Chapter X

Milnor K-theory, Milnor Conjecture Gersten Conjecture

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

November 1, 2013

1 Pfister Forms

Definition 1.1. For n elements $a_{1}, a_{2}, \ldots, a_{n} \in \dot{F}$ define

$$
\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle:=\otimes_{i=1}^{n}\left\langle 1, a_{i}\right\rangle .
$$

This form has dimension 2^{n}. It is called an n-fold Pfister Form. By convention, 0 -fold Pfister Form is defined to be $\langle 1\rangle$.

1. An 1 -fold Pfister Form $\langle\langle a\rangle\rangle=\langle 1, a\rangle$.
2. A 2 -fold Pfister Form $\left\langle\left\langle a_{1}, a_{2}\right\rangle\right\rangle=\left\langle 1, a_{1}, a_{2}, a_{1} a_{2}\right\rangle=\left(\frac{-a_{1},-a_{2}}{F}\right)$.
3. If $a_{i}=-1$ for some i, then $\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right\rangle=2^{n-1} \mathbb{H}$.
4. Also, $\left\langle\left\langle 1, a_{2}, \ldots, a_{n}\right\rangle\right\rangle=2\left\langle\left\langle a_{2}, \ldots, a_{n}\right\rangle\right\rangle$.

Recall, the fundamental ideal of $W(F)$, was defined to be the ideal $I=$ $I(F)$ of all even dimensional forms in $W(F)$.

Proposition 1.2. The ideal $I(F)^{n}$ of $W(F)$ is additively generated, as an abelian group, by all the n-fold Pfister forms.

Proof. By II.1.2 $I(F)$ is generated, additively, by $\langle\langle a\rangle\rangle$. Therefore, $I(F)^{n}$ is additively generated by n-fold Pfister forms.

Proposition 1.3. We have the following:

1. First,

$$
\forall x \in D\langle\langle a\rangle\rangle, \quad\langle\langle a, b\rangle\rangle \cong\langle\langle a, b x\rangle\rangle
$$

2. Also,

$$
\forall y \in D\langle a b\rangle, \quad\langle\langle a, b\rangle\rangle \cong\langle\langle y, a b\rangle\rangle
$$

Proof. We have

$$
\begin{gathered}
\langle\langle a, b\rangle\rangle \cong\langle 1, a\rangle \otimes\langle 1, b\rangle \cong\langle 1, a, b, a b\rangle \cong\langle 1, a\rangle \perp\langle b, a b\rangle \cong\langle 1, a\rangle \perp\langle b\rangle\langle 1, a\rangle \\
\cong\langle 1, a\rangle \perp\langle b\rangle\langle x, a x\rangle \cong\langle 1, a\rangle \perp\langle x b, a b x\rangle \cong\langle 1, a x b, a b x\rangle \cong\langle\langle a, x b\rangle\rangle
\end{gathered}
$$

Similarly,

$$
\langle\langle a, b\rangle\rangle \cong\langle 1, a b\rangle \perp\langle a, b\rangle \cong\langle 1, a b\rangle \perp\langle y, y a b\rangle \cong\langle 1, a b, y, y a b\rangle \cong\langle\langle y, a b\rangle\rangle
$$

The proof is complete.

1.1 one and two fold to n-fold

Definition 1.4. Let $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ and $\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle$ be two n-fold Pfister forms. We say that they are simply P-equivalent, if there exists $i \leq j$ such that

1. $\left\langle\left\langle a_{i}, a_{j}\right\rangle\right\rangle \cong\left\langle\left\langle b_{i}, b_{j}\right\rangle\right\rangle$ and
2. $a_{k}=b_{k} \quad \forall k \neq i, j$.

More generally, two forms φ, γ are said to be chain P-equivalent, if there is a sequence of forms:

$$
\varphi=\varphi_{0}, \varphi_{1}, \cdots, \varphi_{m-1}, \varphi_{m}=\gamma
$$

such that $\forall i \varphi_{i}$ is simply P-equivalent to φ_{i+1}. In this case, we write $\varphi \simeq \gamma$.

1. \simeq is an equivalence relation.
2. $\simeq \Longrightarrow \cong$.
3. ALso, recall, we worked with chain equivalence in simple equivalence in section I.5.

Definition 1.5. Suppose φ is an n-fold Pfister form and it represents 1 . Then $\varphi \cong\langle 1\rangle \perp \varphi^{\prime}$. By cancellation. φ^{\prime} is uniquely determined, upto an isometry. This form φ^{\prime} is called the pure subform of φ. We will use this notation φ^{\prime}. Note, by direct expansion, we can see a diagonal form of φ^{\prime}.

Theorem 1.6 (Pure Subform). Suppose $\varphi=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ is an n-fold Pfister form and $b \in D_{F}\left(\varphi^{\prime}\right)$. Then,

$$
\varphi \approx\left\langle\left\langle b, b_{2}, \ldots, b_{n}\right\rangle\right\rangle \quad \text { for some } b_{i} \in \dot{F}
$$

Proof. Use induction on n. If $n=1, \varphi=\left\langle 1, a_{1}\right\rangle$. Then, $\varphi^{\prime}=\left\langle a_{1}\right\rangle$. Then $b \in D\left(\varphi^{\prime}\right) \Longrightarrow b=a x^{2}$. So, $\varphi=\left\langle 1, a_{1}\right\rangle=\langle 1, b\rangle$. Now, assume that the theorem holds for $(n-1)$-fold forms. Write

$$
\tau=\left\langle\left\langle a_{1}, \ldots, a_{n-1}\right\rangle\right\rangle . \text { So, } \quad \varphi \cong \tau \otimes\left\langle 1, a_{n}\right\rangle \cong \tau \perp\left\langle a_{n}\right\rangle \tau \text {. }
$$

Therefore,
$\varphi^{\prime}=\tau^{\prime} \perp\left\langle a_{n}\right\rangle \tau$ So, $b \in D\left(\varphi^{\prime}\right) \Longrightarrow b=x+a_{n} y \quad$ where $\quad x \in D\left(\tau^{\prime}\right) \cup\{0\}, y \in D(\tau) \cup\{0\}$.
Case 1. Suppose $y=0$. Then, $b=x \in D\left(\tau^{\prime}\right)$. By induction,

$$
\tau \approx\left\langle\left\langle b, b_{2} \ldots, b_{n-1}\right\rangle\right\rangle \text { and hence } \varphi=\tau \otimes\left\langle\left\langle a_{n}\right\rangle\right\rangle \approx\left\langle\left\langle b, b_{2} \ldots, b_{n-1}, a_{n}\right\rangle\right\rangle
$$

Case 2. Suppose $y \neq 0$. We will prove

$$
\varphi \approx\left\langle\left\langle a_{1}, \ldots, a_{n-1}, a_{n} y\right\rangle\right\rangle .
$$

