\left(S^{\perp}\right)^{\perp}$ we have $S=\left(S^{\perp}\right)^{\perp}$. So, (2) is established. The proof is complete.

2 Diagonalization

\dot{F} will denote the unitis of F.
Definition 2.1. Suppose f is a quadratic form over F and $d \in \dot{F}$. We say f represents d is $f\left(x_{1}, \ldots, x_{n}\right)=d$ for some $\left(x_{1}, \ldots, x_{n}\right) \in F^{n}$. We denote

$$
D(f)=\{d \in \dot{F}: f \text { represents } d\}
$$

Similarly, suppose (V, B) is a quadratic space, we say V represents d if $q_{B}(v)=d$ for some $v \in V$. We denote

$$
D(f)=\{d \in \dot{F}: V \text { represents } d\}
$$

1. Suppose $a, d \in \dot{F}$. Then,

$$
d \in D(f) \Longleftrightarrow a^{2} d \in D(f), \quad \text { because } \quad f(a x)=a^{2} f(x)
$$

2. So, $D(f)$ consists of union of (some) cosets of \dot{F} modulo \dot{F}^{2}.
3. The group $\frac{\dot{F}}{\dot{F}^{2}}$ is called the group of square classes.
4. Also,

$$
d \in D(f) \Longleftrightarrow d^{-1} \in D(f) ; \quad \text { because } \quad d=d^{2}\left(d^{-1}\right)
$$

5. In general, $D(f)$ may not be a group and 1 need not be in $D(f)$.

Example: Consider $f=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$ over \mathbb{Q}. Then $1,2,14 \in D(f)$. But $7=14 / 2 \notin D(f)$, which is known.
6. If $D(f)$ is closed under multiplication, then $1 \in D(f)$.

Example: Consider $f_{r}=\sum_{i=1}^{r} X_{i}^{2}$, over any field F. For $r=1,2,3,8$ we have $D\left(f_{r}\right)$ are groups.

Definition 2.2. Let $\left(V_{1}, B_{1}\right),\left(V_{2}, B_{2}\right)$ be two quadratic spaces over F. The orthogonal sum of $\left(V_{1}, B_{1}\right),\left(V_{2}, B_{2}\right)$ is defined as

$$
V_{1} \perp V_{2}:=(V, B) \quad \text { where } \quad V=V_{1} \oplus V_{2}
$$

B is defned on $V \times V$ as folows:
$B\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=B_{1}\left(x_{1}, y_{1}\right)+B_{2}\left(x_{2}, y_{2}\right) \quad$ where $\quad x_{1}, y_{1} \in V_{1} ; x_{2}, y_{2} \in V_{2}$.

1. Clearly, $B\left(V_{1}, V_{2}\right)=0$.
2. Also,

$$
q_{B}\left(x_{1}+x_{2}\right)=q_{B_{1}}\left(x_{1}\right)+q_{B_{2}}\left(x_{2}\right) \quad \text { where } \quad x_{i} \in V_{i} .
$$

3. We also write $q_{B}=q_{B_{1}} \perp q_{B_{2}}$.
4. Example: Let $q_{1}(X, Y)=X^{2}+X Y, q_{2}(X, Y, Z)=X Z+Y X$. Then,

$$
q_{1} \perp q_{2}(X, Y, U, V, W)=X^{2}+X Y+U W+V U
$$

(Note, we switch between the bilinear pairing B and the form q_{B}. However, we need to view $q_{B}: V \longrightarrow V^{*}$.)

Definition 2.3. For $d \in F$ define $\langle d\rangle$ to be the one dimensional quadratic space, corresponding to the quadratic form

$$
q(X)=d X^{2} \quad \text { So }, \quad 2 B(X, X)=q(X+X)-q(X)-q(X)=2 d X^{2}
$$

The Representation Criteria:

Theorem 2.4. Let (V, B) be a quadratic space and $d \in \dot{F}$. Then, $d \in D(V) \Longleftrightarrow V \cong\langle d\rangle \perp\left(V^{\prime}, B^{\prime}\right)$ for some quadratic space $\left(V^{\prime}, B^{\prime}\right)$.

Proof. Suppose $V \cong\langle d\rangle \perp\left(V^{\prime}, B^{\prime}\right)$. Then, $q_{V}(e \oplus 0)=d$, where e is the basis of $\langle d\rangle$.

Conversely, Let $d \in D(V)$. Then, $q(v)=d$ for some $v \in V$. Recall $\operatorname{rad}(V)=V^{\perp}=\{y \in V: B(V, y)=0\}$. There is a subspace $W V=V^{\perp} \oplus W$. It follows, $V=V^{\perp} \perp W$. Also, $D(V)=D(W)$ and $W^{\perp}=0$. So, we assume V is regular, by replacing V by W.

Now, $F v$ is isometric to $\langle d\rangle$. And $F v^{\perp} \cap F v=0$. Since $\operatorname{dim} F v+\operatorname{dim} F v^{\perp}$, we have $V=F v \oplus F v^{\perp}$. It follows $V \cong F v \perp F v^{\perp}$. The proof is complete.

Corollary 2.5 (2.4). Let (V, B) be a quadratic space. Then,

$$
V \cong\left\langle d_{1}\right\rangle \perp\left\langle d_{2}\right\rangle \perp \cdots \perp\left\langle d_{n}\right\rangle \quad \text { where } \quad d_{i} \in \dot{F}
$$

Proof. Follows by induction.
Notation: $\left\langle d_{1}, d_{2}, \ldots, d_{n}\right\rangle:=\left\langle d_{1}\right\rangle \perp\left\langle d_{2}\right\rangle \perp \cdots \perp\left\langle d_{n}\right\rangle$. Also,

$$
n\langle d\rangle:=\langle d\rangle \perp\langle d\rangle \perp \cdots \perp\langle d\rangle
$$

the orthogonal sum of n copies of $\langle d\rangle$.
Corollary 2.6 (2.5). Suppose (V, B) is a quadratic space and S is a regular subspace. Then

1. $V=S \perp S^{\perp}$
2. If T is a subspace of V and $V=S \perp T$ then $T=S^{\perp}$.

Proof. (2) follows from (1) because $T \subseteq S^{\perp}$ and $\operatorname{dim} T=\operatorname{dim} S^{\perp}$.
Since S is regular, $0=\operatorname{rad}(S)=\{v \in S: B(v, S)=0\}$. So, $S \cap S^{\perp}=0$. So, we show $V=S+S^{\perp}$. By (2.5), S has an orthogonal basis e_{1}, \ldots, e_{p}. Again, by regularity (or the decomposition) $B\left(e_{i}, e_{i}\right) \neq 0$. Now for $z \in V$ write

$$
y=z-\sum_{i=1}^{p} \frac{B\left(z, e_{i}\right)}{B\left(e_{i}, e_{i}\right)} e_{i}
$$

Then, $B\left(y, e_{k}\right)=0$ and hence $y \in S^{\perp}$. So,

$$
z=\sum_{i=1}^{p} \frac{B\left(z, e_{i}\right)}{B\left(e_{i}, e_{i}\right)} e_{i}+y \in S+S^{\perp}
$$

The proof is complete.

