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1 Quadratic Forms and Quadratic Spaces

In this course we assume all fields F have char(F ) 6= 2.

Definition 1.1. Let F be a field.

1. A quadratic form over F is a homogeneous polynomial

f(X1, X2, . . . , Xn) =
n
∑

i,j=1

αijXiXj αij ∈ F.

This is a form in n variables and may also be called an n−ary quadratic

form.

With aij =
αij+αji

2
we have

f =
n
∑

i,j=1

aijXiXj =
(

X1 X2 · · · Xn

)













a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann

























X1

X2

· · ·

Xn












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= X tMfX where X =













X1

X2

· · ·

Xn













, Mf = (aij) is symmetric.

2. This association

f ←→Mf establises a bijection

between the set of all quadratic forms over F and the set of all sym-

metric n× n matrices.

3. Suppose f, g are two n−ary quadratic forms over F . We say f is

equivalent to g (write f ≃ g), if there is a change of varaibles






















Y1

Y2

·

·

·

Yn























= C























X1

X2

·

·

·

Xn























with C ∈ GLn(F )

such that f(X) = g(CX) = g(Y ). In the matrix form it means,

f ≃ g ⇐⇒Mf = CtMgC

4. This relation ≃ is an equivalence relation.

5. Example: We have

f = X2
1 −X

2
2 ≃ g = X1X2.

Proof. We do the change of variables:

X1 7→ X1+X2, X2 7→ X1−X2 or

(

Y1

Y2

)

=

(

1 1

1 −1

)(

X1

X2

)

.
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6. Consider the vector space F n and denote the standard basis by e1, e2, . . . , en.

Given a quadratic form f , define

Qf : F n −→ F by Qf

(

n
∑

i=1

xiei

)

= xtMfx where x =













x1

x2

· · ·

xn













.

This map Qf is called the qudratic map of f .

Lemma 1.2. Assume char(F ) 6= 2 (as always).

Qf = Qg ⇐⇒ f = g.

Proof. Write Mf = (aij), Mg = (bij). Suppose Qf = Qg. Then

aii = Qf (ei) = Qg(ei) = bii, and

∀ i 6= j Qf (ei + ej) = (1, 1)

(

aii aij

aij ajj

)(

1

1

)

= aii + ajj + 2aij

which is

= Qg(ei + ej) = bii + bjj + 2bij. Hence aij = bij and f = g.

There other way is obvious. The proof is complete.

Lemma 1.3. Let f be a quadratic form. Then the quadratic map has the

following properties:

1. Qf is "quadratatic" in the following sense:

Qf (ax) = a2Qf (x) ∀ x ∈ F n.
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2. Define (polarize)

Bf : F n×F n −→ F by Bf (x, y) =
Qf (x+ y)−Qf (x)−Qf (y)

2
∀ x, y ∈ F n.

Then, Bf is a symmetric and bilinear pairing, meaning

(a) It is symmetric: Bf (x, y) = Bf (y, x) for all x, y ∈ F n.

(b) It is bilinear:

Bf (ax1 + bx1, y) = aBf (x1, y) + bBf (x2, y)

and Bf (x, cy1 + dy2) = cBf (x, y1) + dBf (x, y2).

Equivalently:

y 7→ Bf (∗, y) is linear transformation from F n −→ Hom(F n, F ).

3. We have ("depolarization")

Qf (x) = Bf (x, x) ∀ x ∈ F n.

Proof. (1) is obvious. Clearly, B(x, y) = B(y, x) for all x, y ∈ F n. Now

B(x, y) =
(x+ y)tMf (x+ y)− xtMfx− y

tMfy

2
= xtMfy.

Rest follows. The proof is complete.

Remark. Four items f,Mf , Qf , Bf are retrievable fmom each other.
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1.1 Coordiante free Approach

Definition 1.4. Let V be a finite dimensional vector spave over a field F .

1. A map B : V × V −→ F is called a symmetric bilinear pairing, if

(a) B(x, y) = B(y, x) ∀ x, y ∈ V ,

(b) For any fixed x ∈ V the map

B(x, ∗) : V −→ V is linear.

Equivalently:

y 7→ B(∗, y) is linear transformation from F n −→ Hom(F n, F ).

2. A quadratic space is an ordered pair (V,B) where V is as above and

B is a symmetric bilinear pairing.

3. Associated to a quadratic space (V,B) we define a quadratic map

q = qb : V −→ F by q(x) = B(x, x) ∀ x ∈ V.

We have the following properties:

(a) q(ax) = a2q(x) for all x ∈ V ,

(b)

2B(x, y) = q(x+ y)− q(x)− q(y) ∀ x, y ∈ V.

Therefore, q and B determine each other. So, we say (V, q) represents

the quadratic space (V,B).

4. Given a basis e1, . . . , en of V , there is a quadratic form

f(X1, . . . , Xn) =
n
∑

i,j=1

B(ei, ej)XiXj . So, Mf = (B(ei, ej)).
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Lemma 1.5. Suppose e′1, . . . , e
′
n is another basis of V and f ′ be the corre-

sponding quadratic form

f ′(X1, . . . , Xn) =
n
∑

i,j=1

B(e′i, e
′
j)XiXj.

Then

Mf ′ = CtMfC where













e′1

e′2

· · ·

e′n













= C













e1

e2

· · ·

en













In particular,

f ≃ f ′ determines an equivalence class of quadratic form (fB).

Proof. We have

X t(B(e′ie
′
j))X = X t

(

B

(

n
∑

k=1

ckiek,

n
∑

l=1

cjlel

))

X

= X t

(

n
∑

k,l=1

ckiB (ek, el) clk

)

X = X tCt (B (ek, el))CX

The proof is complete.

Definition 1.6. Suppose (V,B), (V ′, B′) are two quadratic spaces. We say

they are isometric (≃), if there is a linear isomorphism

τ : V
∼
−→ V ′ ∋ B(x, y) = B′(τ(x), τ(y)) ∀ x, y ∈ V.

1. Isometry is an equivalence relation.

2. It follows,

(V,B) ≃ (V ′, B′) ⇐⇒ (fB) ≃ (fB′).
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3. So, the association [(V,B)] 7→ [fB] establishes an 1− 1 correspondence

between the isometry classes of n−dimensional quadratic spaces and

(to) the equivalence classes of n−ary quadratic forms.

Suppose (V,B) is a quadratic space (I said some of the following before).