Since $y \in D(\tau)$, we can write $y=t^{2}+y_{0}$ with $\left.y_{0} \in D\left(\tau^{\prime}\right)\right) \cup\{0\}$. If $y_{0}=0$ then $y=t^{2}$ and there is nothing to prove. So, assume $y_{0} \neq 0$ and hence $y_{0} \in D\left(\tau^{\prime}\right)$. By induction

$$
\tau \approx\left\langle\left\langle y_{0}, c_{2}, \ldots, c_{n-1}\right\rangle\right\rangle \quad \text { where } c_{i} \in \dot{F}
$$

. Therefore,

$$
\varphi \approx\left\langle\left\langle y_{0}, c_{2}, \ldots, c_{n-1}, a_{n}\right\rangle\right\rangle
$$

Since, $y=t^{2}+y_{0} \in\left\langle\left\langle y_{0}\right\rangle\right\rangle$, by (1.3(1)), $\left\langle\left\langle y_{0}, a_{n}\right\rangle\right\rangle \approx\left\langle\left\langle y_{0}, a_{n} y\right\rangle\right\rangle$. Hence,
$\varphi \approx\left\langle\left\langle y_{0}, c_{2}, \ldots, c_{n-1}, a_{n}\right\rangle\right\rangle \approx\left\langle\left\langle y_{0}, c_{2}, \ldots, c_{n-1}, a_{n} y\right\rangle\right\rangle \approx\left\langle\left\langle a_{1}, 2_{2}, \ldots, 2_{n-1}, a_{n} y\right\rangle\right\rangle$
This establishes our claim above.
To complete the proof, if $x=0$ then $a_{n} y=b$ and we are done. So, assume $x \neq 0$ and so $x \in D\left(\tau^{\prime}\right)$. By induction,

$$
\tau \approx\left\langle\left\langle x, d_{2}, \ldots, d_{n-1}\right\rangle\right\rangle \quad \text { for some } d_{i} \in \dot{F}
$$

Since $x+a_{n} y \in\left\langle x, a_{n}\right\rangle$, by $(1.3(2)),\left\langle\left\langle x, a_{n} y\right\rangle\right\rangle \cong\left\langle\left\langle x+a_{n} y, a_{n} x y\right\rangle\right\rangle$. Therefore,

$$
\begin{gathered}
\varphi=\tau \otimes\left\langle\left\langle a_{n} y\right\rangle\right\rangle \approx\left\langle\left\langle x, d_{2}, \ldots, d_{n-1}, a_{n} y\right\rangle\right\rangle \approx\left\langle\left\langle x+a_{n} y, d_{2}, \ldots, d_{n-1}, a_{n} x y\right\rangle\right\rangle \\
\approx\left\langle\left\langle b, d_{2}, \ldots, d_{n-1}, a_{n} x y\right\rangle\right\rangle
\end{gathered}
$$

The proof is complete.
The following follows from the proof of (1.6.
Proposition 1.7. Suppose $\tau=\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle\right\rangle$ and $y \in D(\tau)$. Then, for any $a_{n} \in \dot{F}$, we have

$$
\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right\rangle\right\rangle \approx\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1}, a_{n} y\right\rangle\right\rangle
$$

In particular,

$$
2 \tau=\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1}, 1\right\rangle\right\rangle \approx\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1}, y\right\rangle\right\rangle
$$

and

$$
\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1},-y\right\rangle\right\rangle \approx\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n-1},-1\right\rangle\right\rangle \quad \text { is hyperbolic. }
$$

Theorem 1.8. If a Pfister form φ is isotopic, then it is hyperbolic.
Proof. In this case, φ contains a hyperboloc plane \mathbb{H}. So, $\varphi=\langle 1\rangle \varphi^{\prime}$ and $-1 \in \varphi^{\prime}$. So, by (1.6), $\varphi \approx\left\langle\left\langle-1, b_{2}, \ldots\right\rangle\right\rangle$, which is hyperbolic.

Definition 1.9. Let q be a quadratic form. Define $G(q)=G_{F}(q)=\{c \in$ $\dot{F}:\langle c\rangle q \cong q\}$. Note $G(q)$ is a subgroup of $\dot{F} . G(q)$ is called the group of similarity factors of q. Also note, $\dot{F}^{2} \subseteq G(q)$.

Definition 1.10. For any Pfister form φ over $F, D(\varphi)=G(\varphi)$. In particular, φ is a group form.

Proof. Since, φ represents $1, G(\varphi) \subseteq D(\varphi)$. Suppose $c \in D(\varphi)$. Then $\langle\langle c\rangle\rangle \varphi \cong \varphi \perp\langle c\rangle \varphi$ contains the hyperbolic $\mathbb{H} \cong\langle c,-c\rangle$. So, by (1.7) $\varphi \perp\langle c\rangle \varphi$ is hyperbolic space. By I.1.4(3), $\varphi \cong\langle c\rangle \varphi$. The proof is complete.

Corollary 1.11. For integers $n \geq 0$, the nonzero sums of 2^{n} squares in F form a subgroup of \dot{F}.

Proof. Follows form (1.10), by application of $\langle\langle 1,1, \ldots, 1\rangle\rangle$. The proof is complete.

Theorem 1.12.

$$
\text { Let } \quad \tau=\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}\right\rangle\right\rangle(r \geq 0), \quad \gamma=\left\langle\left\langle d_{1}, d_{2}, \ldots, d_{s}\right\rangle\right\rangle(s \geq 0)
$$

And $e_{1} \in D\left(\tau \gamma^{\prime}\right)$. Then, $\exists e_{2}, \ldots, e_{s} \in \dot{F}$ suchthat

$$
\tau \gamma=\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, e_{1}, e_{2}, \ldots, e_{s}\right\rangle\right\rangle
$$

Proof. Prove induction on s. If $s=1$ and $\gamma^{\prime}=\left\langle d_{1}\right\rangle$. So, $e_{1}=d_{1} x$, with $x \in D(\tau)$. By (1.7),

$$
\tau \gamma=\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1} x\right\rangle\right\rangle=\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, e_{1}\right\rangle\right\rangle
$$

Now, assume the result holds for $\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s-1}\right\rangle\right\rangle$. Write $\sigma:=$ $\left\langle\left\langle d_{1}, d_{2}, \ldots, d_{s-1}\right\rangle\right\rangle$. So,
$\gamma=\sigma\left\langle d_{s}, 1\right\rangle \cong\left\langle d_{s}\right\rangle \sigma \perp \sigma \quad$ and $\quad \gamma^{\prime}=\left\langle d_{s}\right\rangle \sigma \perp \sigma^{\prime} . \quad$ So, $\quad \tau \gamma^{\prime}=\left\langle d_{s}\right\rangle \tau \sigma \perp \tau \sigma^{\prime}$.

