Math 996: A course on Quadratic Forms

Satya Mandal, KU

The following is an overview of the course on Quadratic Forms.
In this course, we study quadratic forms.

1. Given a field F, a quadratic form q is a homogeneous polynomial of degree two. So, it looks like

$$
q=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} X_{i} X_{j} \quad a_{i j} \in F .
$$

We will always assume $1 / 2 \in F$.
2. By a change of variables, any quadratic form is diagonalizable. That means, after change of variables,

$$
q=a_{1} X_{1}^{2}+a_{2} X_{2}^{2}+\cdots+a_{n} X_{n}^{2} \quad a_{i} \in F
$$

3. In my view, after linear polynomials, simplest mathematical objects are the quadratic forms, which we will study.
4. Overview: One of the simplest (or trivial) quadratic form is $f(X, Y)=$ $X^{2}-Y^{2}$, which is called a hyperbolic form. Given a field F, we will define Witt group $W(F)$ of F. Generators of $W(F)$ are the quadratic forms (up to isometry), and hyperbolics are treated as zero (or trivial). These groups $W(F)$ will be among the main objects of our study.
5. Background Needed: Some familiarity with fields. Among the fields, we will consider are $\mathbb{Q}, \mathbb{R}, \mathbb{Z}_{p}$ where p is a prime number.
6. Textbook: "Introduction to Quadratic forms over Fields" by T. Y. Lam.

I will probably be able to finish upto Chapter VI, which deals with computing the Witt group $W(\mathbb{Q})$ of \mathbb{Q}.
7. Lecture Notes: As always, I will be to able provide complete online lecture notes for the whole course (in pdf).