1. Notation: We denote V ∗ := HomF (V, F ).

2. For any fixed x then map B(x, ∗) : V −→ F is linear,

That means B(x, ∗), B(∗, y) ∈ V ∗ ∀ x, y ∈ V.

3. Further, the map

V −→ V ∗ sending y 7→ B(∗, y) is a linear map.

Proposition 1.7. Suppose (V,B) is a quadratic space and {e1, . . . , en} is a

basis of V . Let M = (B(ei, ej)) ne the associateda symmetric matrix. Then

the following are equivalent:

1. M is a nonsingular matrix.

2. The map

V −→ V ∗ given by y 7→ B(∗, y) is an isomorphism.

3. For x ∈ V ,

B(x, y) = 0 ∀ y ∈ V =⇒ x = 0.

Proof. Since dimV = n < ∞, we have (2) ⇐⇒ (3). Suppose M is non-
singualr. Fix x ∈ V and assume B(x, y) = 0 ∀ y ∈ V. In particular,
B(x, ej) = 0 for all j. Write x =

∑n

i=1 xiei. So,

∀ j 0 = B(x, ej) =
n
∑

i=1

xiB(ei, ej). So, M









x1
x2
· · ·
xn









= 0.
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So, xi = 0 and hence x = 0. So, (3) is established. Now assume (3).

Assume M









x1
x2
· · ·
xn









= 0. We prove









x1
x2
· · ·
xn









= 0.

Write x =
∑n

i=1 xiei. We have









B(x, e1)
B(x, e2)
· · ·

B(x, en)









=M









x1
x2
· · ·
xn









= 0.

So,

∀ y =
n
∑

j=1

yiei ∈ V we have B(x, y) =
n
∑

j=1

yiB(x, ej) = 0.

By (3), x = 0. The proof is complete.

Definition 1.8. Suppose (V,B) is a quadratic space, satisfying (1.7), then

we say (V,B) is said to be regular or nonsingular and qB : V −→ F is said

to be regular or nonsingular quadratic map.

The vector space {0} is also considered a regular quadratic space.
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1.2 Sub-Quadratic Spaces

Definition 1.9. Suppose (V,B) is a quadratic space and S be a subspace.

1. Then (S,B|S×S) is a quadratic space.

2. The orthogonal complement of S is defined as

S⊥ = {x ∈ V : B(x, S) = 0}

3. The radical of (V,B) is defined to be rad(V ) = V ⊥. So,

(V,B) is regular ⇐⇒ rad(V ) = 0.

Proposition 1.10. Suppose (V,B) is a regular quadratic space and S be

subspace of V . Then,

1. (Dimension formula) We have

dimS + dimS⊥ = dimV.

2. (S⊥)⊥ = S.

Proof. Consider the linear isomorphism

ϕ : V
∼
−→ V ∗ ϕ(x) = B(∗, x).

We have an exact sequence

0 // ϕ(S⊥) // V ∗
η

// S∗ // 0 where η is the restriction.

So,

dimϕ(S⊥) + dimS∗ = dimV ∗ or dimS⊥ + dimS = dimV.

Apply (1) twice

dim(S⊥)⊥ = dimV − dimS⊥ = dimV − (dimV − dimS) = dimS.

Since S ⊆ (S⊥)⊥ we have S = (S⊥)⊥. So, (2) is established. The proof is
complete.
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2 Diagonalization

Ḟ will denote the unitis of F .

Definition 2.1. Suppose f is a quadratic form over F and d ∈ Ḟ . We say

f represents d is f(x1, . . . , xn) = d for some (x1, . . . , xn) ∈ F
n. We denote

D(f) = {d ∈ Ḟ : f represents d}.

Similarly, suppose (V,B) is a quadratic space, we say V represents d if

qB(v) = d for some v ∈ V . We denote

D(f) = {d ∈ Ḟ : V represents d}.

1. Suppose a, d ∈ Ḟ . Then,

d ∈ D(f)⇐⇒ a2d ∈ D(f), because f(ax) = a2f(x).

2. So, D(f) consists of union of (some) cosets of Ḟ modulo Ḟ 2.

3. The group Ḟ

Ḟ 2
is called the group of square classes.

4. Also,

d ∈ D(f)⇐⇒ d−1 ∈ D(f); because d = d2(d−1).

5. In general, D(f) may not be a group and 1 need not be in D(f).

Example: Consider f = X2
1 +X2

2 +X2
3 over Q. Then 1, 2, 14 ∈ D(f).

But 7 = 14/2 /∈ D(f), which is known.

6. If D(f) is closed under multiplication, then 1 ∈ D(f).

Example: Consider fr =
∑r

i=1X
2
i , over any field F . For r = 1, 2, 3, 8

we have D(fr) are groups.
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Definition 2.2. Let (V1, B1), (V2, B2) be two quadratic spaces over F . The

orthogonal sum of (V1, B1), (V2, B2) is defined as

V1 ⊥ V2 := (V,B) where V = V1 ⊕ V2

B is defned on V × V as folows:

B(x1+x2, y1+y2) = B1(x1, y1)+B2(x2, y2) where x1, y1 ∈ V1; x2, y2 ∈ V2.

1. Clearly, B(V1, V2) = 0.

2. Also,

qB(x1 + x2) = qB1
(x1) + qB2

(x2) where xi ∈ Vi.

3. We also write qB = qB1
⊥ qB2

.

4. Example: Let q1(X, Y ) = X2 +XY, q2(X, Y, Z) = XZ + Y X. Then,

q1 ⊥ q2(X, Y, U, V,W ) = X2 +XY + UW + V U

(Note, we switch between the bilinear pairing B and the form qB. How-

ever, we need to view qB : V −→ V ∗.)

Definition 2.3. For d ∈ F define 〈d〉 to be the one dimensional quadratic

space, corresponding to the quadratic form

q(X) = dX2 So, 2B(X,X) = q(X +X)− q(X)− q(X) = 2dX2

The Representation Criteria:

Theorem 2.4. Let (V,B) be a quadratic space and d ∈ Ḟ . Then,

d ∈ D(V )⇐⇒ V ∼= 〈d〉 ⊥ (V ′, B′) for some quadratic space (V ′, B′).
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Proof. Suppose V ∼= 〈d〉 ⊥ (V ′, B′). Then, qV (e ⊕ 0) = d, where e is the
basis of 〈d〉.