So,

$$
e_{1}=d_{s} x+y \quad \text { for some } x \in D(\tau \sigma) \cup\{0\}, \quad y \in D\left(\tau \sigma^{\prime}\right) \cup\{0\}
$$

Case $x \neq 0, y \neq 0$. We have two steps

1. By (1.7),

$$
\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s} x\right\rangle\right\rangle
$$

2. By induction,

$$
\begin{equation*}
\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s-1}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, y, e_{2}, \ldots, e_{s-1}\right\rangle\right\rangle \tag{*}
\end{equation*}
$$

Combining these two equations

$$
\begin{aligned}
& \left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, d_{1}, d_{2}, \ldots, d_{s-1}, d_{s} x\right\rangle\right\rangle \\
\approx & \left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, y, e_{2}, \ldots, e_{s-1}, d_{s} x\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, b_{2}, \ldots, b_{r}, e_{1}, e_{2}, \ldots, e_{s-1}, d_{s} x y\right\rangle\right\rangle \quad \text { by }(1.3(2)) .
\end{aligned}
$$

Corollary 1.13. Let q be a Pfister form. Write $q=\langle 1, b, e\rangle \perp\left\langle b_{1} \ldots, b_{*}\right\rangle$. Then, $q=\left\langle\left\langle b, e, e_{2} \ldots, e_{2}\right\rangle\right\rangle$.

Proof. By Pure Subform Theorem 1.6, $q \cong\langle\langle b\rangle\rangle \gamma$ for sone Pfister form $\gamma=\left\langle\left\langle b_{1}, \ldots, b_{s}\right\rangle\right\rangle$. So, we have

$$
q=\langle 1, b\rangle \perp\langle e, * \ldots, *\rangle \cong\langle\langle b\rangle\rangle \perp\langle\langle b\rangle\rangle \gamma^{\prime} . \quad \text { By Cancellation } e \in\langle\langle b\rangle\rangle \gamma^{\prime}
$$

By theorem 1.12, $\langle\langle b\rangle\rangle \gamma \approx\left\langle\left\langle b, e, e_{2}, \ldots, e_{s}\right\rangle\right\rangle$. The proof is complete.
Theorem 1.14 (P-Equivalence). Let φ, ψ be two n-fold Pfister forms. Then, $\varphi \cong \psi \Longleftrightarrow \varphi \approx \psi$.

Proof. Clearly, $\varphi \approx \psi \Longrightarrow \varphi \cong \psi$. Now, assume $\varphi \cong \psi$. Write

$$
\varphi=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle \quad \text { and } \quad \psi=\left\langle\left\langle b_{1}, \ldots, b_{n}\right\rangle\right\rangle
$$

For integers $0 \leq r \leq n$ we prove

$$
\left(\mathrm{A}_{\mathrm{r}}\right) \quad \exists \quad c_{r+1}, \ldots, c_{n} \in \dot{F} \quad \ni \varphi \approx\left\langle\left\langle b_{1}, \ldots, b_{r}, c_{r+1}, \ldots, c_{n}\right\rangle\right\rangle .
$$

Theorem would be established with $r=n$. There is nothing to prove with $r=0$, with $c_{i}=a_{i} \forall i$. Assume A_{r} is true. Write

$$
\tau=\left\langle\left\langle b_{1}, \ldots, b_{r}\right\rangle\right\rangle, \beta=\left\langle\left\langle b_{r+1}, \ldots, b_{n}\right\rangle\right\rangle, \quad \gamma=\left\langle\left\langle d_{r+1}, \ldots, d_{n}\right\rangle\right\rangle .
$$

Write $s=n-r$. Then, γ is an s-fold Pfister form. By induction $\varphi \approx \tau \gamma$. So,

$$
\begin{gathered}
\tau \beta=\psi \cong \varphi \cong \tau \gamma . \quad \text { Hence } \quad \tau \perp \tau \beta^{\prime} \cong \tau \perp \tau \gamma^{\prime} . \text { Hence } \quad \tau \beta^{\prime} \cong \tau \gamma^{\prime} . \\
\text { Hence } \quad b_{r+1} \in D\left(\beta^{\prime}\right) \subseteq D\left(\tau \beta^{\prime}\right)=D\left(\tau \gamma^{\prime}\right) .
\end{gathered}
$$

By theorem 1.12,
$\left\langle\left\langle b_{1}, \ldots, b_{r}, d_{r+1}, \ldots, d_{n}\right\rangle\right\rangle \approx\left\langle\left\langle b_{1}, \ldots, b_{r}, b_{r+1}, c_{r+2}, \ldots, c_{n}\right\rangle\right\rangle$ for some $c_{r+2}, \ldots, c_{n} \in \dot{F}$.
This establishes $\left(A_{r+1}\right)$. The proof is complete.

2 Milnor Conjecture

Definition 2.1. Suppose F is a field. The Milnor K-theory is defined as:

$$
K_{\bullet}^{M}(F)=\oplus_{n=0}^{\infty} K_{n}(F):=\frac{T_{\mathbb{Z}}(\dot{F})}{(\langle a \otimes(1-a): a \in \dot{F}\rangle)}
$$

where $T_{\mathbb{Z}}(\dot{F})$ denotes the tensor algebra of \dot{F} over \mathbb{Z}. Note $K_{0}^{M}(F)=$ $\mathbb{Z}, K_{1}^{M}(F)=\dot{F}$.

Proposition 2.2. Let F be a field and $I:=I(F) \subseteq W(F)$ be the fundamental ideal. Consider the graded algebra $R(I):=\bigoplus_{n=0}^{\infty} \frac{I^{n}}{I^{n+1}}$ Then, there is a ring homomorphism of graded rings

$$
\varphi: T_{\mathbb{Z}}(F) \longrightarrow R(I) .
$$

Proof. First, note $R_{0}(I)=\mathbb{Z}, R_{1}(I)=I$. Define an map

$$
\varphi_{0}: K_{1}^{M}(F)=\dot{F} \longrightarrow R(I) \quad \text { by } \quad \varphi_{0}(a)=[\langle\langle-a\rangle\rangle]:=[\langle 1,-a\rangle]
$$

We wish to prove that this is a homomorphism of \mathbb{Z}-modules. We have

$$
0=[\langle 1,-a\rangle\langle 1,-b\rangle]=[\langle 1,-a,-b, a b\rangle] .
$$

So,

$$
\begin{gathered}
\varphi_{0}(a b)=[\langle 1,-a b\rangle]=[\langle 1,-a,-b, a b\rangle]+[\langle 1,-a b\rangle] \\
=[\langle 1,1,-a,-b\rangle]+[\langle a b,-a b\rangle]=[\langle 1,1,-a,-b\rangle]=\varphi_{0}(a)+\varphi_{0}(b)
\end{gathered}
$$

This established that φ_{0} is \mathbb{Z}-linear homomorphism. So, by unversal property of tensor algebra, φ_{0} extends to φ as follows:

The proof is complete.

