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1 Pfister Forms

Definition 1.1. For n elements aq, as, . . ., a, € F define

<<a’17 <. 7a’n>> = ®?:1<17 ai)'
This form has dimension 2". It is called an n—fold Pfister Form. By conven-
tion, 0—fold Pfister Form is defined to be (1).
1. An 1—fold Pfister Form ((a)) = (1, a).
2. A 2—fold Pfister Form ({a1,a2)) = (1, a1, as, aras) = (272).

3. If a; = —1 for some i, then ({a1,as,...,a,)) = 2""1H.

4. Also, ((1,a9,...,a,)) = 2{{ag, ..., a,)).

Recall, the fundamental ideal of W (F'), was defined to be the ideal I =
I(F) of all even dimensional forms in W (F).
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Proposition 1.2. The ideal I(F)" of W(F') is additively generated, as an
abelian group, by all the n—fold Pfister forms.

Proof. By I1.1.2 I(F) is generated, additively, by ((a)). Therefore, I(F)" is
additively generated by n—fold Pfister forms. |

Proposition 1.3. We have the following:

1. First,
Ve D{a), ({ab)=((a,bz))

2. Also,
VyED(CLb), <<CL,b>> = <<y>ab>>

Proof. We have
({a,b)) = (1,a) ® (1,b) = (1,a,b,ab) = (1,a) L (b,ab) = (1,a) L (b)(1,a)

= (1,a) L (b)(z,ax) = (1,a) L (xb,abx) = (1,azxb,abx) = ((a, xb))
Similarly,

{(a,b)) = (1,ab) L (a,b) =(1,ab) L (y,yab) = (1, ab,y,yab) = ({y, ab))

The proof is complete. |

1.1 one and two fold to n—fold

Definition 1.4. Let ((ay,...,a,)) and ({(by,...,b,)) be two n—fold Pfister
forms. We say that they are simply P-equivalent, if there exists ¢ < j such
that

L. ({ai, a;)) = ((bi, b;)) and



More generally, two forms ¢, are said to be chain P-equivalent, if there is

a sequence of forms:

Y =®0,%1, " s Pm—1,Pm = 7

such that V i ¢; is simply P-equivalent to ;1. In this case, we write ¢ ~ 7.

1. ~ is an equivalence relation.
2. ==,

3. ALso, recall, we worked with chain equivalence in simple equivalence
in section L.5.

Definition 1.5. Suppose ¢ is an n—fold Pfister form and it represents 1.
Then ¢ = (1) L ¢'. By cancellation. ¢’ is uniquely determined, upto an
isometry. This form ¢’ is called the pure subform of ¢. We will use this

notation ¢’. Note, , we can see a diagonal form of ¢'.

Theorem 1.6 (Pure Subform). Suppose ¢ = ({ai,...,a,)) is an n—fold
Pfister form and b € Dg(y’). Then,

@~ ((bby,...,b,)) for some b; € F.

Proof. Use induction on n. If n =1, ¢ = (1,a;). Then, ¢’ = (a;). Then
b e D)= b=ax? So, ¢ = (1,a1) = (1,b). Now, assume that the
theorem holds for (n — 1)—fold forms. Write

7= (a1,...,a,-1)). So, =T (1,a,) =7 L (a,)T.

Therefore,

¢ =71 L (an)T So, be D(¢) = b=1x+a,y where x € D(7)U{0}, ye€ D(r)U{0}.

Case 1. Suppose y = 0. Then, b =z € D(7'). By induction,

T ((bby...,by_1)) and hence ¢ =7® ((a,))~ ((b,ba...,bh_1,an))
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Case 2. Suppose y # 0. We will prove

o ({1, Qn1,0nY)).

Since y € D(7), we can write y = * + vy with yo € D(7")) U{0}. If yo =0
then y = t? and there is nothing to prove. So, assume 1, # 0 and hence
yo € D(7'). By induction

T~ <<yo,02, e 7Cn—1>> where c¢; € F.

. Therefore,
© ~ ((Yo,C2y .y Cn1, ap)
Since, y = > + yo € ((v0)), by (1.3(1)), (%0, @n)) = ({y0. any)). Hence,
O~ ((Yo,C2,y -+ oy Cn1,an)) = (Yo, Cay ooy Cno1, anYy)) = ((a1,29, ..., 201, A Y))
This establishes our claim above.