Conversely, Let d ∈ D(V ). Then, q(v) = d for some v ∈ V . Recall
rad(V ) = V ⊥ = {y ∈ V : B(V, y) = 0}. There is a subspace W V = V ⊥⊕W .
It follows, V = V ⊥ ⊥ W . Also, D(V ) = D(W ) and W⊥ = 0. So, we assume
V is regular, by replacing V by W .

Now, Fv is isometric to 〈d〉. And Fv⊥∩Fv = 0. Since dimFv+dimFv⊥,
we have V = Fv ⊕ Fv⊥. It follows V ∼= Fv ⊥ Fv⊥. The proof is complete.

Corollary 2.5 (2.4). Let (V,B) be a quadratic space. Then,

V ∼= 〈d1〉 ⊥ 〈d2〉 ⊥ · · · ⊥ 〈dn〉 where di ∈ Ḟ .

Proof. Follows by induction.

Notation: 〈d1, d2, . . . , dn〉 := 〈d1〉 ⊥ 〈d2〉 ⊥ · · · ⊥ 〈dn〉. Also,

n〈d〉 := 〈d〉 ⊥ 〈d〉 ⊥ · · · ⊥ 〈d〉

the orthogonal sum of n copies of 〈d〉.

Corollary 2.6 (2.5). Suppose (V,B) is a quadratic space and S is a regular

subspace. Then

1. V = S ⊥ S⊥

2. If T is a subspace of V and V = S ⊥ T then T = S⊥.

Proof. (2) follows from (1) because T ⊆ S⊥ and dimT = dimS⊥.

Since S is regular, 0 = rad(S) = {v ∈ S : B(v, S) = 0}. So, S ∩ S⊥ = 0. So,
we show V = S + S⊥. By (2.5), S has an orthogonal basis e1, . . . , ep. Again,
by regularity (or the decomposition) B(ei, ei) 6= 0. Now for z ∈ V write

y = z −

p
∑

i=1

B(z, ei)

B(ei, ei)
ei.

Then, B(y, ek) = 0 and hence y ∈ S⊥. So,

z =

p
∑

i=1

B(z, ei)

B(ei, ei)
ei + y ∈ S + S⊥.

The proof is complete.
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Corollary 2.7 (2.6). Suppose (V,B) is a regular quadratic space and S is a

subspace. Then, S is regular if and only if V = S ⊥ T for some subspace T

of V .

Proof. One way follows from (2.6). Suppose V = S ⊥ T . Then,

∀ v ∈ S, v ∈ rad(S) =⇒ v ∈ rad(V ) =⇒ v = 0.

So, S is regular. The proof is complete.

2.1 Determinant

Definition 2.8. Suppose f is a nonsingular quadratic form. We define de-

terminant of f as

d(f) := det(Mf )Ḟ
2 ∈

Ḟ

Ḟ 2
.

Caution: Do not mix up D(f) and d(f).

1. Note f ≃ g =⇒ d(f) = d(g), because f ≃ g =⇒Mf = CtMgC.

2. Also,

d(f1 ⊥ f2) = d(f1)d(f2).

3. Suppose (V,B) is a regualr quadratic space. Then, define

d(V ) = d(f) where f is the form wrt a basis.

So, if

V = 〈d1〉 ⊥ 〈d2〉 ⊥ · · · 〈dn〉 then d(V ) = d1d2 · · · dn.
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3 Hyperbolic Plane and Hyperbolic Spaces

Definition 3.1. Suppose (V,B) is a quadratic space (and q be the "quadratic"

map).

1. A nonzero element v ∈ V is said to be an isotropic vector, if B(v, v) = 0

(i.e. q(v) = 0). Otherwise v is called anisotropic.

2. A quadratic space (V,B) is called isotropic if it contains an (nonzero)

isotropic vector.

3. (V,B) said to be anisotropic, if V contains no isotropic element.

4. (V,B) is called totally isotropic, if all its nonzero vectors are isotropic.

contains an (nonzero) isotropic vector.

5. The author avoids defining the zero vector as one of them, he calls it

"fruitless debate".

6. The zero dimensional space is "technically" anisotropic space.

Lemma 3.2. Suppose (V,B) is an anisotropic quadratic space. Then, V is

regular.

Proof. We prove V ⊥ = 0. Suppose v ∈ V ⊥. Then, B(v, v) = 0. So, v = 0.

Theorem 3.3 (3.2). Suppose (V,B) is two dimensional space. The following

are equivalent:

1. V is regular and isotropic.

2. V is regular, with d(V ) = −1Ḟ 2.

3. V is isotrometric to 〈1,−1〉.
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4. V corresponds to the equivalence class of binary quadratic form X1X2.

Proof. (3)⇐⇒ (4) was established in §1.

((1) =⇒ (2)): By (2.5) V = 〈d1〉 ⊥ 〈d2〉. Write V = Fe1 + Fe2, with
q(ei) = di for some e1, e2 ∈ V . Since V is regular, d1 6= 0, d2 6= 0. Let
v = ae1 + be2 be isotropic. We assume a 6= 0. Then,

0 = 〈v, v〉 = a2d1+b
2d2. The determinant, d(V ) = d1d2 = −a

−2b2d22Ḟ
2 = −1Ḟ 2.

((2) =⇒ (3)): We have a diagonalization

V = 〈(Fe1, d1)〉 ⊥ 〈(Fe2, d2)〉 = 〈d1〉 ⊥ 〈d2〉, where V = Fe1 + Fe2.

By hypothesis, d1d2 = −u
2. Define

τ : (V,B)
∼
−→ 〈(Fe1, d1)〉 ⊥ 〈(Fe2,−d1)〉 by

{

τ(e1) = e1

τ(e2) =
d2
1
e2

u2 .

Then B(τ(ei), τ(ej)) = B(ei, ej). So, we will write

(V,B) = 〈(Fe1, a)〉 ⊥ 〈(Fe2,−a)〉.

Claim: D(V,B) = F . To see this, let α ∈ F , the system

{

x +y = a−1α
x −y = 1

has solutions x = b, y = c.

Then,

〈be1 + ce2, be1 + ce2〉 = a(b2 − c2) = a(b+ c)(b− c) = α.

So, α ∈ D(V,B). In particular, (V,B) represents 1. By the representation
criteria 2.4,

(V,B) ∼= 〈(Fv, 1)〉 ⊥ 〈(Fw,−u2)〉 ∼= 〈(Fv, 1)〉 ⊥ 〈(Fw,−1)〉.