Proposition 2.3. With Notations as in (2.2), we have

$$
\forall a \in \dot{F} \quad \varphi(a \otimes(1-a))=0
$$

Proof. Since φ is a homomorphism of rings,
$\varphi(a \otimes(1-a))=\varphi(a) \varphi(1-a)=[\langle 1,-a\rangle][\langle 1,-(1-a)\rangle]=[\langle 1,-a,-(1-a), a(1-a)\rangle]$
Since $1 \in D(\langle a, 1-a\rangle)$, we have $\langle a, 1-a\rangle \cong\langle 1, a(1-a)\rangle$. Adding $\langle-a,-(1-a)\rangle$ to both sides,

$$
\text { in } \begin{gathered}
W(F) \quad 0=\overline{\langle a, 1-a\rangle}+\overline{\langle-a,-(1-a)\rangle}=\overline{\langle 1, a(1-a)\rangle}+\overline{\langle-a,-(1-a)\rangle} \\
=\overline{\langle 1,-a,-(1-a), a(1-a)\rangle}
\end{gathered}
$$

The proof is complete.
Theorem 2.4. There is a homomorphism

$$
\psi: K_{\bullet}^{M}(F) \longrightarrow R(I) \quad \text { sending } \quad\langle a\rangle \mapsto[\langle\langle-a\rangle\rangle]
$$

of graded rings.
Proof. Follows from propostions 2.2, 2.3. The proof is complete.
Theorem 2.5. In fact ψ factors through

$$
\Psi: \frac{K_{\bullet}^{M}(F)}{2 K_{\bullet}^{M}(F)} \longrightarrow R(I) \quad \ni \quad K_{\bullet}^{M}(F) \longrightarrow \frac{K_{M^{M}(F)}^{2 K_{\bullet}^{M}(F)}}{\substack{| \\ | \Psi \\ \psi \\ \\ R(I)}} \quad \text { commutes. }
$$

Proof. For $2 \in \mathbb{Z}=K_{0}(F)$ we only need to prove $\psi(2)=0$. But $R_{0}(I)=$ $\frac{W(F)}{I}=\mathbb{Z}_{2}$. So, the proof is complete.

Milnor Conjecture: This homomorphim Ψ in theorem 2.5 is an isomorphism. The conjecture was proved by Voevodsky. So, for each n we have

$$
\Psi_{n}: \frac{K_{n}^{M}(F)}{2 K_{n}^{M}(F)} \xrightarrow{\sim} \frac{I(F)^{n}}{I(F)^{n+1}} \quad \text { is an isomorphism. }
$$

3 Gersten Complex for K-theory

This is partly or mostly from paper of Milnor ([M]).
It is customary to use $\ell: \dot{F} \leftrightarrow K_{1} F$ by $a \mapsto \ell(a)$, and treart $K_{1} F$ as an additive group. With this new notations

$$
K(F)=\frac{T_{\mathbb{Z}} K_{1} F}{(\langle l(a) \otimes l(1-a): a \in \dot{F}\rangle)}
$$

We have

1. Clearly, $K_{0}(F)=\mathbb{Z}$
2. $K_{n}(F)=\frac{K_{1} F \otimes K_{1} F \cdots \otimes K_{1} F}{\left(\sum \ell\left(a_{1}\right) \ell\left(a_{2}\right) \cdots \ell\left(a_{n}\right): \exists i<n \ni a_{i}+a_{i+1}=1\right)}$

Lemma 3.1. For $a, b \in \dot{F}$, the follwoing holds in $K_{2}(F)$:

1. $a+b=0 \Longrightarrow \ell(a) \ell(b)=0$
2. $\ell(a) \ell(b)=-\ell(b) \ell(a)$
3. $\ell(a) \ell(a)=\ell(a) \ell(-1)=\ell(-1) \ell(a)$
4. $a+b \neq 0 \Longrightarrow \ell(a+b) \ell(-b / a)=\ell(a) \ell(b)$

Proof.

1. To prove (1), we can assume $a \neq 1$. Then $\ell\left(a^{-1}\right) \ell\left(1-a^{-1}\right)=0$. So,

$$
\ell(a) \ell(-a)=\ell(a) \ell(-a)+\ell(a) \ell\left(1-a^{-1}\right)=\ell(a)\left(\ell(-a)+\ell\left(1-a^{-1}\right)\right)=\ell(a) \ell(1-a)=0 .
$$

2. We use (1)

$$
\begin{gathered}
\ell(a) \ell(b)+\ell(b) \ell(a)=\ell(a) \ell(-a)+\ell(a) \ell(b)+\ell(b) \ell(a)+\ell(b) \ell(-b) \\
=\ell(a) \ell(-a b)+\ell(b) \ell(-a b)=\ell(a b) \ell(-a b)=0 .
\end{gathered}
$$

3. For (3)

$$
\ell(a) \ell(a)-\ell(a) \ell(-1)=\ell(a) \ell(-a)=0
$$

4. Write $c=a+b$. Then $a c^{-1}+b c^{-1}=1$. So, $0=\ell\left(a c^{-1}\right) \ell\left(b c^{-1}\right)$. We have

$$
\ell(a) \ell(b)-\ell(c) \ell(b)+\ell(a) \ell(c)-\ell(c) \ell(c)=\ell\left(a c^{-1}\right) \ell(b)-\ell\left(a c^{-1}\right) \ell(c)=\ell\left(a c^{-1}\right) \ell\left(b c^{-1}\right)=0
$$

So, solve for $\ell(a) \ell(b)$ and use (2), (3):

$$
\left.\ell(a) \ell(b)=\ell(c) \ell(b)-\ell(c) \ell(a)+\ell(c) \ell(-1)=\ell(c) \ell\left(-b a^{-1}\right)\right)
$$

The proof is complete.

4 Milnor's Paper ([M])

4.1 Residue Homomorphism

Suppose A is DVR and $F=Q(A)$. Let π denote a prime, not fixed. Note

$$
K_{1} F=\{\ell(u)+n \ell(\pi): u \in U(A), n \in \mathbb{Z}\}
$$

So,

$$
K_{n}(F)=\left\{\sum \ell(\pi)^{r} \ell\left(u_{r+1}\right) \cdots \ell\left(u_{n}\right): r \geq 0, u_{i} \in U(A)\right\}
$$

Theorem 4.1. There is a unique homomorphism, $\partial: K_{n}(F) \longrightarrow K_{n-1} F_{0} \quad \ni$

$$
\left\{\partial\left(\ell(\pi) \ell\left(u_{2}\right) \cdots \ell\left(u_{n}\right)\right)=\ell\left(\overline{u_{2}}\right) \cdots \ell\left(\overline{u_{n}}\right) \quad \forall u_{i} \in U(A), \pi\right. \text { any prime }
$$

Further,

1. In this case $\partial\left(\ell\left(v_{1}\right) \ell\left(v_{2}\right) \cdots \ell\left(v_{n}\right)\right)=0$ whenever $u_{i} \in U(A)$.
2. This homomorphims is independent of choice of π.