To complete the proof, if x = 0 then a,y = b and we are done. So, assume
x # 0 and so x € D(7'). By induction,

T~ ((x,dg,...,dn_1)) for some d; € F.
Since x+any € (x,a,), by (1.3(2)), ((z,a,y)) = ((x+a,y, a,zy)). Therefore,
¢:T®<<any>> <<£C d27-~' n— laany>> <<x+anyad27'"7dn717anxy>>

~ ((b,da,...,dp_1,a,7Y))
The proof is complete. |

The following follows from the proof of (1.6.

Proposition 1.7. Suppose 7 = ((a1,as9,...,a,_1)) and y € D(1). Then, for

any a, € F', we have
({ay,a9,...,an_1,a,)) = ({a1,az,...,a,_1,a,Y))
In particular,
21 = (a1, a2, ..., ap-1,1)) = {(a1, a2, ..., an-1,4))

and

((ar,a9,...,an_1,—1y)) =~ ({a1,a9,...,ap_1,—1)) is hyperbolic.



Theorem 1.8. If a Pfister form ¢ is isotopic, then it is hyperbolic.

Proof. In this case, ¢ contains a hyperboloc plane H. So, ¢ = (1)¢’ and
—1 €. So, by (1.6), p = ((—1,bg,...)), which is hyperbolic. n

Definition 1.9. Let g be a quadratic form. Define G(q) = Gr(q) = {c €
F : (c)q = ¢}. Note G(q) is a subgroup of F. G(q) is called the group of
similarity factors of g. Also note, F2 C G(q).

Definition 1.10. For any Pfister form ¢ over F', D(¢) = G(p). In partic-

ular, ¢ 1s a group form.

Proof. Since, ¢ represents 1, G(¢) C D(p). Suppose ¢ € D(p). Then
({(c))p = ¢ L (c)¢ contains the hyperbolic H = (¢, —¢). So, by (1.7) ¢ L (¢)¢
is hyperbolic space. By 1.1.4(3), ¢ = (c)p. The proof is complete. n

Corollary 1.11. For integers n > 0, the nonzero sums of 2" squares in F

form a subgroup of F.

Proof. Follows form (1.10), by application of ((1,1,...,1)).The proof is
complete. |

Theorem 1.12.

Let 7= {((b1,ba,...,b.)) (r>0), ~v={di,da,...,ds)) (s>0).
And ey € D(1v'). Then, J es,...,e5 € F suchthat

7y = ((b1, b2, ..., bp,dy,do, ..., ds)) = ({(b1,bo, ... by e1,69,...,€5)).

Proof. Prove induction on s. If s = 1 and v/ = (d;). So, e; = dyz, with
x € D(7). By (1.7),

TY = <<b1,bg, .. .,br,d1>> ~ <<b1,b2, c.. ,br,d1$>> = <<b1,bz, .. .,br,€1>>

Now, assume the result holds for ((by, b, ..., b, dy,ds,...,ds 1)). Write o :=
<<d1, dQ, Ce ,ds_1>>. SO7

v=0{ds,1) 2 (ds)o Lo and ~ ={(ds)oc Lo'. So, 7/ = {(d)T0 L 70"
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So,
ep =dst+y for some x € D(ro)U{0}, y € D(ro’)U{0}
Case x # 0,y # 0. We have two steps
1. By (1.7),
({(b1,ba, ... by dy,da, ... ds)) = ((b1,ba, ..., 0. dy,ds, ... dsz))
2. By induction,
((b1, b2y ... bpydyyday .oy ds—1)) &= ((by,ba, ... by, €9,... €5-1)) (%)
Combining these two equations
({01, b2, - s bpodiyda, oy ds)) & (D1 by by diydas - g, d))
~ ((b1,ba, ..., by, €0, .. €5-1,dsz)) = ((b1,ba, ... b e1,€0,... 65 1,dszy)) Dby (1.3(2)).

Corollary 1.13. Let q be a Pfister form. Write ¢ = (1,b,e) L (by...,b).
Then, g = ((b,e,es...,€3)).