Corollary 2.7 (2.6). Suppose (V, B) is a regular quadratic space and S is a subspace. Then, S is regular if and only if $V=S \perp T$ for some subspace T of V.

Proof. One way follows from (2.6). Suppose $V=S \perp T$. Then,

$$
\forall v \in S, \quad v \in \operatorname{rad}(S) \Longrightarrow v \in \operatorname{rad}(V) \Longrightarrow v=0
$$

So, S is regular. The proof is complete.

2.1 Determinant

Definition 2.8. Suppose f is a nonsingular quadratic form. We define determinant of f as

$$
d(f):=\operatorname{det}\left(M_{f}\right) \dot{F}^{2} \in \frac{\dot{F}}{\dot{F}^{2}} .
$$

Caution: Do not mix up $D(f)$ and $d(f)$.

1. Note $f \simeq g \Longrightarrow d(f)=d(g)$, because $f \simeq g \Longrightarrow M_{f}=C^{t} M_{g} C$.
2. Also,

$$
d\left(f_{1} \perp f_{2}\right)=d\left(f_{1}\right) d\left(f_{2}\right) .
$$

3. Suppose (V, B) is a regualr quadratic space. Then, define

$$
d(V)=d(f) \text { where } f \text { is the form wrt a basis. }
$$

So, if

$$
V=\left\langle d_{1}\right\rangle \perp\left\langle d_{2}\right\rangle \perp \cdots\left\langle d_{n}\right\rangle \quad \text { then } \quad d(V)=d_{1} d_{2} \cdots d_{n} .
$$

3 Hyperbolic Plane and Hyperbolic Spaces

Definition 3.1. Suppose (V, B) is a quadratic space (and q be the "quadratic" map).

1. A nonzero element $v \in V$ is said to be an isotropic vector, if $B(v, v)=0$ (i.e. $q(v)=0$). Otherwise v is called anisotropic.
2. A quadratic space (V, B) is called isotropic if it contains an (nonzero) isotropic vector.
3. (V, B) said to be anisotropic, if V contains no isotropic element.
4. (V, B) is called totally isotropic, if all its nonzero vectors are isotropic. contains an (nonzero) isotropic vector.
5. The author avoids defining the zero vector as one of them, he calls it "fruitless debate".
6. The zero dimensional space is "technically" anisotropic space.

Lemma 3.2. Suppose (V, B) is an anisotropic quadratic space. Then, V is regular.

Proof. We prove $V^{\perp}=0$. Suppose $v \in V^{\perp}$. Then, $B(v, v)=0$. So, $v=0$.

Theorem 3.3 (3.2). Suppose (V, B) is two dimensional space. The following are equivalent:

1. V is regular and isotropic.
2. V is regular, with $d(V)=-1 \dot{F}^{2}$.
3. V is isotrometric to $\langle 1,-1\rangle$.
4. V corresponds to the equivalence class of binary quadratic form $X_{1} X_{2}$.

Proof. (3) \Longleftrightarrow (4) was established in §1.
$((1) \Longrightarrow(2))$: By (2.5) $V=\left\langle d_{1}\right\rangle \perp\left\langle d_{2}\right\rangle$. Write $V=F e_{1}+F e_{2}$, with $q\left(e_{i}\right)=d_{i}$ for some $e_{1}, e_{2} \in V$. Since V is regular, $d_{1} \neq 0, d_{2} \neq 0$. Let $v=a e_{1}+b e_{2}$ be isotropic. We assume $a \neq 0$. Then,
$0=\langle v, v\rangle=a^{2} d_{1}+b^{2} d_{2}$. The determinant, $\quad d(V)=d_{1} d_{2}=-a^{-2} b^{2} d_{2}^{2} \dot{F}^{2}=-1 \dot{F}^{2}$.
$((2) \Longrightarrow(3))$: We have a diagonalization

$$
V=\left\langle\left(F e_{1}, d_{1}\right)\right\rangle \perp\left\langle\left(F e_{2}, d_{2}\right)\right\rangle=\left\langle d_{1}\right\rangle \perp\left\langle d_{2}\right\rangle, \quad \text { where } \quad V=F e_{1}+F e_{2} .
$$

By hypothesis, $d_{1} d_{2}=-u^{2}$. Define

$$
\tau:(V, B) \xrightarrow{\sim}\left\langle\left(F e_{1}, d_{1}\right)\right\rangle \perp\left\langle\left(F e_{2},-d_{1}\right)\right\rangle \quad \text { by } \quad\left\{\begin{array}{l}
\tau\left(e_{1}\right)=e_{1} \\
\tau\left(e_{2}\right)=\frac{d_{1}^{2} e_{2}}{u^{2}} .
\end{array}\right.
$$

Then $B\left(\tau\left(e_{i}\right), \tau\left(e_{j}\right)\right)=B\left(e_{i}, e_{j}\right)$. So, we will write

$$
(V, B)=\left\langle\left(F e_{1}, a\right)\right\rangle \perp\left\langle\left(F e_{2},-a\right)\right\rangle .
$$

Claim: $D(V, B)=F$. To see this, let $\alpha \in F$, the system

$$
\left\{\begin{array}{ll}
x & +y=a^{-1} \alpha \\
x & -y
\end{array}=1 \quad \text { has solutions } \quad x=b, y=c .\right.
$$

Then,

$$
\left\langle b e_{1}+c e_{2}, b e_{1}+c e_{2}\right\rangle=a\left(b^{2}-c^{2}\right)=a(b+c)(b-c)=\alpha .
$$

So, $\alpha \in D(V, B)$. In particular, (V, B) represents 1 . By the representation criteria 2.4,

$$
(V, B) \cong\langle(F v, 1)\rangle \perp\left\langle\left(F w,-u^{2}\right)\right\rangle \cong\langle(F v, 1)\rangle \perp\langle(F w,-1)\rangle .
$$

$((3) \Longrightarrow(1)):$ Obvious.
Remark. Note $\langle F v, a\rangle \not \equiv\langle F v, 1\rangle$, unless $a \in \dot{F}^{2}$.

Definition 3.4. The isometry class of two dimensional quadratic spaces satifying (3.3) is called the Hyperbolic form or plane. With respect to the standard basis the symmetric matrix is:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1. The Hyperbolic plane is denoted by \mathbb{H}.
2. The Hyperbolic plane is considered very basic. It is "trivial" (loosely speaking) in the category of quadratic spaces over F, in the sense the one dimensional space is, in the category of vector spaces over F.
3. An orthogonal sum $\mathbb{H} \perp \mathbb{H} \perp \cdots \perp \mathbb{H}$ of hyperbolic planes will be called a Hyperbolic space. The corresponding quadratic space can be written as (i.e. with respect to some choice of basis)

$$
q=\sum_{i=1}^{m}\left(X_{2 m-1}^{2}-X_{2 m}^{2}\right) \quad \text { or } \quad q=\sum_{i=1}^{m} X_{2 m-1} X_{2 m} .
$$

4. Looking Forward: We will define the Witt group $W(F)$, in Chapter II. $W(F)$ is generated by all the isometry classes of quadratic spaces, where the hyperbolic spaces would represent the zero of $W(F)$.