((3) =⇒ (1)): Obvious.

Remark. Note 〈Fv, a〉 6∼= 〈Fv, 1〉, unless a ∈ Ḟ 2.
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Definition 3.4. The isometry class of two dimensional quadratic spaces

satifying (3.3) is called the Hyperbolic form or plane. With respect to the

standard basis the symmetric matrix is:

(

1 0

0 −1

)

.

1. The Hyperbolic plane is denoted by H.

2. The Hyperbolic plane is considered very basic. It is "trivial" (loosely

speaking) in the category of quadratic spaces over F , in the sense the

one dimensional space is, in the category of vector spaces over F .

3. An orthogonal sum H ⊥ H ⊥ · · · ⊥ H of hyperbolic planes will be

called a Hyperbolic space. The corresponding quadratic space can be

written as (i. e. with respect to some choice of basis)

q =
m
∑

i=1

(X2
2m−1 −X

2
2m) or q =

m
∑

i=1

X2m−1X2m.

4. Looking Forward: We will define the Witt group W (F ), in Chapter

II. W (F ) is generated by all the isometry classes of quadratic spaces,

where the hyperbolic spaces would represent the zero of W (F ).

Definition 3.5. A quadratic form (or space) is called universal, if it rep-

resents all the nonzero elements of F .
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Theorem 3.6. Let (V,B) be a regular quadratic space. Then,

1. Every totally isotropic subspace U ⊆ V with dimU = r > 0 is con-

tained in a hyperbolic subspace T ⊆ V with dimT = 2r.

2. V is isotropic if and only if V contains a hyperbolic plane (necessarily

as an orthogonal sum by (2.6)).

3. V is isotropic =⇒ V is universal.

Proof. (3) is obvious, because H is given by q = X1X2. Also, (2) follows
from (1) with r = 1.

Now we prove (1). Let v1, . . . , vr be a basis of U and S =
∑r

j=2 Fvj. We

have U⊥ ⊆ S⊥. Also, since V is regular, by the dimension formula (1.10),

dimS⊥ = dimV − dimS > dimV − dimU = dimU⊥.

So, we pick y ∈ dimS⊥ \ U⊥. So, B(v1, y) 6= 0. Write H1 = Fv1 + Fy. The
determinant

d(H1) =

∣

∣

∣

∣

0 B(v1, y)
B(v1, y) B(y, y)

∣

∣

∣

∣

· Ḟ 2 = −B(v1, y)
2 · Ḟ 2 = −1 · Ḟ 2.

By (3.3), H1
∼= H. By (2.6), V ∼= H1 ⊥ H⊥

1 . In fact, B(vi, vj) = 0 for all
i, j, by lemma 3.7. Hence, if follows S ⊆ H⊥

1 . Now, the proof is complete by
induction. The proof is complete.

Lemma 3.7. Let (T,B) be a totally isotopic quadratatic space. Then B(u, v) =

0 for all u, v ∈ T .

Proof. It follows from

0 = B(u+ v, u+ v) = B(u, u) + B(v, v) + 2B(u, v).

The proof is complete.

Exercise.

1. Prove any element in F is difference of two squares (assume 1/2 ∈ F ,
as always).
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Corollary 3.8 (First Representation Theorem). Let q be a regular quadratic

form, and d ∈ Ḟ . Then,

d ∈ D(q)⇐⇒ q ⊥ 〈−d〉 is isotropic.

Proof. Assume d ∈ D(q). So, there is a v ∈ V such that q(v) = d. So, denote
Q = q ⊥ 〈−d〉. So, Q(v, 1) = d − d = 0. Conversely, assume Q = q ⊥ 〈−d〉
is isotropic. Then, by hypothesis, Q(v) = 0. Write v = (v0, λ). This means

Q(v) = q(v0)− λ
2d = 0. So, q

(v0
λ

)

= d.

The proof is complete.

Corollary 3.9. Let q1, q2 be regular forms of positive dimension. Then,

q1 ⊥ q2 is isotropic ⇐⇒ D(q1) ∩ −D(q2) 6= φ.

Proof. Suppose q1 ⊥ q2 is isotropic. If q1 is isotropic, then D(q1) = Ḟ and we
are done. So, we assume q1, q2 are anisotropic. We have, q1(v1) + q2(v2) = 0
for some nonzero v1 ∈ V1, v2 ∈ V2. Since q1(v1) 6= 0, q2(v2) 6= 0 , q1(v1) =
−q2(v2) ∈ D(q1) ∩ −D(q2).

Conversely, suppose λ ∈ D(q1) ∩ −D(q2). If q1 q2 is isotropic, we are
done. Assume they are anisotropic and q1(v1) = −q2(v2) = λ 6= 0 for some
v1 ∈ V1, v2 ∈ V2. So, q1(v1) + q2(v2) = 0. So, q1 ⊥ q2 is isotropic. The proof
is complete.

Corollary 3.10. Let r > 0 be an integer. Then, the following are equivalent.

1. Any regular form of dimension r, over F is universal.

2. Any regular form of dimension r + 1, over F is isotropic.

Proof. Supose (1) holds and q be a quadratic form of dimension r + 1. We
can assume q is anisotropic. By diagonalization, we can assume q = q0 ⊥ 〈d〉,
for some d 6= 0. Since, q0 is universal, q0(v) = −d for some v ∈ V (q0). So,
q(v, 1) = 0. Conversely, assume (2) holds and q is a regular a quadratic form
of dimension r. Let d ∈ Ḟ . By hypothesis q ⊥ 〈−d〉 is isotropic. By (3.10)
d ∈ D(q). The proof is complete.

18



4 Decomposition and Cancellation

We prove some fundamental theorem - namely Decompostion and the Can-
cellation. Much of it is due to Witt (1937).

Theorem 4.1 (Witt’s Decompostion). Suppose (V, q) is a quadratic space.

Then,

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa) is an isometry,

where Vt is totally isotropic, Vh is hyperbolic sspace, Va is anisotropic and

qt, qh, qa are restrictions of q. Furhter, isometry types of Vt, Vh, Va are all

uniquely determined.

Proof. Let V0 be a subspace of V such that

V = V0 ⊕ rad(V ). It follows V = V0 ⊥ rad(V )

Take Vt = rad(V ). It also follows Vt is totally isotropic.