Proof. Uniquesness: Let π be any prime. $K_{n} F$ is generated by $x:=$ $\ell(\pi)^{r} \ell\left(u_{r+1}\right) \cdots \ell\left(u_{n}\right)$, with $r \geq 0$. If $r=0$, then

$$
\begin{gathered}
\left.\left.\partial\left(l\left(u_{1}\right) l\left(u_{2}\right) \cdots l\left(u_{n}\right)\right)=\partial\left[l\left(u_{1} \pi\right) l\left(u_{2}\right) \cdots l\left(u_{n}\right)\right)-l(\pi) l\left(u_{2}\right) \cdots l\left(u_{n}\right)\right)\right] \\
=l\left(\overline{u_{2}}\right) \cdots l\left(\overline{u_{n}}\right)-l\left(\overline{u_{2}}\right) \cdots l\left(\overline{u_{n}}\right)=0
\end{gathered}
$$

If $r \geq 2$ then by (3.1),

$$
x=\ell(\pi)^{r} \ell\left(u_{r+1}\right) \cdots \ell\left(u_{n}\right)=\ell(\pi) \ell(-1)^{r-1} \ell\left(u_{r+1}\right) \cdots \ell\left(u_{n}\right)
$$

So,

$$
\partial(x)=\ell(-1)^{r-1} \ell\left(\overline{u_{r+1}}\right) \cdots \ell\left(\overline{u_{n}}\right)
$$

is independent of π. Similalry, if $r=1, \partial(x)$ is independent of π, by hypothesis.

Now we prove existence of ∂. Now, we fix a prime π. Let X be an indeterminate and consider $K_{*} \bar{F}[X]$ with $X y=-y X \forall y \in K_{i} \bar{F}$. Given

$$
\ell\left(\pi^{i_{1}} u_{1}\right), \ldots, \ell\left(\pi^{i_{1}} u_{1}\right) \in K_{1} F
$$

define $\varphi_{j} \in K_{j} \bar{F}$ such that

$$
\left(X i_{1}+\ell\left(\overline{u_{1}}\right)\right) \cdots\left(X i_{n}+\ell\left(\overline{u_{n}}\right)\right)=X^{n} \varphi_{0}+X^{n-1} \varphi_{1}+\cdots+\varphi_{n} .
$$

It is easy to see that $\varphi_{j}: K_{1} F \times \cdots \times K_{1} F \longrightarrow K_{j} \bar{F}$ are $n-($ multi)linear on $K_{1} F$.

Define

$$
\varphi=\ell(\overline{-1})^{n-1} \varphi_{0}+\ell(\overline{-1})^{n-2} \varphi_{1}+\cdots+\varphi_{n-1} \in K_{n-1} \bar{F}
$$

So, $\varphi\left(\ell\left(\pi^{i_{1}} u_{1}\right), \ldots, \ell\left(\pi^{i_{1}} u_{1}\right)\right)$ is multilinear, so it factors through the tensor product:

Now suppose $\pi^{i_{j}} u_{j}+\pi^{i_{j+1}} u_{j+1}=1$. We can assume $i=1$. So $\pi^{i_{1}} u_{1}+$ $\pi^{i_{2}} u_{2}=1$. Assume $i_{1} \leq i_{2}$. Then, By routine calculation, it follows that $i_{1}=0 \leq i_{2}$. So,

$$
u_{1}+\pi^{i_{2}} u_{2}=1
$$

1. If $i_{2}=0$ then $u_{1}+u_{2}=1$ and $\ell\left(\overline{u_{1}}\right) \ell\left(\overline{u_{2}}\right)=0$. So, $\left(x i_{1}+\ell\left(\overline{u_{1}}\right)\right)\left(\left(x i_{2}+\right.\right.$ $\left.\ell\left(\overline{u_{2}}\right)\right) \equiv 0$. So, $\varphi_{j}(*, \ldots, *)=0$ for all j.
2. It $i_{2}>0$, then $\ell\left(\overline{u_{1}}\right)=\ell(\overline{1})=0$. So, $\left(x i_{1}+\ell\left(\overline{u_{1}}\right)\right)\left(\left(x i_{2}+\ell\left(\overline{u_{2}}\right)\right) \equiv 0\right.$. So, $\varphi_{j}(*, \ldots, *)=0$ for all j.

This proves that all φ_{j} factor through $K_{j} F$. Also φ is defined on $K_{n} F$. We define $\partial=\varphi$. For $x=\ell\left(\pi u_{1}\right) \ell\left(u_{2}\right) \cdots \ell\left(u_{n}\right), i_{1}=1, i_{2}=0, \ldots, i_{=}$. So, the defining equation gives

$$
\begin{gathered}
\left(X+\ell\left(\overline{u_{1}}\right)\right) \ell\left(\overline{u_{2}}\right) \cdots \ell\left(\overline{u_{n}}\right)=\sum X^{r} \varphi_{n-r} \Longrightarrow \\
\varphi_{n-1}(x)=\ell\left(\overline{u_{2}}\right) \cdots \ell\left(\overline{u_{n}}\right), \quad \varphi_{j}(x)=0 \quad \forall j \neq n-1 .
\end{gathered}
$$

Since, it does not nvolve u_{1}, this is indpendent of π. So, $\partial(x)=\varphi(x)$ is as desired.
Remark. Note, if $v: F \longrightarrow \mathbb{Z}$ denotes the valuation, then

$$
\left.\delta\left(\ell(a) \ell\left(u_{2}\right) \cdots \ell\left(u_{n}\right)\right)=v(a) \ell\left(\overline{u_{2}}\right) \cdots \ell\left(\overline{u_{n}}\right)\right)
$$

Lemma 4.2. Let (A, π) be a DVR. There is a uniques ring homomorphism

$$
\psi: K_{*} F \longrightarrow K_{*} \bar{F} \quad \text { where } \quad \psi\left(l\left(\pi^{i_{1}} u_{i}\right) \cdots\left(\pi^{i_{n}} u_{n}\right)=l\left(\overline{u_{1}}\right) \cdots l\left(\overline{u_{n}}\right) .\right.
$$

This depends on the prime π.
Proof. Similar to that of theorem 4.1.