Definition 3.5. A quadratic form (or space) is called universal, if it represents all the nonzero elements of F.

Theorem 3.6. Let (V, B) be a regular quadratic space. Then,

1. Every totally isotropic subspace $U \subseteq V$ with $\operatorname{dim} U=r>0$ is contained in a hyperbolic subspace $T \subseteq V$ with $\operatorname{dim} T=2 r$.
2. V is isotropic if and only if V contains a hyperbolic plane (necessarily as an orthogonal sum by (2.6)).
3. V is isotropic $\Longrightarrow \quad V$ is universal.

Proof. (3) is obvious, because \mathbb{H} is given by $q=X_{1} X_{2}$. Also, (2) follows from (1) with $r=1$.
Now we prove (1). Let v_{1}, \ldots, v_{r} be a basis of U and $S=\sum_{j=2}^{r} F v_{j}$. We have $U^{\perp} \subseteq S^{\perp}$. Also, since V is regular, by the dimension formula (1.10),

$$
\operatorname{dim} S^{\perp}=\operatorname{dim} V-\operatorname{dim} S>\operatorname{dim} V-\operatorname{dim} U=\operatorname{dim} U^{\perp}
$$

So, we pick $y \in \operatorname{dim} S^{\perp} \backslash U^{\perp}$. So, $B\left(v_{1}, y\right) \neq 0$. Write $H_{1}=F v_{1}+F y$. The determinant

$$
d\left(H_{1}\right)=\left|\begin{array}{cc}
0 & B\left(v_{1}, y\right) \\
B\left(v_{1}, y\right) & B(y, y)
\end{array}\right| \cdot \dot{F}^{2}=-B\left(v_{1}, y\right)^{2} \cdot \dot{F}^{2}=-1 \cdot \dot{F}^{2}
$$

By (3.3), $H_{1} \cong \mathbb{H}$. By (2.6), $V \cong H_{1} \perp H_{1}^{\perp}$. In fact, $B\left(v_{i}, v_{j}\right)=0$ for all i, j, by lemma 3.7. Hence, if follows $S \subseteq H_{1}^{\perp}$. Now, the proof is complete by induction. The proof is complete.

Lemma 3.7. Let (T, B) be a totally isotopic quadratatic space. Then $B(u, v)=$ 0 for all $u, v \in T$.

Proof. It follows from

$$
0=B(u+v, u+v)=B(u, u)+B(v, v)+2 B(u, v) .
$$

The proof is complete.

Exercise.

1. Prove any element in F is difference of two squares (assume $1 / 2 \in F$, as always).

Corollary 3.8 (First Representation Theorem). Let q be a regular quadratic form, and $d \in \dot{F}$. Then,

$$
d \in D(q) \Longleftrightarrow q \perp\langle-d\rangle \quad \text { is isotropic. }
$$

Proof. Assume $d \in D(q)$. So, there is a $v \in V$ such that $q(v)=d$. So, denote $Q=q \perp\langle-d\rangle$. So, $Q(v, 1)=d-d=0$. Conversely, assume $Q=q \perp\langle-d\rangle$ is isotropic. Then, by hypothesis, $Q(v)=0$. Write $v=\left(v_{0}, \lambda\right)$. This means

$$
Q(v)=q\left(v_{0}\right)-\lambda^{2} d=0 . \quad \text { So, } \quad q\left(\frac{v_{0}}{\lambda}\right)=d .
$$

The proof is complete.
Corollary 3.9. Let q_{1}, q_{2} be regular forms of positive dimension. Then,

$$
q_{1} \perp q_{2} \quad \text { is isotropic } \Longleftrightarrow D\left(q_{1}\right) \cap-D\left(q_{2}\right) \neq \phi .
$$

Proof. Suppose $q_{1} \perp q_{2}$ is isotropic. If q_{1} is isotropic, then $D\left(q_{1}\right)=\dot{F}$ and we are done. So, we assume q_{1}, q_{2} are anisotropic. We have, $q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right)=0$ for some nonzero $v_{1} \in V_{1}, v_{2} \in V_{2}$. Since $q_{1}\left(v_{1}\right) \neq 0, q_{2}\left(v_{2}\right) \neq 0, q_{1}\left(v_{1}\right)=$ $-q_{2}\left(v_{2}\right) \in D\left(q_{1}\right) \cap-D\left(q_{2}\right)$.

Conversely, suppose $\lambda \in D\left(q_{1}\right) \cap-D\left(q_{2}\right)$. If $q_{1} q_{2}$ is isotropic, we are done. Assume they are anisotropic and $q_{1}\left(v_{1}\right)=-q_{2}\left(v_{2}\right)=\lambda \neq 0$ for some $v_{1} \in V_{1}, v_{2} \in V_{2}$. So, $q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right)=0$. So, $q_{1} \perp q_{2}$ is isotropic. The proof is complete.

Corollary 3.10. Let $r>0$ be an integer. Then, the following are equivalent.

1. Any regular form of dimension r, over F is universal.
2. Any regular form of dimension $r+1$, over F is isotropic.

Proof. Supose (1) holds and q be a quadratic form of dimension $r+1$. We can assume q is anisotropic. By diagonalization, we can assume $q=q_{0} \perp\langle d\rangle$, for some $d \neq 0$. Since, q_{0} is universal, $q_{0}(v)=-d$ for some $v \in V\left(q_{0}\right)$. So, $q(v, 1)=0$. Conversely, assume (2) holds and q is a regular a quadratic form of dimension r. Let $d \in \dot{F}$. By hypothesis $q \perp\langle-d\rangle$ is isotropic. By (3.10) $d \in D(q)$. The proof is complete.

4 Decomposition and Cancellation

We prove some fundamental theorem - namely Decompostion and the Cancellation. Much of it is due to Witt (1937).

Theorem 4.1 (Witt's Decompostion). Suppose (V, q) is a quadratic space. Then,

$$
(V, q) \cong\left(V_{t}, q_{t}\right) \perp\left(V_{h}, q_{h}\right) \perp\left(V_{a}, q_{a}\right) \quad \text { is an isometry }
$$

where V_{t} is totally isotropic, V_{h} is hyperbolic sspace, V_{a} is anisotropic and q_{t}, q_{h}, q_{a} are restrictions of q. Furhter, isometry types of V_{t}, V_{h}, V_{a} are all uniquely determined.