Since V ⊥
0 = V ⊥, V0 is regular. If V0 contains an isotropic vector we can

write V0 = H ⊥ V1. Inductively, we have

V0 = (H ⊥ H ⊥ · · · ⊥ H) ⊥ Va.

where Va is anisotropic. With Vh = (H ⊥ H ⊥ · · · ⊥ H), we have

V = Vt ⊥ Vh ⊥ Va as required.

To prove the uniqueness part, we use the Cancellation theorem 4.2.

Proof of uniqueness: Suppose

V ∼= Vt ⊥ Vh ⊥ Va ∼= V ′
t ⊥ V ′

h ⊥ V ′
a,

where Vt, V
′
t are totally isotropic, Vh, V

′
h are hyperbolic spaces and Va, V

′
a are

anisotropic. Taking the radical on both sides, we get

Vt ∼= rad(Vt ⊥ Vh ⊥ Va) ∼= rad(V ′
t ⊥ V ′

h ⊥ V ′
a)
∼= V ′

t .

So, by (4.2), Vh ⊥ Va ∼= V ′
h ⊥ V ′

a.
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Now let Vh = mH, V ′
h = nH (direct sum of m or n copies of H). So, we

have mH ⊥ Va ∼= nH ⊥ V ′
a. Assume m ≤ n. By (4.2), cancelling H, one by

one, we get Va ∼= V ′
a ⊥ (n −m)H. Since left side in anisotropic, m = n and

Va ∼= V ′
a. So, the uniqueness is established.

The proof is complete.

Theorem 4.2 (Cancellation). Let q, q1, q2 be three quadratic forms. Then,

q1 ⊥ q ∼= q2 ⊥ q =⇒ q1 ∼= q2.

Proof. Comes later.

Definition 4.3. Given a quadratic form (V, q), by (4.1), we have (V, q) ∼=

Vt ⊥ Va ⊥ mH. Here m = dimVh

2
is uniquely determined. Define

1. Define Witt index of V := m = dimVh

2
.

2. Va is called the anisotropic part of V .

Corollary 4.4. Suppose (V, q) is a regular quadratic space. The Witt index

of V is equals the dimension of any maximal totally isotopic subspace of V .

Proof. Since it is regular, Vt = 0 and V ∼= Vh ⊥ Va. Suppose U is a maximal
totally isotopic subspace of V and dimU = r. By theorem 3.6, there is a
hyperbolic space T ⊇ U with dimT = 2r. Since T is also regular, by (2.6) we
have, V = T ⊥ T⊥. By maximality of U , T⊥ is anisotropic. By uniqueness,
we have T ∼= Vh. So,

m =
dimVh

2
=

2r

2
= r.

The proof is complete.

4.1 Reflection

We consider reflections and projections in any inner product spaces. However,
now the field F need not be R or C. In any case, we define reflection in the
the same way for quadratic spaces.

Suppose (V,B, q) be any quadratic space.
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1. The group (is it so?!) of isomaries of V will be denoted by Oq(V ) =
O(V ). This is also called the orthogonal group.

2. Fix an anisotropic vector y ∈ V . Define

τy : V −→ V by τy(x) = x−
2B(x, y)

B(y, y)
y

Then τy is a linear transformation. More interestigly, it has the folwoing
properties:

(a) τy(y) = −y.

(b) For all x ∈ (Fy)⊥ we have τy(x) = x.

(c) Verbally, τy leaves (Fy)⊥ pointwise fixed and sends y 7→ −y.

(d) So, for y ∈ Vait follows τ 2y = id. We say τy is an involution.

(e) In fact, τy ∈ Oq(V ), which follows from the calculation:

B(τy(x), τy(x
′)) = B

(

x−
2B(x, y)

B(y, y)
y, x′ −

2B(x′, y)

B(y, y)
y

)

= B(x, x′)−
4B(x, y)B(x′, y)

B(y, y)
+
4B(x, y)B(x′, y)

B(y, y)
B(y, y) = B(x, x′).

(f) det(τy) = −1. To see this let e1 = y, e2, . . . , eN of V with ei ∈
(Fy)⊥ for all i 6= 2. By diagonalizing, (Fy)⊥ we can assume
B(ei, ej) = 0 for all i 6= j. The matrix of q with respect tothis
basis is:

(

−1 0

0
t IN−1

)

. So, det(τy) = −1.

This is not to be confused with det(V ).

(g) τy is called a hyperplane reflection. It is a reflection against
(Fy)⊥.

3. Remark: For

σ ∈ O(V ), we have στyσ
−1 = τσ(y).

So, set of hyperplane reflections {τy : q(y) 6= 0} is closed under conju-
gation in O(V ). Proof. Easy checking.
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Proof of Cancellation Theorem 4.2: Suppose q ⊥ q1 ∼= q ⊥ q2.

1. Case q is totally isotopic and q1 is regular: Let Mi be the sym-
metric matrices of qi, for i = 1, 2. Then, the symmetrices of q ⊥ qi
are

(

0 0
0 Mi

)

.

Since q ⊥ q1 ∼= q ⊥ q2

∃ E =

(

A B
C D

)

∋

(

0 0
0 M1

)

= Et

(

0 0
0 M2

)

E =

(

0 0
0 DtM2D

)

.

Since M1 is nonsingular, so is D and q1 ∼= q2.

2. Cancellation holds when q is totally isotopic: Diagolalize q1, q2.
Since the symmetric matrix of q is zero, using q ⊥ q1 ∼= q ⊥ q2, we see
both q1, q2 has same number of zeros, say r, in their diagonalization.
So, q1 = r〈0〉 ⊥ q′1, q2 = r〈0〉 ⊥ q′2. So, we have

q ⊥ r〈0〉 ⊥ q′1
∼= q ⊥ r〈0〉 ⊥ q′2.

Since, q1 is reqular, by the first case, q′1
∼= q′2. So, q1 ∼= q2.

3. The General case: In this case q is not necessarily totlally isotopic.
By diagonalization q ∼= 〈a1, . . . , an〉. Using induction, we canassume
n = 1. If a1 = 0, the theorem follows from above. So, we assume
a1 6= 0. We have 〈a1〉 ⊥ q1 ∼= 〈a1〉 ⊥ q2. Let ϕ : 〈a1〉 ⊥ q1

∼
−→ 〈a1〉 ⊥ q2

be an isometry. Write ϕ : 〈a1〉 = Fe0 and z = ϕ(e0) By theorem 4.5
there is an isometry ψ ∈ O(V ) such that ψ(z) = e0. Let τ = ψϕ. Then
τ(e0) = e0. In fact

τ =

(

1 0
λe0 η

)

where λ ∈ V ∗, η ∈ End(V ).