Proof. By Pure Subform Theorem 1.6, ¢ = ((b))y for sone Pfister form
v = ((b1,...,bs)). So, we have

I

q=(1,b) L {e,x....,x) = ((b)) L ((b))y'. By Cancellation e € {{b))y
By theorem 1.12, ((b))y =~ ({(b, e, e,...,€s)). The proof is complete. ]

Theorem 1.14 (P-Equivalence). Let p, 1 be two n—fold Pfister forms. Then,
Y=Y = =Y.

Proof. Clearly, ¢ ~ ¢y = ¢ = 1. Now, assume ¢ = 1. Write

v = {{a,...,a,)) and = {(b1,...,bn))
For integers 0 < r < n we prove

(AY) 3 Gyt €F 3 @ (b, by, Crats ooy a)).
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Theorem would be established with » = n. There is nothing to prove with
r =0, with ¢; = a; V 7. Assume A, is true. Write

7= by b))y B= bty 00))y 7= (dsrs o)),

Write s = n — r. Then, v is an s—fold Pfister form. By induction ¢ ~ 7.
So,

8=0v=pX=71y. Hence 7 L7 =7 L 74y. Hence 75 =79

Hence b4 € D(B') C D(73") = D(17").
By theorem 1.12,

(b1, bpydyyry .oy dy)y = (b1, ..., bpybry1, Cran,y ... Cp))  for some c¢,4a, ..

This establishes (A,.1). The proof is complete. n

e €F.



2 Milnor Conjecture

Definition 2.1. Suppose F' is a field. The Milnor K—theory is defined as:

T7(F)
((a®(1—a):a€F))

KJ(F) = &g Ka(F) =

where Ty (F) denotes the tensor algebra of F over Z. Note KM(F) =
Z,KM(F)=F.

Proposition 2.2. Let F be a field and I := I(F) C W(F') be the fundamental
ideal. Consider the graded algebra R(I) := @), % Then, there is a ring

homomorphism of graded rings
p:Ty(F) — R(I).

Proof. First, note Ry(I) = Z, Ry(I) = I. Define an map
po: KM(F)=F—R(I) by  wla)=[{(=a))]:=[(1,~a)]
We wish to prove that this is a homomorphism of Z—modules. We have
0= [(1,—a)(1,—b)] = [(1, —a, —b, ab)].

So,
900<ab) = [<17 _ab>] = [<17 —a, —b, ab>] + [<17 _a’b>]
= [<1’ 1, —a, _b>] + [(ab’ _ab>] = [<17 1, —a, _b>] = QDO(G) + @O(b)

This established that (g is Z—linear homomorphism. So, by unversal prop-
erty of tensor algebra, ¢, extends to ¢ as follows:

N
R(I)
The proof is complete. |



Proposition 2.3. With Notations as in (2.2), we have
VacF pla®(l—a)=0

Proof. Since ¢ is a homomorphism of rings,

pla@(1=a)) = p(a)p(l=a) = [(1, =a)][(1, =(1=a))] = [(1, —a, =(1=a), a(1-a))]

Since 1 € D((a,1 — a)), we have (a,1 — a) = (l,a(l — a)).
Adding (—a,—(1 — a)) to both sides,

in W(F) 0={a,1—a)+ (—a,—(1—a))=(1,a(l —a)) + (—a,—(1 —a))

=(1,—a,—(1—a),a(l —a)).

The proof is complete. |

Theorem 2.4. There is a homomorphism
¢ KM(F) — R(I) sending (a) — [({(—a))]
of graded rings.

Proof. Follows from propostions 2.2, 2.3. The proof is complete. |

Theorem 2.5. In fact v factors through

EAE) K (F)
gm0 3 K.M(F)HQKET(F) commutes.
v v
A
R(I)

Proof. For 2 € Z = Ky(F') we only need to prove 1(2) = 0. But Ry(I) =

_WgF ) = Z,. So, the proof is complete. .

Milnor Conjecture: This homomorphim W in theorem 2.5 is an isomorphism.
The conjecture was proved by Voevodsky. So, for each n we have

o KN(F) . 1)
" 2KM(F) I(F)ntt

is an isomorphism.