Proof. Let V_{0} be a subspace of V such that

$$
V=V_{0} \oplus \operatorname{rad}(V) . \quad \text { It follows } \quad V=V_{0} \perp \operatorname{rad}(V)
$$

Take $V_{t}=\operatorname{rad}(V)$. It also follows V_{t} is totally isotropic.
Since $V_{0}^{\perp}=V^{\perp}, V_{0}$ is regular. If V_{0} contains an isotropic vector we can write $V_{0}=\mathbb{H} \perp V_{1}$. Inductively, we have

$$
V_{0}=(\mathbb{H} \perp \mathbb{H} \perp \cdots \perp \mathbb{H}) \perp V_{a} .
$$

where V_{a} is anisotropic. With $V_{h}=(\mathbb{H} \perp \mathbb{H} \perp \cdots \perp \mathbb{H})$, we have

$$
V=V_{t} \perp V_{h} \perp V_{a} \quad \text { as required. }
$$

To prove the uniqueness part, we use the Cancellation theorem 4.2.
Proof of uniqueness: Suppose

$$
V \cong V_{t} \perp V_{h} \perp V_{a} \cong V_{t}^{\prime} \perp V_{h}^{\prime} \perp V_{a}^{\prime}
$$

where V_{t}, V_{t}^{\prime} are totally isotropic, V_{h}, V_{h}^{\prime} are hyperbolic spaces and V_{a}, V_{a}^{\prime} are anisotropic. Taking the radical on both sides, we get

$$
V_{t} \cong \operatorname{rad}\left(V_{t} \perp V_{h} \perp V_{a}\right) \cong \operatorname{rad}\left(V_{t}^{\prime} \perp V_{h}^{\prime} \perp V_{a}^{\prime}\right) \cong V_{t}^{\prime} .
$$

So, by (4.2), $V_{h} \perp V_{a} \cong V_{h}^{\prime} \perp V_{a}^{\prime}$.

Now let $V_{h}=m \mathbb{H}, V_{h}^{\prime}=n \mathbb{H}$ (direct sum of m or n copies of \mathbb{H}). So, we have $m \mathbb{H} \perp V_{a} \cong n \mathbb{H} \perp V_{a}^{\prime}$. Assume $m \leq n$. By (4.2), cancelling \mathbb{H}, one by one, we get $V_{a} \cong V_{a}^{\prime} \perp(n-m) \mathbb{H}$. Since left side in anisotropic, $m=n$ and $V_{a} \cong V_{a}^{\prime}$. So, the uniqueness is established.

The proof is complete.
Theorem 4.2 (Cancellation). Let q, q_{1}, q_{2} be three quadratic forms. Then,

$$
q_{1} \perp q \cong q_{2} \perp q \quad \Longrightarrow \quad q_{1} \cong q_{2} .
$$

Proof. Comes later.
Definition 4.3. Given a quadratic form (V, q), by (4.1), we have $(V, q) \cong$ $V_{t} \perp V_{a} \perp m \mathbb{H}$. Here $m=\frac{\operatorname{dim} V_{h}}{2}$ is uniquely determined. Define

1. Define Witt index of $V:=m=\frac{\operatorname{dim} V_{h}}{2}$.
2. V_{a} is called the anisotropic part of V.

Corollary 4.4. Suppose (V, q) is a regular quadratic space. The Witt index of V is equals the dimension of any maximal totally isotopic subspace of V.

Proof. Since it is regular, $V_{t}=0$ and $V \cong V_{h} \perp V_{a}$. Suppose U is a maximal totally isotopic subspace of V and $\operatorname{dim} U=r$. By theorem 3.6, there is a hyperbolic space $T \supseteq U$ with $\operatorname{dim} T=2 r$. Since T is also regular, by (2.6) we have, $V=T \perp T^{\perp}$. By maximality of U, T^{\perp} is anisotropic. By uniqueness, we have $T \cong V_{h}$. So,

$$
m=\frac{\operatorname{dim} V_{h}}{2}=\frac{2 r}{2}=r
$$

The proof is complete.

4.1 Reflection

We consider reflections and projections in any inner product spaces. However, now the field F need not be \mathbb{R} or \mathbb{C}. In any case, we define reflection in the the same way for quadratic spaces.

Suppose (V, B, q) be any quadratic space.

1. The group (is it so?!) of isomaries of V will be denoted by $O_{q}(V)=$ $O(V)$. This is also called the orthogonal group.
2. Fix an anisotropic vector $y \in V$. Define

$$
\tau_{y}: V \longrightarrow V \quad \text { by } \quad \tau_{y}(x)=x-\frac{2 B(x, y)}{B(y, y)} y
$$

Then τ_{y} is a linear transformation. More interestigly, it has the folwoing properties:
(a) $\tau_{y}(y)=-y$.
(b) For all $x \in(F y)^{\perp}$ we have $\tau_{y}(x)=x$.
(c) Verbally, τ_{y} leaves $(F y)^{\perp}$ pointwise fixed and sends $y \mapsto-y$.
(d) So, for $y \in V_{a}$ it follows $\tau_{y}^{2}=i d$. We say τ_{y} is an involution.
(e) In fact, $\tau_{y} \in O_{q}(V)$, which follows from the calculation:

$$
\begin{gathered}
B\left(\tau_{y}(x), \tau_{y}\left(x^{\prime}\right)\right)=B\left(x-\frac{2 B(x, y)}{B(y, y)} y, x^{\prime}-\frac{2 B\left(x^{\prime}, y\right)}{B(y, y)} y\right) \\
=B\left(x, x^{\prime}\right)-\frac{4 B(x, y) B\left(x^{\prime}, y\right)}{B(y, y)}+\frac{4 B(x, y) B\left(x^{\prime}, y\right)}{B(y, y)} B(y, y)=B\left(x, x^{\prime}\right) .
\end{gathered}
$$

(f) $\operatorname{det}\left(\tau_{y}\right)=-1$. To see this let $e_{1}=y, e_{2}, \ldots, e_{N}$ of V with $e_{i} \in$ $(F y)^{\perp}$ for all $i \neq 2$. By diagonalizing, $(F y)^{\perp}$ we can assume $B\left(e_{i}, e_{j}\right)=0$ for all $i \neq j$. The matrix of q with respect tothis basis is:

$$
\left(\begin{array}{cc}
-1 & \mathbf{0} \\
\mathbf{0}^{t} & I_{N-1}
\end{array}\right) . \quad \text { So, } \quad \operatorname{det}\left(\tau_{y}\right)=-1
$$

This is not to be confused with $\operatorname{det}(V)$.
(g) τ_{y} is called a hyperplane reflection. It is a reflection against (Fy) ${ }^{\perp}$.
3. Remark: For

$$
\sigma \in O(V), \quad \text { we have } \quad \sigma \tau_{y} \sigma^{-1}=\tau_{\sigma(y)} .
$$

So, set of hyperplane reflections $\left\{\tau_{y}: q(y) \neq 0\right\}$ is closed under conjugation in $O(V)$. Proof. Easy checking.

Proof of Cancellation Theorem 4.2: Suppose $q \perp q_{1} \cong q \perp q_{2}$.