Claim: λ = 0. To see this let x ∈ V . Then,

0 = B(e0, x) = B(ψ(e0), ψ(x)) = B(e0, λ(x)e0 + x) = λ(x)a1.

Since a1 6= 0, we have λ(x) = 0. So, the claim is established. Therefore,

τ =

(

1 0
0 η

)

.
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For x, y ∈ V , we have

B1(x, y) = B(τ(x), τ(y)) = B(η(x), η(y))

So, η is isometry.

Theorem 4.5. Let (V, q) be a quadratic space and x.y ∈ V be such that

q(x) = q(y) 6= 0. Then, ther is an isomtry such that τ(x) = y.

Proof. Geometrically, reflection around F (x − y)⊥ would do. But we need
q(x− y) 6= 0. We compute

q(x+y)+q(x−y) = B(x+y, x+y)+B(x−y, x−y) = 2B(x, x)+2B(y, y) = 4q(x) 6= 0.

So, either q(x + y) 6= 0 or q(x − y) 6= 0. If needed, we replace y be −y and
assume q(x− y) 6= 0. Also,

q(x− y) = B(x− y, x− y) = B(x, x)− 2B(x, y) +B(y, y)

= 2(B(x, x)− B(x, y)) = 2B(x, x− y).

So, we have

τx−y(x) = x−
2B(x, x− y)

q(x− y)
(x− y) = x− (x− y) = y.

The proof is complete.
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5 Witt’s Chain Equivalence Theorem

In this section we exploit binary forms.

Proposition 5.1. Let q = 〈a, b〉, q′ = 〈c, d〉, be two binary regular forms.

Then, q ∼= q′ if and only if d(q) = d(q′) and q, q′ represent a common element

e ∈ Ḟ .

Proof. Suppose q ∼= q′. Let A =

(

a 0
0 b

)

be the symmetric matrix of

q and B =

(

c 0
0 d

)

be the symmetric matrix of q′. So, A = EtBE and

detA = detE2 detB. So, d(q) = d(q′). Write E =

(

x y
z w

)

. Then,

(

a 0
0 b

)

=

(

x z
y w

)(

c 0
0 d

)(

x y
z w

)

=

(

cx2 + dz2 ∗
∗ cy2 + dw2

)

So,
e := a = q(1, 0) = cx2 + dz2 = q′(x2, z2).

is the common element represented.

Conversely, let e ∈ D(q) ∩ D(q′). By Representation criteria q ∼= 〈e, e′〉.
Taking determinants ee′ = abt2. So,

q ∼= 〈e, e′〉 ∼= 〈e,
abt2

e
〉 ∼= 〈e, abe〉. Similarly, q′ ∼= 〈e, cde〉.

Again, ab = cdu2. The proof is complete.

Definition 5.2. Suppose q = 〈a1, . . . , an〉, q
′ = 〈b1, . . . , bn〉 two diagonal

forms of dimension n.

1. We say q, q′ are simply-equivalent, if there is i, j (possibly equal) such

that

(a) 〈ai, aj〉 ∼= 〈bi, bj〉,

(b) and ak = bk for all k 6= i, j.
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2. We say q, q′ are chain equivalent, if there exists a sequence

q0 = q, q1, . . . , qm−1, qm = q′ ∋ qi, qi+1 are simply equivalent.

In this case, we write q ≈ q′.

3. Clearly, q ≈ q′ =⇒ q ∼= q′.

The converse:

Theorem 5.3 (Chain Equivalence Theorem). Suppose f = 〈a1, . . . , an〉, g =

〈b1, . . . , bn〉 two diagonal forms of dimension n. Then,

f ∼= g⇐⇒f ≈ g.

Proof. We only prove =⇒: For a permuation σ ∈ Sn, define fσ = 〈aσ(1), . . . , aσ(n)〉.
Since Sn is generated by transpostions, we have fσ ≈ f , because

(

a 0
0 b

)

=

(

0 1
1 0

)(

b 0
0 a

)(

0 1
1 0

)

.

Using this we can assume all the zero entries in f, g are at the end. Since
f ∼= g, it follows they have same number of zeros. By cancellation, we can
assume both f, g are regular. So, ai 6= 0, b 6= 0 for all i.

Without loss we assume n ≥ 3 and we will use induction. Since f ≈ g,
we have D(f) = D(g). So, b1 ∈ D(f).

Claim: f ≈ 〈b1, c2, . . . , cn〉 for some ci 6= 0. To see this consider the set

F = {f ′ = 〈c1, c2, . . . , cn〉 : f ≈ f ′}

Let h = 〈c1, c2, . . . , cn〉 ∈ F the subform 〈c1, c2, . . . , cp〉 represent b1, with
p ≤ n minimum. We will prove p = 1. Suppose p ≥ 2. We have

b1 =

p
∑

i=1

cix
2
i .

Since p is minimal, d = c1x
2
1 + c2x

2
2 6= 0. By Representation theorem 2.4,

〈c1, c2〉 ∼= 〈d, c1c2d〉 (the 2nd coordiante is obtained by adjusting determinant).
Therefore,

f ≈ h = 〈c1, c2, c3 . . . , cn〉 ≈ 〈d, c1c2d, c3, . . . , cn〉 ≈ 〈d, c3, . . . , cn, c1c2d〉.
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Now, first p− 1 terms represents b1. Which is a contradiction and p = 1.

So, h = 〈b1, c2, . . . , cn〉 for some ci. It follows

〈b1, c2, . . . , cn〉 ∼= 〈b1, b2, . . . , bn〉. By cancellation 〈c2, . . . , cn〉 ∼= 〈b2, . . . , bn〉.

By induction
〈c2, . . . , cn〉 ≈ 〈b2, . . . , bn〉.

Therefore,
f ≈ 〈b1, c2, . . . , cn〉 ≈ 〈b1, b2, . . . , bn〉 = g.

The proof is complete.
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6 Tensor Product of Quadratic Spaces

Lam call it Kronecker Tensor Product of Quadratic Spaces.