3 Gersten Complex for K —theory

This is partly or mostly from paper of Milnor (|[M]).

It is customary to use £ : F' <+ K\ F by a — ((a), and treart K, F as an

additive group. With this new notations

T,K. F

K(F) = .
((l(a) ®1(1 —a) :a € F))

We have

1. Clearly, Ko(F) =7Z

_ K\FQK F--- QK1 F
2‘ Kn(F) - (Zf(al)f(az)le(an)la <n 13 ai+ai+1:1)

Lemma 3.1. For a,b € F, the follwoing holds in Ky (F):

1. a+b=0={(a)l(b)=0

4. a+b#0= lla+Db)l(—=b/a) = l(a)l(b)

Proof.

1. To prove (1), we can assume a # 1. Then £(a™1)¢(1 —a™') = 0. So,

~
—~
IS
SN—
)
—~
|
IS
S—
I

((a)l(—a)+L(a)l(1—a™t) = l(a)(l(—a)+L(1—aT))

l(a)l(1—a) = 0.

C(a)l(b) + €(b)l(a) = L(a)l(—a) + L(a)l(b) + £(b)(a) + £(b)¢(—D)

= l(a)l(—ab) + L(b)l(—ab) = L(ab)l(—ab) = 0.

l(a)l(a) — L(a)l(—1) = L(a)l(—a) =0
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4. Write ¢ = a +b. Then ac™ + bc™! = 1. So, 0 = l(ac ' )l(bc™!). We
have

0(a)l(b)—L(c)l(b)+L(a)l(c)—L(c)l(c) = Llac™ ) l(b)—L(ac  )e(c) = £(ac M )l(bc™t) = 0

So, solve for ¢(a)l(b) and use (2), (3):

The proof is complete. |
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4  Milnor’s Paper (|[M])

4.1 Residue Homomorphism

Suppose A is DVR and F' = Q(A). Let 7 denote a prime, not fixed. Note
K F = {l(u) +nl(r):uecU(A),n e Z}

So,
Ko (F) = {Z U Uupsr) -+ Oun) s 7 > 0, u; € U(A)}

Theorem 4.1. There is a unique homomorphism, 0 : K,(F) — K, 1Fy >
{ omttm) () =) (@) Vu € UA), 7 any prime

Further,

1. In this case O(L(vy)l(va) - - - €(vy,)) = 0 whenever u; € U(A).
2. This homomorphims is independent of choice of m.

Proof. Uniquesness: Let m be any prime. K,F' is generated by z :=
) l(tpsq) -+ - l(uy), with 7 > 0. If r = 0, then

Ol (u)l(ug) - - - lun)) = Ol (urm)l(ug) - - - Uun)) = U(m)l(ug) - - - L(un))]

= l(ug) - l(tp) — U(ug) -~ - U(u,) =0
If » > 2 then by (3.1),

z = U(m) Utps1) - Lug) = Lm)(=1) " ) - L)
So,

O(x) = ((=1)"" (@) - - ()

is independent of 7. Similalry, if » = 1, d(x) is independent of 7, by hypoth-

Now we prove existence of J. Now, we fix a prime 7. Let X be an
indeterminate and consider K, F[X] with Xy = —yX V y € K;F. Given

f(ﬂilul), Ce ,€<7Ti1ul) S KlF
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define p; € K;F such that
(Xiy +L(0)) - - (Xip + (1)) = X 00 + X" Lo 4+ -+ + .

It is easy to see that ¢, : K1 F x -+ x K;F — K, F are n—(multi)linear on
K, F.