1. Case q is totally isotopic and q_{1} is regular: Let M_{i} be the symmetric matrices of q_{i}, for $i=1,2$. Then, the symmetrices of $q \perp q_{i}$ are

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & M_{i}
\end{array}\right)
$$

Since $q \perp q_{1} \cong q \perp q_{2}$
$\exists E=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \quad \ni \quad\left(\begin{array}{cc}0 & 0 \\ 0 & M_{1}\end{array}\right)=E^{t}\left(\begin{array}{cc}0 & 0 \\ 0 & M_{2}\end{array}\right) E=\left(\begin{array}{cc}0 & 0 \\ 0 & D^{t} M_{2} D\end{array}\right)$.
Since M_{1} is nonsingular, so is D and $q_{1} \cong q_{2}$.
2. Cancellation holds when q is totally isotopic: Diagolalize q_{1}, q_{2}. Since the symmetric matrix of q is zero, using $q \perp q_{1} \cong q \perp q_{2}$, we see both q_{1}, q_{2} has same number of zeros, say r, in their diagonalization. So, $q_{1}=r\langle 0\rangle \perp q_{1}^{\prime}, q_{2}=r\langle 0\rangle \perp q_{2}^{\prime}$. So, we have

$$
q \perp r\langle 0\rangle \perp q_{1}^{\prime} \cong q \perp r\langle 0\rangle \perp q_{2}^{\prime} .
$$

Since, q_{1} is reqular, by the first case, $q_{1}^{\prime} \cong q_{2}^{\prime}$. So, $q_{1} \cong q_{2}$.
3. The General case: In this case q is not necessarily totlally isotopic. By diagonalization $q \cong\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Using induction, we canassume $n=1$. If $a_{1}=0$, the theorem follows from above. So, we assume $a_{1} \neq 0$. We have $\left\langle a_{1}\right\rangle \perp q_{1} \cong\left\langle a_{1}\right\rangle \perp q_{2}$. Let $\varphi:\left\langle a_{1}\right\rangle \perp q_{1} \xrightarrow{\sim}\left\langle a_{1}\right\rangle \perp q_{2}$ be an isometry. Write $\varphi:\left\langle a_{1}\right\rangle=F e_{0}$ and $z=\varphi\left(e_{0}\right)$ By theorem 4.5 there is an isometry $\psi \in O(V)$ such that $\psi(z)=e_{0}$. Let $\tau=\psi \varphi$. Then $\tau\left(e_{0}\right)=e_{0}$. In fact

$$
\tau=\left(\begin{array}{cc}
1 & 0 \\
\lambda e_{0} & \eta
\end{array}\right) \quad \text { where } \quad \lambda \in V^{*}, \quad \eta \in \operatorname{End}(V)
$$

Claim: $\lambda=0$. To see this let $x \in V$. Then,

$$
0=B\left(e_{0}, x\right)=B\left(\psi\left(e_{0}\right), \psi(x)\right)=B\left(e_{0}, \lambda(x) e_{0}+x\right)=\lambda(x) a_{1} .
$$

Since $a_{1} \neq 0$, we have $\lambda(x)=0$. So, the claim is established. Therefore,

$$
\tau=\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right)
$$

For $x, y \in V$, we have

$$
B_{1}(x, y)=B(\tau(x), \tau(y))=B(\eta(x), \eta(y))
$$

So, η is isometry.
Theorem 4.5. Let (V, q) be a quadratic space and $x . y \in V$ be such that $q(x)=q(y) \neq 0$. Then, ther is an isomtry such that $\tau(x)=y$.

Proof. Geometrically, reflection around $F(x-y)^{\perp}$ would do. But we need $q(x-y) \neq 0$. We compute
$q(x+y)+q(x-y)=B(x+y, x+y)+B(x-y, x-y)=2 B(x, x)+2 B(y, y)=4 q(x) \neq 0$.
So, either $q(x+y) \neq 0$ or $q(x-y) \neq 0$. If needed, we replace y be $-y$ and assume $q(x-y) \neq 0$. Also,

$$
\begin{aligned}
q(x-y) & =B(x-y, x-y)=B(x, x)-2 B(x, y)+B(y, y) \\
& =2(B(x, x)-B(x, y))=2 B(x, x-y) .
\end{aligned}
$$

So, we have

$$
\tau_{x-y}(x)=x-\frac{2 B(x, x-y)}{q(x-y)}(x-y)=x-(x-y)=y .
$$

The proof is complete.

5 Witt's Chain Equivalence Theorem

In this section we exploit binary forms.
Proposition 5.1. Let $q=\langle a, b\rangle, q^{\prime}=\langle c, d\rangle$, be two binary regular forms. Then, $q \cong q^{\prime}$ if and only if $d(q)=d\left(q^{\prime}\right)$ and q, q^{\prime} represent a common element $e \in \dot{F}$.

Proof. Suppose $q \cong q^{\prime}$. Let $A=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$ be the symmetric matrix of q and $B=\left(\begin{array}{cc}c & 0 \\ 0 & d\end{array}\right)$ be the symmetric matrix of q^{\prime}. So, $A=E^{t} B E$ and $\operatorname{det} A=\operatorname{det} E^{2} \operatorname{det} B$. So, $d(q)=d\left(q^{\prime}\right)$. Write $E=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$. Then,

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
x & z \\
y & w
\end{array}\right)\left(\begin{array}{cc}
c & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
c x^{2}+d z^{2} & * \\
* & c y^{2}+d w^{2}
\end{array}\right)
$$

So,

$$
e:=a=q(1,0)=c x^{2}+d z^{2}=q^{\prime}\left(x^{2}, z^{2}\right) .
$$

is the common element represented.
Conversely, let $e \in D(q) \cap D\left(q^{\prime}\right)$. By Representation criteria $q \cong\left\langle e, e^{\prime}\right\rangle$. Taking determinants $e e^{\prime}=a b t^{2}$. So,

$$
q \cong\left\langle e, e^{\prime}\right\rangle \cong\left\langle e, \frac{a b t^{2}}{e}\right\rangle \cong\langle e, a b e\rangle . \quad \text { Similarly, } \quad q^{\prime} \cong\langle e, c d e\rangle .
$$

Again, $a b=c d u^{2}$. The proof is complete.
Definition 5.2. Suppose $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle, q^{\prime}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ two diagonal forms of dimension n.

1. We say q, q^{\prime} are simply-equivalent, if there is i, j (possibly equal) such that
(a) $\left\langle a_{i}, a_{j}\right\rangle \cong\left\langle b_{i}, b_{j}\right\rangle$,
(b) and $a_{k}=b_{k}$ for all $k \neq i, j$.
2. We say q, q^{\prime} are chain equivalent, if there exists a sequence

$$
q_{0}=q, q_{1}, \ldots, q_{m-1}, q_{m}=q^{\prime} \quad \ni q_{i}, q_{i+1} \text { are simply equivalent. }
$$

In this case, we write $q \approx q^{\prime}$.
3. Clearly, $q \approx q^{\prime} \Longrightarrow q \cong q^{\prime}$.

The converse:
Theorem 5.3 (Chain Equivalence Theorem). Suppose $f=\left\langle a_{1}, \ldots, a_{n}\right\rangle, g=$ $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ two diagonal forms of dimension n. Then,

$$
f \cong g \Longleftrightarrow f \approx g
$$

Proof. We only prove \Longrightarrow : For a permuation $\sigma \in S_{n}$, define $f^{\sigma}=\left\langle a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right\rangle$. Since S_{n} is generated by transpostions, we have $f^{\sigma} \approx f$, because

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Using this we can assume all the zero entries in f, g are at the end. Since $f \cong g$, it follows they have same number of zeros. By cancellation, we can assume both f, g are regular. So, $a_{i} \neq 0, b \neq 0$ for all i.

