Triangulated Witt Groups

Satya Mandal, U. Kansas Algebra Seminar, KU

September 19, 2013

イロト イポト イヨト イヨト

The Witt Group Two Examples Witt Group of a Field

Definition

Main references used are given below.

- Suppose \mathcal{A} is an abalian category.
- ► A subcategory *E* of *A* is called an exact category, if for any exact sequence

$$0 \longrightarrow P \longrightarrow M \longrightarrow Q \longrightarrow 0 \quad in \quad \mathcal{A},$$

 $P, Q \in \mathcal{E} \Longrightarrow M \in \mathcal{E}.$

イロト イポト イヨト イヨト

Let A be a commutative ring. The category P(A) of all fintely generated projective A-module is an exact category.

The Witt Group
Two Examples
Witt Group of a Field

Duality

Suppose \mathcal{E} is an exact category and $* : \mathcal{E} \longrightarrow \mathcal{E}$ is a contravarient functor. We denote $*(M) = M^*$. We say * is a duality (involotion) on \mathcal{E} , if

there is a natural equevalence (isomorphism)

$$\pi: \mathsf{Id} \xrightarrow{\sim} *o* \quad \ni \ \forall \ \mathsf{objects} \ \mathsf{M} \in \mathcal{E} \quad \mathsf{Id}_{\mathsf{M}^*} = (\pi_{\mathsf{M}})^* \pi_{\mathsf{M}^*}.$$

▶ This means, \forall objects $M \in \mathcal{E} \exists$, "natural isomorphisms"

$$\pi_{M}: M \xrightarrow{\sim} M^{**} \ni M^{*} \xrightarrow{\pi_{M^{*}}} M^{***} \quad commute.$$

$$\downarrow \pi_{M^{*}}$$

$$M^{*}$$

The Witt Group Two Examples Witt Group of a Field

Duality

- We say, $(\mathcal{E}, *, \pi)$ is an exact category with duality.
- ► Example. For a projective A-module P, let

 $P^* = Hom(P, A)$ and $\pi : P \xrightarrow{\sim} P^{**}$ be the evaluation.

・ロト ・回ト ・ヨト ・ヨト

Then $(\mathcal{P}(A), *, \pi)$ is an exact category with duality.

The Witt Group Two Examples Witt Group of a Field

Symmetric spaces

Suppose $(\mathcal{E}, *, \pi)$ is an exact category with duality.

For an object P ∈ E, an isomorphism φ : P → P* is called an symmetric isomorphism, if



If φ : P → P* is a symmetric isomorphism, we say (P, φ) is a symmetric space (or symmetric form or a form).

イロン イヨン イヨン イヨン

The Witt Group Two Examples Witt Group of a Field

イロト イポト イヨト イヨト

æ

Orthogonal Sum

Let (P, φ) and (Q, ψ) be two symmetric spaces. The orthogonal sum \perp of these two forms is defined to be

$$(P, \varphi) \perp (Q, \psi) := \left(P \oplus Q, \left(egin{array}{cc} arphi & 0 \\ 0 & \psi \end{array}
ight)
ight)$$

Satya Mandal, U. Kansas Algebra Seminar, KU Triangulated Witt Groups

 Witt Groups of Exact Categories
 The Witt Group

 Witt Groups of ∆ed category
 Two Examples

 Translated or Shifted Duality
 Witt Group of a Field

Isometry

Let (P, φ) and (Q, ψ) be two symmetric spaces.

• An isomorphism $h: P \xrightarrow{\sim} Q$ is said to be isometry, if

イロト イポト イヨト イヨト

Isometry is an equivalence relation.

The Witt Group Two Examples Witt Group of a Field

The Witt monoid

Suppose $(\mathcal{E},*,\pi)$ is an exact category (small) with duality.

- Let $MW(\mathcal{E})$ be the set of all isometry classes.
- Then,

 $(MW(\mathcal{E}), \perp)$ has a monoid structure.

・ロト ・回ト ・ヨト ・ヨト

• $(MW(\mathcal{E}), \perp)$ is said to be the Witt monoid of $(\mathcal{E}, *, \pi)$.