Define
e =L(=1)"Tpo +{(=1)" P14+ + pn_1 € Ky F

So, ¢ (U(7"uy), ..., ¢(7""uy)) is multilinear, so it factors through the tensor
product:
K1F X o+ X KlFHTnF

Tl |

K, . F

Now suppose ﬂijuj + 7Ti1+1uj+1 = 1. We can assume i = 1. So 7'u; +
72uy = 1. Assume i; < i5. Then, By routine calculation, it follows that
11 = 0 < 5. So,

Uy + T2uy = 1

1. If i = 0 then u; + uy = 1 and £(uy)¢(uz) = 0. So, (xiy + £(uy))((xis +
((uz)) = 0. So, p;(*,...,%) =0 for all j.

2. Tt iy > 0, then ¢(uy) = £(1) = 0. So, (xiy + £(uy))((wis + £(uz)) = 0. So,
©;(*,...,%) =0 for all j.

This proves that all ¢, factor through K;F. Also ¢ is defined on K, F. We
define 0 = . For x = l(muy)l(us) -+ l(uy), i1 = 1,ia = 0,...,i_0. So, the
defining equation gives

(X + 0@m)0(iw) -+ L(tiy) = Y X"y =

On_1(x) =l(uy) - - L(u), @jx)=0 Vj#n-—1
Since, it does not nvolve u;, this is indpendent of 7. So, d(z) = p(z) is as
desired. |

Remark. Note, if v : F' — Z denotes the valuation, then

o(€(a)l(uz) - - - £(un)) = v(a)l(uz) - - - £(un))
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Lemma 4.2. Let (A, 7) be a DVR. There is a uniques ring homomorphism
VY K,F — K,F where Y7 ;) - -+ (7" uy,) = (7)) - - - 1(Wy).
This depends on the prime .

Proof. Similar to that of theorem 4.1. n

4.2 Milnon’r Theorem

Now let F be a field and F(t) be a field of rational functions. Each monic
irreducible polynomial m € F[t] gives rise to a (m)—adic valaution on F'(t),
with residue field F,, = F[t]/(m). This provides a surjection

Op + Ky(F(t) — Ky1 Fy
Theorem 4.3. There is a split exact sequence:

0 K, F K,F(t) _9 PK, 1F,—=0 where 0 = @0,

and the direct sum extends over all non-zero prime ideals.

proof. For n =1 the 0 = ®Ord, It is easy so see that
Ord.(f)=0 Vn= feF°.

Keep n fixed. Let Ly = L} C K,,F(t) be the subsgroup generated by products
L(f)l(f2) - U(fn) such that degree(f;) < d. Clearly,

LoCLiCL,C-, K,JF(t)=|]JLa

By lemma 4.2, we have

fix any linear monic w. Then,

/ commutes.

So, K,F =~ Lg is a direct summand. Since this is a split, we only need to
ptove that the sequence is exact.

K, F
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Lemma 4.4. Let m be a monic prime with degree(n) = d.

1. Given an element y € F[t]/(7), by division algorithm, the is an unique

g € F[t] with g =y and degree(g) < d.

2. There is a unique homomorphism

b Ko () > 1o where () 1)) = (ae) s

with degree(g;) < d.

Proof. Consider the same map on

(KL F[t]/ ()" (I(g2), -+ U(gn)) = Um)l(g2) - - U(gn)-

First, we prove it is mulitlinear. We will only prove for the first coordiante.
Suppose

go = ghge”  mod(r) degree(gq), degree(gs), degree(gy”) < d.

So,
g =7f + ghge” where  degree(f) < d.

If f =0, then

Um)l(g2) -+ Ugn) = L(m)(U(g5) + 1(g2")) - Ugn) = L(m)I(g3) - - - 1(gn) +U(m)l(g2") - - - 1(gn)

If f+#0, then
1 — ﬂ + M
g2 g2
So,
() +1(f) — U(g2))(U(g5) +1(g2") — U(g2)) = 0.
Or
U(m)l(gy) + U(m)l(g2") — 1(m)l(g2)

H()l(ga) +1()I(g2") — 1(f)(g2) + 1(g2)l(g5) + 1(g2)l(g2”) — U(g2)l(g2) = 0

Multiply by i(g3) - - - {(gn) and mod by Lg_1(only first 3 terms survive):

Um)l(g5)l(g3) - - 1(gn) + 1(m)(g2")l(g3) - - - 1(gn) — U(7)I(g2)I(g3) - - - 1(gn) = O.

15



Hence

Um)l(g2)l(gs) - - 1(gn) = L(m)1(g5)l(gs) - - - 1gn) + U(m)l(g2" ) (g3) - - - 1(gn)

This establishes the desired map, at the n—fold tesor product level,
™ (m (F_W» L
() Lq

G; + Gi+1 = 1,degree(yg;) < d,degree(gj+1) < d = g; + gj+1 = 1.