Without loss we assume $n \geq 3$ and we will use induction. Since $f \approx g$, we have $D(f)=D(g)$. So, $b_{1} \in D(f)$.
Claim: $f \approx\left\langle b_{1}, c_{2}, \ldots, c_{n}\right\rangle$ for some $c_{i} \neq 0$. To see this consider the set

$$
\mathcal{F}=\left\{f^{\prime}=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle: f \approx f^{\prime}\right\}
$$

Let $h=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle \in \mathcal{F}$ the subform $\left\langle c_{1}, c_{2}, \ldots, c_{p}\right\rangle$ represent b_{1}, with $p \leq n$ minimum. We will prove $p=1$. Suppose $p \geq 2$. We have

$$
b_{1}=\sum_{i=1}^{p} c_{i} x_{i}^{2}
$$

Since p is minimal, $d=c_{1} x_{1}^{2}+c_{2} x_{2}^{2} \neq 0$. By Representation theorem 2.4, $\left\langle c_{1}, c_{2}\right\rangle \cong\left\langle d, c_{1} c_{2} d\right\rangle$ (the 2nd coordiante is obtained by adjusting determinant). Therefore,

$$
f \approx h=\left\langle c_{1}, c_{2}, c_{3} \ldots, c_{n}\right\rangle \approx\left\langle d, c_{1} c_{2} d, c_{3}, \ldots, c_{n}\right\rangle \approx\left\langle d, c_{3}, \ldots, c_{n}, c_{1} c_{2} d\right\rangle .
$$

Now, first $p-1$ terms represents b_{1}. Which is a contradiction and $p=1$.
So, $h=\left\langle b_{1}, c_{2}, \ldots, c_{n}\right\rangle$ for some c_{i}. It follows
$\left\langle b_{1}, c_{2}, \ldots, c_{n}\right\rangle \cong\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle . \quad$ By cancellation $\left\langle c_{2}, \ldots, c_{n}\right\rangle \cong\left\langle b_{2}, \ldots, b_{n}\right\rangle$.
By induction

$$
\left\langle c_{2}, \ldots, c_{n}\right\rangle \approx\left\langle b_{2}, \ldots, b_{n}\right\rangle
$$

Therefore,

$$
f \approx\left\langle b_{1}, c_{2}, \ldots, c_{n}\right\rangle \approx\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle=g .
$$

The proof is complete.

6 Tensor Product of Quadratic Spaces

Lam call it Kronecker Tensor Product of Quadratic Spaces.
Definition 6.1. Let $\left(V_{1}, B_{1}, q_{1}\right),\left(V_{2}, B_{2}, q_{2}\right)$ be quadratic forms over F, with $\operatorname{dim} V_{1}=m, \operatorname{dim} V_{2}=n$. Write $V=V_{1} \otimes V_{2}$. Define

$$
B: V \times V \longrightarrow F \quad \text { by } \quad B\left(v_{1} \otimes v_{2}, v_{1}^{\prime} \otimes v_{2}^{\prime}\right)=B_{1}\left(v_{1}, v_{1}^{\prime}\right) B_{2}\left(v_{2}, v_{2}^{\prime}\right) \quad \forall v i, v_{i}^{\prime} \in V_{i} .
$$

It is easy to see that B extends to a symmetric bilinear pairing on $V \times V$.
Method: To do this check it extends to a map $V \longrightarrow V^{*}$, which I skip (Exercise.

So, (V, B) is a quadratic space with $\operatorname{dim} V=m n$. Let $q=q_{B}$. Obviously,

$$
q\left(v_{1} \otimes v_{2}\right)=q_{1}\left(v_{1}\right) q_{2}\left(v_{2}\right) . \quad \text { We denote } \quad q=q_{1} \otimes q_{2} \quad \text { or } \quad=q_{1} q_{2}
$$

Now we coordinatize. Suppose $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis of V_{1} and $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ is a basis of V_{1},. Let $a_{i j}=B_{1}\left(e_{i}, e_{j}\right)$ and $M=\left(a_{i j}\right)$. Also, let $b_{l k}=B_{2}\left(\epsilon_{l}, \epsilon_{k}\right)$ and $N=\left(a_{l k}\right)$. We have

$$
\left\{e_{1} \otimes \epsilon_{1}, \ldots, e_{1} \otimes \epsilon_{n} ;, \ldots ; e_{m} \otimes \epsilon_{1}, \ldots, e_{m} \otimes \epsilon_{n}\right\} \quad \text { is a basis of } \quad V .
$$

With respect this basis, the symmetric matrix of B is

$$
\left(\begin{array}{cccc}
a_{11} N & a_{12} N & \cdots & a_{1 m} N \\
a_{21} N & a_{22} N & \cdots & a_{2 m} N \\
a_{31} N & a_{32} N & \cdots & a_{3 m} N \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} N & a_{m 2} N & \cdots & a_{m m} N
\end{array}\right) \text {. This is also called the Kronecker product. }
$$

This Kronecker product of quadratatic forms satifies the following:

1. (Commutativity): $q_{1} \otimes q_{2} \cong q_{2} \otimes q_{1}$.
2. (Associativity) $\left(q_{1} \otimes q_{2}\right) \otimes q_{3} \cong q_{1} \otimes\left(q_{2} \otimes q_{3}\right)$.
3. (Distributivity): $\left(q \otimes\left(q_{1} \perp q_{2}\right) \cong\left(q \otimes q_{1}\right) \perp\left(q \otimes q_{2}\right)\right.$.
4. For diagonal forms, distributivity takes the shape:

$$
\left\langle a_{1}, \ldots, a_{m}\right\rangle \otimes\left\langle b_{1}, \ldots, b_{n}\right\rangle \cong\left\langle a_{1} b_{1}, \ldots, a_{1} b_{n} ; \ldots ; a_{m} b_{1}, \ldots, a_{m} b_{n}\right\rangle
$$

Notation: For a nonnegetative integer r and a quadratic form, denote

$$
r \cdot f=r f:=f \perp \ldots \perp f \quad(r \text { copies }) .
$$

Corollary 6.2. Suppose q is a regular quadratic form. Then, $q \otimes \mathbb{H} \cong$ $(\operatorname{dim} q) \mathbb{H}$.

Proof. We diagonalize $q=\left\langle a_{1}, \ldots, a_{m}\right\rangle$, with $a_{i} \neq 0$. Then,

$$
q \otimes \mathbb{H}=\left\langle a_{1}, \ldots, a_{m}\right\rangle \otimes \mathbb{H} \cong\left(\left\langle a_{1}\right\rangle \mathbb{H}\right) \perp \cdots \perp\left(\left\langle a_{m}\right\rangle \mathbb{H}\right) \cong m \mathbb{H}
$$

The proof is complete.