Definition 6.1. Let (V1, B1, q1), (V2, B2, q2) be quadratic forms over F , with

dimV1 = m, dimV2 = n. Write V = V1 ⊗ V2. Define

B : V×V −→ F by B(v1⊗v2, v
′
1⊗v

′
2) = B1(v1, v

′
1)B2(v2, v

′
2) ∀vi, v

′
i ∈ Vi.

It is easy to see that B extends to a symmetric bilinear pairing on V × V .

Method: To do this check it extends to a map V −→ V ∗, which I skip

(Exercise.

So, (V,B) is a quadratic space with dimV = mn. Let q = qB. Obviously,

q(v1 ⊗ v2) = q1(v1)q2(v2). We denote q = q1 ⊗ q2 or = q1q2.

Now we coordinatize. Suppose {e1, . . . , em} is a basis of V1 and {ǫ1, . . . , ǫn}
is a basis of V1,. Let aij = B1(ei, ej) and M = (aij). Also, let blk = B2(ǫl, ǫk)
and N = (alk). We have

{e1 ⊗ ǫ1, . . . , e1 ⊗ ǫn; , . . . ; em ⊗ ǫ1, . . . , em ⊗ ǫn} is a basis of V.

With respect this basis, the symmetric matrix of B is













a11N a12N · · · a1mN
a21N a22N · · · a2mN
a31N a32N · · · a3mN
· · · · · · · · · · · ·
am1N am2N · · · ammN













. This is also called the Kronecker product.

This Kronecker product of quadratatic forms satifies the following:

1. (Commutativity): q1 ⊗ q2 ∼= q2 ⊗ q1.

2. (Associativity) (q1 ⊗ q2)⊗ q3 ∼= q1 ⊗ (q2 ⊗ q3).

3. (Distributivity): (q ⊗ (q1 ⊥ q2) ∼= (q ⊗ q1) ⊥ (q ⊗ q2).
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4. For diagonal forms, distributivity takes the shape:

〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 ∼= 〈a1b1, . . . , a1bn; . . . ; amb1, . . . , ambn〉

Notation: For a nonnegetative integer r and a quadratic form, denote

r · f = rf := f ⊥ . . . ⊥ f (r copies).

Corollary 6.2. Suppose q is a regular quadratic form. Then, q ⊗ H ∼=

(dim q)H.

Proof. We diagonalize q = 〈a1, . . . , am〉, with ai 6= 0. Then,

q ⊗H = 〈a1, . . . , am〉 ⊗H ∼= (〈a1〉H) ⊥ · · · ⊥ (〈am〉H) ∼= mH

The proof is complete.
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7 Generation of O(V ) by reflections

Recall, the group O(V ) of all isometries σ : V
∼
−→ V is called orthogonal

group. We will prove that the orthogonal group O(V ) of a regular quadratic
space is generated by reflections.

Theorem 7.1 (Cartan-Dieudonné). Suppose (V,B, q) is regular quadratic

space, with dimV = n. Then, every isometry σ ∈ Oq(V ) is a product of at

most n hyperplane reflections.

The proof comes after a few consequences.

Corollary 7.2. Use the notations as in (7.1). Suppose σ ∈ Oq(V ) is product

of n hyperplane reflections. Then, the first (or similarly the last) reflection

in the product can be choosen arbitrarily.

Proof. Suppose σ = τ1τ2 · · · τn where τi are hyperplane reflections. Let τ
be any hyperplane reflection. By (7.1), τσ = τ ′2 · · · τ

′
r where r ≤ n + 1. We

have det(σ) = (−1)n = − det(τσ) = (−1)r. So, n− r = 2k for some k. Since
r ≤ n+ 1, we have r ≤ n. We have τ 2 = 1. So,

σ = τ 2σ = τ(τ ′2 · · · τ
′
r) as desired.

The proof is complete.

Notation. Denote SO(V ) = {σ ∈ O(V ) : det σ = 1}. Here "S" is for
"Special". Recall the analogy: GLn(F ) and SLn(F ). Here "GL" abbreviates
"General Linear".

Corollary 7.3. If dimV = 2, then every isometry with determinant −1 is a

reflection. If dimV ≤ 3, then every σ ∈ SO(V ) is product of two reflections.

Proof. It follows immediately from (7.1), by comparing determinants.

Corollary 7.4. (dimV = n). Let σ ∈ O(V ). Define

L(σ) = {v ∈ V : σ(v) = v}

the fixed subspace of σ.

29



1. If σ is product of r reflections (r ≤ n), then dimL(σ) ≥ n− r.

2. If L(σ) = 0, then σ cannot be written as product of less than n reflec-

tions.

Proof. (2) follows from (1). Now suppose, σ = τ1 · · · τr, where τi are re-
flections. Recall dimL(τi) = n − 1. Then, L(τ1) ∩ · · · ∩ L(τr) ⊆ L(σ). But
dim(L(τ1) ∩ · · · ∩ L(τr)) ≥ n− r. The proof is complete.

Exercise. Give a proof of dim(L(τ1) ∩ · · · ∩ L(τr)) ≥ n− r. Follwing exact
sequence helps:

0 // V ∩W // V ⊕W // V +W // 0 where V,W are subspaces of U.

Notations. For σ ∈ O(V ) define

1. σ̃ = σ − 1V .

7.1 Proof of theorem 7.1

We proceed to prove theorem 7.1.

Lemma 7.5. We have L(σ) = Im(σ̃)⊥.

Proof. Let v ∈ L(σ). So, σ(v) = v. For w ∈ V , we have

B(v, σ̃(w)) = B(v, σ(w)−w) = B(v, σ(w))−B(v, w) = B(σ(v), σ(w))−B(v, w) = 0.

So, L(σ) ⊆ Im(σ̃)⊥. Now, let v ∈ Im(σ̃)⊥. For w ∈ V we have

B(σ(v)−v, σ(w)) = B(σ(v), σ(w))−B(v, σ(w)) = B(v, w)−B(v, σ(w)) = −B(v, σ̃(w)) = 0.

Replacing σ(w) by w, we get σ(v) − v ∈ rad(V ) = 0. So, v ∈ L(σ). So,
Im(σ̃)⊥ ⊆ L(σ). The proof is complete.

Remark. It is easy to see, for a subspace W of a quadratic space, (W,B) is
totally isotropic if and only if W ⊆ W⊥.
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Corollary 7.6. Two things:

1. (L(σ))⊥ = Im(σ̃).