Also,

This completes the proof. |

Lemma 4.5. Let P, be the set of all monic primes m of degree d Then,

0" =P o, K.F(t) — €D K (%?)

TEPy TEPy
mduces an isomorphism on ﬁ Diagramatically
L&~ K,F(t)

L e

Ly ~ F[Y] F[1]
Ldil - @ﬂ'epd Kn_l <m>(% @ Kn_l (m)

proof. Let m be a prime and degree(w) = d. For g € K|[t] with degree(g) <
d, we have g is an unit in the DVR K[t](x). So, 0-(L4—1) = 0 and 0, factors
through —£4-. We also have

Lg1
F\ hx _ _La F{]\ hx _ _La
o (3) = Ko (31) 2
; andif w#7' ol -
anl (}(?T[t)]) anl <}(?T[t)])
Write h = @, ¢p, hir- The above shows 0h = Id. If we show that / is surjec-

tive, the proof will be complete.
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Generator of Li: are given by the image of I(f1) - {(fs)l(gs+1) -~ 1(gn)

where degree(f;) = d and degree(g;) < d. We want to prove that Liil

generated by such expressions with s = 1 and f; is a prime. We can write

is

fo=—afi+g a€F, degree(g) <d.

If g # 0, we have

—h e @i - 1) - 1) =0

1

So,
[(f)I(f2) = —U(a)l(f2) + Ua)l(g) + 1(f1)I(g) + U(9)l(f2) — U(g)*
So,

LOUS2) - L f)l(gsar) -+ - Ugn) = L)) -+ - L[ )U(Gs41) - - - Ugn) Hwo—terms

If g = 0 we have fy + af; = 0. (It is possible that f; = f; and a = —1.)
Then (I(a) +1(f1))l(f2)) = 0. So,

L(f)I(f2) = =1(a)l(f2)
So

HOUS2) - L(f)U(gsta) - Ugn) = =1(f)la) - - - 1)1 (gs41) - - - Lgn)

By induction on s it follows that % is generated by images of

y=1)lg2)----- l(gn)  degree(fr) = d,degree(g;) < d.

y=1Uf)lga) - Ugn) = Um)l(g2) -+ 1(gn) + 1(a)l(g2) - - - 1(gn)

ha(l(g2) - - 1(gn)) = V-

So, ¥y is in the image of h,.
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If f is not a prime, then f factors further into polynomilas of degree < d.

So, y =0 (mod Ly 1), which is in the image of h. This complete the proof.
n

Proof of theorem 4.3: The sequence is clearly a complex. Now, let 0(z) =
0. Then, O.(z) = 0 for all prime 7. Suppose = ¢ Lg. If © # 0 then z €

Lg\ Lg—1. So, 94(z) # 0 (as in 4.5). This is a contradiction.

For the surjectivity on the right side, let x € K,,_4 (L§f1> . Note 8_7rhﬂ(x) =

x and h.(h(z)) = 0. So, d(y) = « for any y € L4 that lifts . The proof is
complete. -
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5 Norm and Residue Homomorphisms

My main reference for this section is ([EKM]).

5.1

Norm Homomorphism

Recall the following.

Definition 5.1. Suppose F' — L is a finite field extension.

1.

Suppose F' — L is a Galois extension. Then, norm is defined as

Npjp: L — F defined by Npp(a) = H o(a).

oc€Embp (L)

In fact, we want to define the norm homomorphism Cr,/p : K,,L — K, F.

1.

Suppose L = F(y) be simple. Then, L = %, where 7 is the irreducible

polynomial of y.

Suppose a € K, (L) = K, (M> By Milnor’s theorem 4.3, there is a

(m)
f € K1 F(T) such that

oo ={ o Ul

0 otherwise

Let vy be a discrete valuation vy, : K(T) — Z, where voo(T7!) = 1.
We set
cr/r(@) = Ou, (B)

More formally, Recall Milnor’s sequence is a split exact sequence. Let
v be a split of 0.
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0— Ky FF—— K, 1 F( )H@KFHO

|
/ | DCp,/F
\

KniiF(T) 35— @ K, F

In fact, cz/p is independent of choice of +.