4.2 Milnon'r Theorem

Now let F be a field and $F(t)$ be a field of rational functions. Each monic irreducible polynomial $\pi \in F[t]$ gives rise to a (π)-adic valaution on $F(t)$, with residue field $F_{\pi}=F[t] /(\pi)$. This provides a surjection

$$
\partial_{\pi}: K_{n}(F(t)) \longrightarrow K_{n-1} F_{\pi}
$$

Theorem 4.3. There is a split exact sequence:

$$
0 \longrightarrow K_{n} F \longrightarrow K_{n} F(t) \xrightarrow{\partial} \bigoplus K_{n-1} F_{\pi} \longrightarrow 0 \quad \text { where } \quad \partial=\oplus \partial_{\pi}
$$

and the direct sum extends over all non-zero prime ideals.
proof. For $n=1$ the $\partial=\oplus O r d_{\pi}$ It is easy so see that

$$
\operatorname{Ord}_{\pi}(f)=0 \quad \forall \pi \Rightarrow f \in F^{\bullet}
$$

Keep n fixed. Let $L_{d}=L_{d}^{n} \subseteq K_{n} F(t)$ be the subsgroup generated by products $l\left(f_{1}\right) l\left(f_{2}\right) \cdots l\left(f_{n}\right)$ such that $\operatorname{degree}\left(f_{i}\right) \leq d$. Clearly,

$$
L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq \cdots, \quad K_{n} F(t)=\bigcup L_{d}
$$

By lemma 4.2, we have
fix any linear monic
 commutes.

So, $K_{n} F \approx L_{0}$ is a direct summand. Since this is a split, we only need to ptove that the sequence is exact.

Lemma 4.4. Let π be a monic prime with degree $(\pi)=d$.

1. Given an element $y \in F[t] /(\pi)$, by division algorithm, the is an unique $g \in F[t]$ with $\bar{g}=y$ and degree $(g)<d$.
2. There is a unique homomorphism

$$
h_{\pi}: K_{n-1}\left(\frac{F[t]}{(\pi)}\right) \longrightarrow \frac{L_{d}}{L_{d-1}}, \quad \text { where } \quad h_{\pi}\left(l\left(\overline{g_{2}}\right) \cdots l\left(\overline{g_{n}}\right)\right)=\overline{l(\pi) l\left(g_{2}\right) \cdots l\left(g_{n}\right)}
$$

with degree $\left(g_{i}\right)<d$.
Proof. Consider the same map on

$$
\left(K_{1} F[t] /(\pi)\right)^{n} \quad\left(l\left(\overline{g_{2}}\right), \cdots, l\left(\overline{g_{n}}\right)\right) \mapsto \overline{l(\pi) l\left(g_{2}\right) \cdots l\left(g_{n}\right)} .
$$

First, we prove it is mulitlinear. We will only prove for the first coordiante.
Suppose

$$
g_{2}=g_{2}^{\prime} g_{2} " \quad \bmod (\pi) \quad \text { degree }\left(g_{2}\right), \text { degree }\left(g_{2}^{\prime}\right), \operatorname{degree}\left(g_{2} "\right)<d
$$

So,

$$
g_{2}=\pi f+g_{2}^{\prime} g_{2}^{\prime \prime} \quad \text { where } \quad \operatorname{degree}(f)<d
$$

If $f=0$, then
$\overline{l(\pi) l\left(g_{2}\right) \cdots l\left(g_{n}\right)}=\overline{l(\pi)\left(l\left(g_{2}^{\prime}\right)+l\left(g_{2}^{\prime \prime}\right)\right) \cdots l\left(g_{n}\right)}=\overline{l(\pi) l\left(g_{2}^{\prime}\right) \cdots l\left(g_{n}\right)}+\overline{l(\pi) l\left(g_{2} "\right) \cdots l\left(g_{n}\right)}$
If $f \neq 0$, then

$$
1=\frac{\pi f}{g_{2}}+\frac{g_{2}^{\prime} g_{2}^{\prime \prime}}{g_{2}}
$$

So,

$$
\left(l(\pi)+l(f)-l\left(g_{2}\right)\right)\left(l\left(g_{2}^{\prime}\right)+l\left(g_{2}^{\prime \prime}\right)-l\left(g_{2}\right)\right)=0 .
$$

Or

$$
\begin{gathered}
l(\pi) l\left(g_{2}^{\prime}\right)+l(\pi) l\left(g_{2} "\right)-l(\pi) l\left(g_{2}\right) \\
+l(f) l\left(g_{2}^{\prime}\right)+l(f) l\left(g_{2} "\right)-l(f) l\left(g_{2}\right)+l\left(g_{2}\right) l\left(g_{2}^{\prime}\right)+l\left(g_{2}\right) l\left(g_{2} "\right)-l\left(g_{2}\right) l\left(g_{2}\right)=0
\end{gathered}
$$

Multiply by $l\left(g_{3}\right) \cdots l\left(g_{n}\right)$ and mod by L_{d-1} (only first 3 terms survive):
$\overline{l(\pi) l\left(g_{2}^{\prime}\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}+\overline{l(\pi) l\left(g_{2} "\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}-\overline{l(\pi) l\left(g_{2}\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}=0$.

Hence

$$
\overline{l(\pi) l\left(g_{2}\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}=\overline{l(\pi) l\left(g_{2}^{\prime}\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}+\overline{l(\pi) l\left(g_{2} "\right) l\left(g_{3}\right) \cdots l\left(g_{n}\right)}
$$

This establishes the desired map, at the n-fold tesor product level,

$$
T^{n}\left(K_{1}\left(\frac{F[t]}{(\pi)}\right)\right) \longrightarrow \frac{L_{d}}{L_{d-1}}
$$

Also,

$$
\overline{g_{j}}+\overline{g_{j+1}}=1, \operatorname{degree}\left(g_{j}\right)<d, \operatorname{degree}\left(g_{j+1}\right)<d \Longrightarrow g_{j}+g_{j+1}=1
$$

This completes the proof.
Lemma 4.5. Let \mathcal{P}_{d} be the set of all monic primes π of degree d Then,

$$
\partial^{d}=\bigoplus_{\pi \in \mathcal{P}_{d}} \partial_{\pi}: K_{n} F(t) \longrightarrow \bigoplus_{\pi \in \mathcal{P}_{d}} K_{n-1}\left(\frac{F[t]}{(\pi)}\right)
$$

induces an isomorphism on $\frac{L_{d}}{L_{d-1}}$. Diagramatically

proof. Let π be a prime and degree $(\pi)=d$. For $g \in K[t]$ with degree $(g)<$ d, we have g is an unit in the DVR $K[t]_{(\pi)}$. So, $\partial_{\pi}\left(L_{d-1}\right)=0$ and ∂_{π} factors through $\frac{L_{d}}{L_{d-1}}$. We also have

Write $h=\bigoplus_{\pi \in \mathcal{P}_{d}} h_{\pi}$. The above shows $\partial h=I d$. If we show that h is surjective, the proof will be complete.