2. Also,

σ̃2 = 0⇐⇒ Im(σ̃) is totally isotropic.

Proof. By (7.5), (1) follows by taking ⊥. Now, suppose σ̃2 = 0. We have
Im(σ̃) is totally isotropic if and only if

Im(σ̃) ⊆ Im(σ̃)⊥ = L(σ) := ker(σ̃) by (7.5)⇐⇒ σ̃2 = 0.

The proof is complete.

Corollary 7.7. Let w ∈ V . Then,

σ̃(w) ⊥ σ̃(w)⇐⇒ σ̃(w) ⊥ w.

Proof. We have

B(σ̃(w), σ̃(w)) = B(σ(w)−w, σ(w)−w) = B(σ(w), σ(w))−2B(σ(w), w)+B(w,w)

= 2B(w,w)− 2B(σ(w), w) = 2B(w − σ(w), w) = −2B(σ̃(w), w).

The proof is complete. .

Corollary 7.8. Suppose σ̃2 6= 0. Then,

1. ∃ an anisotropic vector w 6= 0 such that z = σ̃(w) is anisotropic or

zero.

2. In case z 6= 0, and σ1 = τzσ, then w ∈ L(σ1).

Proof. Will come later, because it is technical.

Proof of (7.1): We use induction on n = dimV . If n = 1 then O(V ) =
{±1}, where −1 represents the reflection x 7→ −x. (Prove it). So, assume
n > 1 and the theorem holds for all regular forms of dimension less than n.
Now suppose σ ∈ O(V ). We prove by contrapositive. So, assume σ does not
satisfy the theorem: this means either it is not product of reflections or it
is a product of more than n reflections. We claim σ̃2 = 0. If not, by (7.8),
there is a w ∈ V as stated.
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1. Assume z = σ̃(w) = 0. Then, σ(w) = w. It follows σ((Fw)⊥) ⊆
(Fw)⊥. So, σ induces an isometry on (Fw)⊥. So, σ|(Fw)⊥ = τ1 · · · τr
with r ≤ n − 1 and τi ∈ O((Fw)

⊥) are reflections. Extend τi to V by
sending w 7→ w, which we continute to denote by τi. The extensions
are also reflections. So, σ itself is product of r ≤ n−1 reflections. This
is a contradiction.

2. Now, assume z = (̃σ)(w) 6= 0. In this case, with σ1 = τzσ, we have
σ1(w) = w. Arguing same way as σ1 is is product of r ≤ n − 1 reflec-
tions. So, σ = τzσ1 is is product of r ≤ n reflections. This is also a
contradiction.

3. Remark. Note we used w is anisotropic, otherwise there would be no
guarantee that dimFw⊥ < n, which is needed to apply induction.

So, it follows σ̃2 = 0, as was claimed. So, Im(σ̃) ⊆ ker(σ̃) = L(σ).

1. Suppose L(σ) is not totally isotropic. Then, ∃ w ∈ L(σ) that is
anisotropic. So, the the same argument above σ would be product of
r ≤ n reflections, which would be a contradiction. So, L(σ) is totally
isotropic. So,

L(σ) ⊆ L(σ)⊥ = Im(σ̃) by (7.6). So, L(σ) = Im(σ̃).

2. By dimension formula

n =dimL(σ) + dim Im(σ̃) = 2 dimL(σ) is even.

3. σ acts as identity of L(σ) and also acts as identity on

V

L(σ)
=

V

(σ − 1V )(V )
.

So, det σ = 1 i. e. σ ∈ SO(V ).

4. So, we have established, if

σ does not satisfy the theorem =⇒ detσ = 1.
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5. Now, τ be any reflection. Then det(τσ) = −1. By (4), τσ satisfy
the theorem and hence product of r ≤ n reflection. So, σ = τ(τσ)
is product of r + 1 ≤ n + 1 reflection. Since n = dimV is even, and
det σ = 1, σ is not product of n+1 reflections. So, σ is product of ≤ n
reflections. The proof is complete.

Proof of (7.8): Assume (1) of lemma 7.8 is false. We will prove σ̃2 = 0.
The assumption means

w 6= 0 ∈ V anisotropic =⇒ σ̃(w) 6= 0 and is isotropic.

This means
σ̃(w) ⊥ σ̃(w) By (7.7) σ̃(w) ⊥ w.

The binary form Fw ⊕ F σ̃(w) is not regular, because its matrix is

(

q(w) 0
0 0

)

. Since V is regular dimV ≥ 3.

Claim : ∀ y ∈ V y ⊥ σ̃(y).

If y = 0 the claim is obvious and if y 6= 0 and is anisotropic, it is observed
above. So, assume y 6= 0 is isotropic. Then, by (3.6) Fy ⊕ Fv ∼= H for some
v. Now, by decomposition theorem, we write V = ((Fy ⊕ Fv) ⊥ rH ⊥ Va.
Since dimV ≥ 3, there is a anisotropic w such that y ⊥ w. Write u = y+ ǫw
with ǫ ∈ Ḟ .

B(u, u) = B(y + ǫw, y + ǫw) = ǫ2B(w,w) 6= 0.

So, u = y + ǫw is anisotropic and nonzero ∀ǫ ∈ Ḟ . So, by the contrary
hypothesis, u ⊥ σ̃(u) for all ǫ ∈ Ḟ . That means,

0 = B(σ̃(u), u) = B(σ̃(y + ǫw), y + ǫw)

= B(σ̃(y), y) + ǫ[B(σ̃(w), y) + B(σ̃(y), w)] + ǫ2B(σ̃(w), w)

Since the last term is zero, we have,

0 = B(σ̃(y), y) + ǫ[B(σ̃(w), y) + B(σ̃(y), w)] ∀ ǫ ∈ Ḟ ..

So, B(σ̃(y), y) = 0. This establishes the claim.
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By (7.7), we have Im(σ̃) is totally isotopic. By (7.6(2)), σ̃2 = 0. This
establishes (1) of the lemma.

To prove (2), we compute

σ1(w) = τz(σ(w)) = σ(w)−
2B(σ(w), z)

q(z)
z = σ(w)−

2B(σ(w), σ̃(w))

q(σ̃(w))
σ̃(w)

= σ(w)−
2(B(w,w)−B(σ(w), w))

2(B(w,w)−B(σ(w), w))
σ̃(w) = w.

The proof is complete. Lam gives a geometric argument.
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