Proof. Let n be another split. Then d(y—n) = 0. So, Image(y—n) C
K, F. So, 0, (y—mn) =0. ]

Now suppose F' — L be any finite extension. Then we can choose a chain
of simple extensions:

F=F—F - ---—F,=1L.
We define

CL/F " = CR/FyCRy/F " " CFy /Fpy

It is stated without proof, that cr,/r independent of this choice of the sequence
of simple extensions, is well defined.

Proof.
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5.2 Residue Homomorphism for local rings

Suppose (A, m, k) is a local ring (excellent domain) of dimension one. Write
K = Q(A) the field of fractions of A. We define a groups homomorphism
W(K) — W (k) as follows.

1. Let B be the integral closure of A, in K. Then,

(a) Q(B)=K,dimB=1

(b) B is semilocal. Let Max(B) = {mi,...,m,}.
(c) B normal. So, B is a Dedekind domain.

(d) So, B, are DVR.

2. Write k; = B/m;.
3. By theorem 4.1, there are residue class maps A; : K,(K) — K, (k;)

4. Note k — k; is a finite extension. Then, there are norm homomor-
phiSIl’lS C; = CK/k,,,; : K,Lfl(/{?i) — K,L,1<k>.

5. Let
AA = EB;ilA’L . Kn(K> — EB?:lanl(ki)

and vy = @,7;10@' : @:ilKn—IU{;z) — Kn_l(k)

Definition 5.2. Now define a residue class homomorphism

Oa: Ky (K) — K, 1(k) > K,_1(k) commutes.

K\ (K) da
AA\L /

DLy K1 (k)
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5.3 Gersten Complex for K —theory

Let A be any commutative noetherian ring and X = spec(A). Denote X () =
{p € Spec(X) : height(p) = r}. Assume d := dimA = dimA4,, ¥V m €
MAx(A).

Ay

1. For p € Spec(A) denote k(p :) = oA

2. Let © C y be two primes, with height(y) = height(x) + 1. By (5.2),
there is a residue class homomorphism

% K (k(z)) — Koo 1(y)

Yy

For any other pairs of prime ideals (z,y), define 9 : K,(k(z)) —
Kn—l(y) =0.

3. Accordingly, 9y induce homomorphisms

on =00 || Kuls(@) — ] Kulslz)) Vn

zeX () reX (n+1)

We deonte
C"(X) = Coyn(X) =[] Kulk())
reX (™)
Also, denote
C(X) =aC"(X)

Further, denote

O2(X) 1= Cupn(X) =[] Kamprnli(@)) i Con(X) = [] Kranlnle))

xGX(p) CEGX(T)

So, we have
Op : C"(X) — C"MH(X)

4. For all integers n > 0, this gives rise to a sequences ™:

0 HwGX(()) Kn(l{@;)) - ]_Lvex(l) Kn_l(li(l’)) — e

oy
e [, exe Ko(k(z)) ——0

Heexo Knr(k(2))
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In C},—notation this sequence is written as:

o
0 —=Cin-a(X) —=Co1pna(X) —> —=Cyrpa(X) —=C " 4(X) —0

O y(X) —0

00— Cgfd(X)

Cra(X) e Cra(X)

This is known as n'"— Gersten sequence for Milnor K —theory. This is
also known as n'"—Rost sequence.

Theorem 5.3. Suppose A is an excellent ring. Then

1. The Gersten sequence is a complex.

2. (Conjecture) If A is regular local, then Gersten sequence is exact at
degree n > 1. Also, ker(9}) = K,,(A), which we did not define.

When A contains an infinite field, this conjecture is known to be true.
It was proved by Moritz Kerz (|K]).

A E

xcellent Rings

Definition A.1. A ring A is called excellent, if the follwing conditions are
satified:

1. A is noetherian,

2. A is universally catenary,

3. (G—rings): ¥V o € Spec(A) the homomorphism A, — A is reqular.
4. (J —2): Given any finitley generate A—algebra B, the locus reg(B) is

open.
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