Generator of $\frac{L_{d}}{L_{d-1}}$ are given by the image of $l\left(f_{1}\right) \cdots l\left(f_{s}\right) l\left(g_{s+1}\right) \cdots l\left(g_{n}\right)$ where $\operatorname{degree}\left(f_{i}\right)=d$ and $\operatorname{degree}\left(g_{i}\right)<d$. We want to prove that $\frac{L_{d}}{L_{d-1}}$ is generated by such expressions with $s=1$ and f_{1} is a prime. We can write

$$
f_{2}=-a f_{1}+g \quad a \in \dot{F}, \quad \operatorname{degree}(g)<d .
$$

If $g \neq 0$, we have

$$
1=\frac{a f_{1}}{g}+\frac{f_{2}}{g} \quad \text { so } \quad\left(l(a)+l\left(f_{1}\right)-l(g)\right)\left(l\left(f_{2}\right)-l(g)\right)=0
$$

So,

$$
l\left(f_{1}\right) l\left(f_{2}\right)=-l(a) l\left(f_{2}\right)+l(a) l(g)+l\left(f_{1}\right) l(g)+l(g) l\left(f_{2}\right)-l(g)^{2}
$$

So,
$l\left(f_{1}\right) l\left(f_{2}\right) \cdots l\left(f_{s}\right) l\left(g_{s+1}\right) \cdots l\left(g_{n}\right) \equiv l\left(f_{1}\right) l(g) \cdots l\left(f_{s}\right) l\left(g_{s+1}\right) \cdots l\left(g_{n}\right)+$ two-terms
If $g=0$ we have $f_{2}+a f_{1}=0$. (It is possible that $f_{1}=f_{2}$ and $a=-1$.) Then $\left.\left(l(a)+l\left(f_{1}\right)\right) l\left(f_{2}\right)\right)=0$. So,

$$
l\left(f_{1}\right) l\left(f_{2}\right)=-l(a) l\left(f_{2}\right)
$$

So

$$
l\left(f_{1}\right) l\left(f_{2}\right) \cdots l\left(f_{s}\right) l\left(g_{s+1}\right) \cdots l\left(g_{n}\right) \equiv-l\left(f_{1}\right) l(a) \cdots l\left(f_{s}\right) l\left(g_{s+1}\right) \cdots l\left(g_{n}\right)
$$

By induction on s it follows that $\frac{L_{d}}{L_{d-1}}$ is generated by images of

$$
y=l(f) l\left(g_{2}\right) \cdots \cdots l\left(g_{n}\right) \quad \text { degree }\left(f_{1}\right)=d, \text { degree }\left(g_{i}\right)<d .
$$

If f is prime, then $f=a \pi$ for some monic π. In this case,

$$
y=l(f) l\left(g_{2}\right) \cdots \cdots l\left(g_{n}\right)=l(\pi) l\left(g_{2}\right) \cdots l\left(g_{n}\right)+l(a) l\left(g_{2}\right) \cdots l\left(g_{n}\right)
$$

Hence

$$
h_{\pi}\left(l\left(\overline{g_{2}}\right) \cdots l\left(\overline{g_{n}}\right)\right)=\bar{y} .
$$

So, y is in the image of h_{π}.

If f is not a prime, then f factors further into polynomilas of degree $<d$. So, $y \equiv 0\left(\bmod L_{d-1}\right)$, which is in the image of h. This complete the proof.

Proof of theorem 4.3: The sequence is clearly a complex. Now, let $\partial(x)=$ 0 . Then, $\partial_{\pi}(x)=0$ for all prime π. Suppose $x \notin L_{0}$. If $x \neq 0$ then $x \in$ $L_{d} \backslash L_{d-1}$. So, $\overline{\partial^{d}(x)} \neq 0$ (as in 4.5). This is a contradiction.

For the surjectivity on the right side, let $x \in K_{n-1}\left(\frac{L_{d}}{L_{d-1}}\right)$. Note $\overline{\partial_{\pi}} h_{\pi}(x)=$ x and $h_{\pi^{\prime}}\left(h_{\pi}(x)\right)=0$. So, $\partial(y)=x$ for any $y \in L_{d}$ that lifts x. The proof is complete.

5 Norm and Residue Homomorphisms

My main reference for this section is ([EKM]).

5.1 Norm Homomorphism

Recall the following.
Definition 5.1. Suppose $F \hookrightarrow L$ is a finite field extension.

1. Suppose $F \hookrightarrow L$ is a Galois extension. Then, norm is defined as

$$
N_{L / F}: L \longrightarrow F \quad \text { defined by } \quad N_{L / F}(\alpha)=\prod_{\sigma \in E m b_{F}(L)} \sigma(\alpha) .
$$

In fact, we want to define the norm homomorphism $C_{L / F}: K_{n} L \longrightarrow K_{n} F$.

1. Suppose $L=F(y)$ be simple. Then, $L=\frac{F[T]}{(\pi)}$, where π is the irreducible polynomial of y.
2. Suppose $\alpha \in K_{n}(L)=K_{n}\left(\frac{F[T]}{(\pi)}\right)$. By Milnor's theorem 4.3, there is a $\beta \in K_{n+1} F(T)$ such that

$$
\partial_{p}(\beta)= \begin{cases}\alpha & \text { if } p=\pi \\ 0 & \text { otherwise }\end{cases}
$$

3. Let v_{∞} be a discrete valuation $v_{\infty}: K(T) \longrightarrow \mathbb{Z}$, where $v_{\infty}\left(T^{-1}\right)=1$. We set

$$
c_{L / F}(\alpha)=\partial_{v_{\infty}}(\beta)
$$

4. More formally, Recall Milnor's sequence is a split exact sequence. Let γ be a split of ∂.
5.

In fact, $c_{L / F}$ is independent of choice of γ.
Proof. Let η be another split. Then $\partial(\gamma-\eta)=0$. So, Image $(\gamma-\eta) \subseteq$ $K_{n+1} F$. So, $\partial_{v_{\infty}}(\gamma-\eta)=0$.

Now suppose $F \longrightarrow L$ be any finite extension. Then we can choose a chain of simple extensions:

$$
F=F_{0} \hookrightarrow F_{1} \hookrightarrow \cdots \hookrightarrow F_{n}=L .
$$

We define

$$
c_{L / F}:=c_{F_{1} / F_{0}} c_{F_{2} / F_{1}} \cdots c_{F_{n} / F_{n-1}}
$$

It is stated without proof, that $c_{L / F}$ independent of this choice of the sequence of simple extensions, is well defined.
Proof. See ([GS, §7.3]).