7 Generation of $O(V)$ by reflections

Recall, the group $O(V)$ of all isometries $\sigma: V \xrightarrow{\sim} V$ is called orthogonal group. We will prove that the orthogonal group $O(V)$ of a regular quadratic space is generated by reflections.

Theorem 7.1 (Cartan-Dieudonné). Suppose (V, B, q) is regular quadratic space, with $\operatorname{dim} V=n$. Then, every isometry $\sigma \in O_{q}(V)$ is a product of at most n hyperplane reflections.

The proof comes after a few consequences.
Corollary 7.2. Use the notations as in (7.1). Suppose $\sigma \in O_{q}(V)$ is product of n hyperplane reflections. Then, the first (or similarly the last) reflection in the product can be choosen arbitrarily.

Proof. Suppose $\sigma=\tau_{1} \tau_{2} \cdots \tau_{n}$ where τ_{i} are hyperplane reflections. Let τ be any hyperplane reflection. By (7.1), $\tau \sigma=\tau_{2}^{\prime} \cdots \tau_{r}^{\prime}$ where $r \leq n+1$. We have $\operatorname{det}(\sigma)=(-1)^{n}=-\operatorname{det}(\tau \sigma)=(-1)^{r}$. So, $n-r=2 k$ for some k. Since $r \leq n+1$, we have $r \leq n$. We have $\tau^{2}=1$. So,

$$
\sigma=\tau^{2} \sigma=\tau\left(\tau_{2}^{\prime} \cdots \tau_{r}^{\prime}\right) \quad \text { as desired }
$$

The proof is complete.

Notation. Denote $S O(V)=\{\sigma \in O(V): \operatorname{det} \sigma=1\}$. Here "S" is for "Special". Recall the analogy: $G L_{n}(F)$ and $S L_{n}(F)$. Here "GL" abbreviates "General Linear".

Corollary 7.3. If $\operatorname{dim} V=2$, then every isometry with determinant -1 is a reflection. If $\operatorname{dim} V \leq 3$, then every $\sigma \in S O(V)$ is product of two reflections.

Proof. It follows immediately from (7.1), by comparing determinants.
Corollary 7.4. ($\operatorname{dim} V=n$). Let $\sigma \in O(V)$. Define

$$
L(\sigma)=\{v \in V: \sigma(v)=v\}
$$

the fixed subspace of σ.

1. If σ is product of reflections ($r \leq n$), then $\operatorname{dim} L(\sigma) \geq n-r$.
2. If $L(\sigma)=0$, then σ cannot be written as product of less than n reflections.

Proof. (2) follows from (1). Now suppose, $\sigma=\tau_{1} \cdots \tau_{r}$, where τ_{i} are reflections. Recall $\operatorname{dim} L\left(\tau_{i}\right)=n-1$. Then, $L\left(\tau_{1}\right) \cap \cdots \cap L\left(\tau_{r}\right) \subseteq L(\sigma)$. But $\operatorname{dim}\left(L\left(\tau_{1}\right) \cap \cdots \cap L\left(\tau_{r}\right)\right) \geq n-r$. The proof is complete.
Exercise. Give a proof of $\operatorname{dim}\left(L\left(\tau_{1}\right) \cap \cdots \cap L\left(\tau_{r}\right)\right) \geq n-r$. Follwing exact sequence helps:
$0 \longrightarrow V \cap W \longrightarrow V \oplus W \longrightarrow V+W \longrightarrow 0 \quad$ where V, W are subspaces of U .

Notations. For $\sigma \in O(V)$ define

1. $\tilde{\sigma}=\sigma-1_{V}$.

7.1 Proof of theorem 7.1

We proceed to prove theorem 7.1.
Lemma 7.5. We have $L(\sigma)=\operatorname{Im}(\tilde{\sigma})^{\perp}$.
Proof. Let $v \in L(\sigma)$. So, $\sigma(v)=v$. For $w \in V$, we have
$B(v, \tilde{\sigma}(w))=B(v, \sigma(w)-w)=B(v, \sigma(w))-B(v, w)=B(\sigma(v), \sigma(w))-B(v, w)=0$.
So, $L(\sigma) \subseteq \operatorname{Im}(\tilde{\sigma})^{\perp}$. Now, let $v \in \operatorname{Im}(\tilde{\sigma})^{\perp}$. For $w \in V$ we have
$B(\sigma(v)-v, \sigma(w))=B(\sigma(v), \sigma(w))-B(v, \sigma(w))=B(v, w)-B(v, \sigma(w))=-B(v, \tilde{\sigma}(w))=0$.
Replacing $\sigma(w)$ by w, we get $\sigma(v)-v \in \operatorname{rad}(V)=0$. So, $v \in L(\sigma)$. So, $\operatorname{Im}(\tilde{\sigma})^{\perp} \subseteq L(\sigma)$. The proof is complete.

Remark. It is easy to see, for a subspace W of a quadratic space, (W, B) is totally isotropic if and only if $W \subseteq W^{\perp}$.

Corollary 7.6. Two things:

1. $(L(\sigma))^{\perp}=\operatorname{Im}(\tilde{\sigma})$.
2. Also,

$$
\tilde{\sigma}^{2}=0 \Longleftrightarrow \operatorname{Im}(\tilde{\sigma}) \quad \text { is totally isotropic. }
$$

Proof. By (7.5), (1) follows by taking \perp. Now, suppose $\tilde{\sigma}^{2}=0$. We have $\operatorname{Im}(\tilde{\sigma})$ is totally isotropic if and only if

$$
\operatorname{Im}(\tilde{\sigma}) \subseteq \operatorname{Im}(\tilde{\sigma})^{\perp}=L(\sigma):=\operatorname{ker}(\tilde{\sigma}) \quad b y(7.5) \Longleftrightarrow \tilde{\sigma}^{2}=0 .
$$

The proof is complete.
Corollary 7.7. Let $w \in V$. Then,

$$
\tilde{\sigma}(w) \perp \tilde{\sigma}(w) \Longleftrightarrow \tilde{\sigma}(w) \perp w .
$$

Proof. We have

$$
\begin{aligned}
& B(\tilde{\sigma}(w), \tilde{\sigma}(w))=B(\sigma(w)-w, \sigma(w)-w)=B(\sigma(w), \sigma(w))-2 B(\sigma(w), w)+B(w, w) \\
& \quad=2 B(w, w)-2 B(\sigma(w), w)=2 B(w-\sigma(w), w)=-2 B(\tilde{\sigma}(w), w) .
\end{aligned}
$$

The proof is complete.
Corollary 7.8. Suppose $\tilde{\sigma}^{2} \neq 0$. Then,

1. \exists an anisotropic vector $w \neq 0$ such that $z=\tilde{\sigma}(w)$ is anisotropic or zero.
2. In case $z \neq 0$, and $\sigma_{1}=\tau_{z} \sigma$, then $w \in L\left(\sigma_{1}\right)$.

Proof. Will come later, because it is technical.

Proof of (7.1): We use induction on $n=\operatorname{dim} V$. If $n=1$ then $O(V)=$ $\{ \pm 1\}$, where -1 represents the reflection $x \mapsto-x$. (Prove it). So, assume $n>1$ and the theorem holds for all regular forms of dimension less than n. Now suppose $\sigma \in O(V)$. We prove by contrapositive. So, assume σ does not satisfy the theorem: this means either it is not product of reflections or it is a product of more than n reflections. We claim $\tilde{\sigma}^{2}=0$. If not, by (7.8), there is a $w \in V$ as stated.

1. Assume $z=\tilde{\sigma}(w)=0$. Then, $\sigma(w)=w$. It follows $\sigma\left((F w)^{\perp}\right) \subseteq$ $(F w)^{\perp}$. So, σ induces an isometry on $(F w)^{\perp}$. So, $\left.\sigma\right|_{(F w)^{\perp}}=\tau_{1} \cdots \tau_{r}$ with $r \leq n-1$ and $\tau_{i} \in O\left((F w)^{\perp}\right)$ are reflections. Extend τ_{i} to V by sending $w \mapsto w$, which we continute to denote by τ_{i}. The extensions are also reflections. So, σ itself is product of $r \leq n-1$ reflections. This is a contradiction.
2. Now, assume $z=\tilde{(} \sigma)(w) \neq 0$. In this case, with $\sigma_{1}=\tau_{z} \sigma$, we have $\sigma_{1}(w)=w$. Arguing same way as σ_{1} is is product of $r \leq n-1$ reflections. So, $\sigma=\tau_{z} \sigma_{1}$ is is product of $r \leq n$ reflections. This is also a contradiction.
3. Remark. Note we used w is anisotropic, otherwise there would be no guarantee that $\operatorname{dim} F w^{\perp}<n$, which is needed to apply induction.

So, it follows $\tilde{\sigma}^{2}=0$, as was claimed. So, $\operatorname{Im}(\tilde{\sigma}) \subseteq \operatorname{ker}(\tilde{\sigma})=L(\sigma)$.

1. Suppose $L(\sigma)$ is not totally isotropic. Then, $\exists w \in L(\sigma)$ that is anisotropic. So, the the same argument above σ would be product of $r \leq n$ reflections, which would be a contradiction. So, $L(\sigma)$ is totally isotropic. So,

$$
L(\sigma) \subseteq L(\sigma)^{\perp}=\operatorname{Im}(\tilde{\sigma}) \quad \text { by } \quad(7.6) . \quad \text { So, } \quad L(\sigma)=\operatorname{Im}(\tilde{\sigma}) .
$$

2. By dimension formula

$$
n=\operatorname{dim} L(\sigma)+\operatorname{dim} \operatorname{Im}(\tilde{\sigma})=2 \operatorname{dim} L(\sigma) \quad \text { is even. }
$$

3. σ acts as identity of $L(\sigma)$ and also acts as identity on

$$
\frac{V}{L(\sigma)}=\frac{V}{\left(\sigma-1_{V}\right)(V)}
$$

So, $\operatorname{det} \sigma=1$ i. e. $\sigma \in S O(V)$.
4. So, we have established, if

$$
\sigma \text { does not satisfy the theorem } \Longrightarrow \operatorname{det} \sigma=1 \text {. }
$$

5. Now, τ be any reflection. Then $\operatorname{det}(\tau \sigma)=-1$. By (4), $\tau \sigma$ satisfy the theorem and hence product of $r \leq n$ reflection. So, $\sigma=\tau(\tau \sigma)$ is product of $r+1 \leq n+1$ reflection. Since $n=\operatorname{dim} V$ is even, and $\operatorname{det} \sigma=1, \sigma$ is not product of $n+1$ reflections. So, σ is product of $\leq n$ reflections. The proof is complete.

Proof of (7.8): Assume (1) of lemma 7.8 is false. We will prove $\tilde{\sigma}^{2}=0$. The assumption means

$$
w \neq 0 \in V \text { anisotropic } \Longrightarrow \tilde{\sigma}(w) \neq 0 \text { and is isotropic. }
$$

This means

$$
\tilde{\sigma}(w) \perp \tilde{\sigma}(w) \quad B y(7.7) \quad \tilde{\sigma}(w) \perp w .
$$

The binary form $F w \oplus F \tilde{\sigma}(w)$ is not regular, because its matrix is

$$
\left(\begin{array}{cc}
q(w) & 0 \\
0 & 0
\end{array}\right) . \quad \text { Since } V \quad \text { is regular } \quad \operatorname{dim} V \geq 3
$$

Claim: $\forall y \in V \quad y \perp \tilde{\sigma}(y)$.
If $y=0$ the claim is obvious and if $y \neq 0$ and is anisotropic, it is observed above. So, assume $y \neq 0$ is isotropic. Then, by (3.6) $F y \oplus F v \cong \mathbb{H}$ for some v. Now, by decomposition theorem, we write $V=\left((F y \oplus F v) \perp r \mathbb{H} \perp V_{a}\right.$. Since $\operatorname{dim} V \geq 3$, there is a anisotropic w such that $y \perp w$. Write $u=y+\epsilon w$ with $\epsilon \in \dot{F}$.

$$
B(u, u)=B(y+\epsilon w, y+\epsilon w)=\epsilon^{2} B(w, w) \neq 0
$$

So, $u=y+\epsilon w$ is anisotropic and nonzero $\forall \epsilon \in \dot{F}$. So, by the contrary hypothesis, $u \perp \tilde{\sigma}(u)$ for all $\epsilon \in \dot{F}$. That means,

$$
\begin{gathered}
0=B(\tilde{\sigma}(u), u)=B(\tilde{\sigma}(y+\epsilon w), y+\epsilon w) \\
=B(\tilde{\sigma}(y), y)+\epsilon[B(\tilde{\sigma}(w), y)+B(\tilde{\sigma}(y), w)]+\epsilon^{2} B(\tilde{\sigma}(w), w)
\end{gathered}
$$

Since the last term is zero, we have,

$$
0=B(\tilde{\sigma}(y), y)+\epsilon[B(\tilde{\sigma}(w), y)+B(\tilde{\sigma}(y), w)] \quad \forall \epsilon \in \dot{F} . .
$$

So, $B(\tilde{\sigma}(y), y)=0$. This establishes the claim.

By (7.7), we have $\operatorname{Im}(\tilde{\sigma})$ is totally isotopic. By $(7.6(2)), \tilde{\sigma}^{2}=0$. This establishes (1) of the lemma.

To prove (2), we compute

$$
\begin{gathered}
\sigma_{1}(w)=\tau_{z}(\sigma(w))=\sigma(w)-\frac{2 B(\sigma(w), z)}{q(z)} z=\sigma(w)-\frac{2 B(\sigma(w), \tilde{\sigma}(w))}{q(\tilde{\sigma}(w))} \tilde{\sigma}(w) \\
=\sigma(w)-\frac{2(B(w, w)-B(\sigma(w), w))}{2(B(w, w)-B(\sigma(w), w))} \tilde{\sigma}(w)=w .
\end{gathered}
$$

The proof is complete. Lam gives a geometric argument.