5.2 Residue Homomorphism for local rings

Suppose (A, m, k) is a local ring (excellent domain) of dimension one. Write $K=Q(A)$ the field of fractions of A. We define a groups homomorphism $W(K) \longrightarrow W(k)$ as follows.

1. Let B be the integral closure of A, in K. Then,
(a) $Q(B)=K, \operatorname{dim} B=1$
(b) B is semilocal. Let $\operatorname{Max}(B)=\left\{m_{1}, \ldots, m_{r}\right\}$.
(c) B normal. So, B is a Dedekind domain.
(d) So, $B_{m_{i}}$ are DVR.
2. Write $k_{i}=B / m_{i}$.
3. By theorem 4.1, there are residue class maps $\Delta_{i}: K_{n}(K) \longrightarrow K_{n}\left(k_{i}\right)$
4. Note $k \hookrightarrow k_{i}$ is a finite extension. Then, there are norm homomorphisms $C_{i}:=C_{K / k_{i}}: K_{n-1}\left(k_{i}\right) \longrightarrow K_{n-1}(k)$.
5. Let

$$
\begin{gathered}
\quad \Delta_{A}=\oplus_{i=1}^{m} \Delta_{i}: K_{n}(K) \longrightarrow \oplus_{i=1}^{n} K_{n-1}\left(k_{i}\right) \\
\text { and } \quad \Psi_{A}=\oplus_{i=1}^{m} c_{i}: \oplus_{i=1}^{m} K_{n-1}\left(k_{i}\right) \longrightarrow K_{n-1}(k) .
\end{gathered}
$$

Definition 5.2. Now define a residue class homomorphism

$$
\begin{gathered}
\partial_{A}: K_{n}(K) \longrightarrow K_{n-1}(k) \quad \ni \quad K_{n}(K) \xrightarrow{\partial_{A}} K_{n-1}(k) \quad \text { commutes. } \\
\oplus_{i=1}^{m} K_{n-1}\left(k_{i}\right)
\end{gathered}
$$

5.3 Gersten Complex for K-theory

Let A be any commutative noetherian ring and $X=\operatorname{spec}(A)$. Denote $X^{(r)}=$ $\{\wp \in \operatorname{Spec}(X): \operatorname{height}(\wp)=r\}$. Assume $d:=\operatorname{dim} A=\operatorname{dim} A_{m} \forall m \in$ $M A x(A)$.

1. For $\wp \in \operatorname{Spec}(A)$ denote $\kappa(\wp:)=\frac{A_{\wp}}{\wp A_{\wp}}$.
2. Let $x \subseteq y$ be two primes, with $h e i g h t(y)=h e i g h t(x)+1$. By (5.2), there is a residue class homomorphism

$$
\partial_{y}^{x}: K_{n}(\kappa(x)) \longrightarrow K_{n-1}(y)
$$

For any other pairs of prime ideals (x, y), define $\partial_{y}^{x}: K_{n}(\kappa(x)) \longrightarrow$ $K_{n-1}(y)=0$.
3. Accordingly, ∂_{y}^{x} induce homomorphisms

$$
\partial_{n}=\oplus \partial_{y}^{x}: \coprod_{x \in X^{(n)}} K_{n}(\kappa(x)) \longrightarrow \coprod_{x \in X^{(n+1)}} K_{n}(\kappa(x)) \quad \forall n .
$$

We deonte

$$
C^{n}(X):=C_{d-n}(X):=\coprod_{x \in X^{(n)}} K_{n}(\kappa(x))
$$

Also, denote

$$
C(X)=\oplus C^{n}(X)
$$

Further, denote

$$
C_{n}^{p}(X):=C_{d-p, n}(X):=\coprod_{x \in X^{(p)}} K_{d-p+n}(\kappa(x)) \text { i.e } C_{r, n}(X):=\coprod_{x \in X_{(r)}} K_{r+n}(\kappa(x))
$$

So, we have

$$
\partial_{n}: C^{n}(X) \longrightarrow C^{n+1}(X)
$$

4. For all integers $n \geq 0$, this gives rise to a sequences \mathcal{K}^{n} :

$$
\begin{aligned}
& 0 \longrightarrow \coprod_{x \in X^{(0)}} K_{n}(\kappa(x)) \longrightarrow \\
& \coprod_{x \in X^{(r)}} K_{n-r}(\kappa(x)) \xrightarrow{\partial_{r}^{n}} \longrightarrow \cdots \longrightarrow \coprod_{x \in X^{(1)}} K_{n-1}(\kappa(x)) \longrightarrow \cdots \longrightarrow \\
& \coprod_{x \in X^{(n)}} K_{0}(\kappa(x)) \longrightarrow 0
\end{aligned}
$$

In C_{k}^{r}-notation this sequence is written as:

This is known as $n^{\text {th }}$ - Gersten sequence for Milnor K-theory. This is also known as $n^{\text {th }}$-Rost sequence.

Theorem 5.3. Suppose A is an excellent ring. Then

1. The Gersten sequence is a complex.
2. (Conjecture) If A is regular local, then Gersten sequence is exact at degree $n \geq 1$. Also, $\operatorname{ker}\left(\partial_{0}^{n}\right)=K_{n}(A)$, which we did not define.

When A contains an infinite field, this conjecture is known to be true. It was proved by Moritz Kerz ([K]).

A E

xcellent Rings
Definition A.1. A ring A is called excellent, if the follwing conditions are satified:

1. A is noetherian,
2. A is universally catenary,
3. $(G-$ rings $): \forall \wp \in \operatorname{Spec}(A)$ the homomorphism $A_{\wp} \longrightarrow \hat{A}$ is regular.
4. $(J-2)$: Given any finitley generate A-algebra B, the locus reg (B) is open.

References

[EKM] Elman, Richard; Karpenko, Nikita; Merkurjev, Alexander The algebraic and geometric theory of quadratic forms. AMS Colloquium Publications, 56. AMS, Providence, RI, 2008. viii+435 pp. ISBN: 978-0-8218-4329-1
[GS] Gille, Philippe; Szamuely, Tamás Central simple algebras and Galois cohomology Cambridge Studies in Advanced Mathematics, 101. Cambridge University Press, Cambridge, 2006. xii +343 pp.
[Lam] T-Y Lam, Introduction to Quadratic Forms over Fields, His Book
[M] John Milnor, Algebraic K-Theory and Quadratic Forms Invent. math. 9, 318-344 (1970).
[K] Moritz Kertx, Gersten conjecture for Milnor K-theory, Invent. Math. 175, 1-33 (2009).
[K2] Moritz Kertx, Some notes, http://epub.uniregensburg.de/10749/1/main.pdf