The Witt Group Two Examples Witt Group of a Field

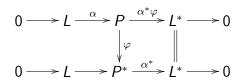
Lagrangian, Metabolic, Neutral

Suppose $(\mathcal{E}, *, \pi)$ is an exact category (small) with duality.

Let (P, φ) be a symmetric space. A lagrangian of (P, φ) is a pair (L, α) such that (why he talks about admissible?)

$$0 \longrightarrow L \xrightarrow{\alpha} P \xrightarrow{\alpha^* \varphi} L^* \longrightarrow 0 \quad is exact.$$

• The following diagram is helpful:



イロト イポト イヨト イヨト

The Witt Group Two Examples Witt Group of a Field

イロト イポト イヨト イヨト

Continued: Lagrangian, Metabolic, Neutral

- A symmetric space (P, φ) is said to be metabolic or neutral, if it has a lagrangian.
- Let NW(E) be the set of all isometry classes of metabolic spaces. Then, NW(E) ⊆ MW(E) is a submonoid.

The Witt Group Two Examples Witt Group of a Field

Quotient by submonoid

Let M be a monoid and N be a submonoid. We want to define the quotient.

• For $x, y \in M$ define

$$x \sim y$$
 if $x + n_1 = y + n_2$ for some $n_i, n_2 \in N$.

This is an equivalence relation.

- Let M/N be the set of all equivalence classes x̄ of elements of x ∈ M.
- M/N has a well define monoid structure, given by

$$\overline{x} + \overline{y} := \overline{x + y} \qquad \forall x, y \in M$$

イロン イヨン イヨン

The Witt Group Two Examples Witt Group of a Field

The Group Structure: Quotient by submonoid

Lemma. Let $N \subseteq M$ be as above.

Assume,

$$\forall x \in M \quad \exists y \in M \quad \ni \quad x + y \in N.$$

イロト イポト イヨト イヨト

Then, M/N has a group structure.

The Witt Group Two Examples Witt Group of a Field

Hyperbolic Spaces

 Suppose (P, φ) is a symmetric space. Define the Hyperbolic space

$$\mathcal{H}(\mathsf{P}) := ((\mathsf{P}, \varphi) \perp (\mathsf{P}, -\varphi))$$

It follows

$$\mathcal{H}(P) \cong \left(P \oplus P^* \left(\begin{array}{cc} 0 & 1_{P^*} \\ \pi_P & 0 \end{array}\right)\right) \equiv \left(P \oplus P^* \left(\begin{array}{cc} 0 & 1_{P^*} \\ 1_P & 0 \end{array}\right)\right)$$

イロン イヨン イヨン イヨン

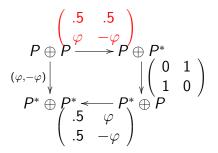
are isometric. In the last equality " \equiv " we treat $\pi_P = 1_P$.

The Witt Group Two Examples Witt Group of a Field

・ 同 ト ・ ヨ ト ・ ヨ ト

Continued: Hyperbolic Spaces

The isometry is the top line of the commutative diagram



The Witt Group Two Examples Witt Group of a Field

Continued: Hyperbolic Spaces

Lemma: Let (P, φ) be a symmetric space. Then, $\mathcal{H}(P)$ is neutral.

Proof. Take
$$\alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : P \longrightarrow P \oplus P$$
 Then,

$$\alpha^* \left(egin{array}{cc} arphi & \mathbf{0} \\ \mathbf{0} & -arphi \end{array}
ight) = (arphi, -arphi) : P \oplus P \longrightarrow P^*.$$

It follows

$$0 \longrightarrow P \stackrel{\alpha}{\longrightarrow} P \oplus P \longrightarrow P^* \longrightarrow 0 \quad is exact.$$

イロト イヨト イヨト イヨト

æ

The Witt Group Two Examples Witt Group of a Field

イロト イヨト イヨト イヨト

The Witt Group

Let $(\mathcal{E}, *, \pi)$ be an exact category with duality. Deifine

$$W(\mathcal{E}) := W(\mathcal{E}, *, \pi) := rac{MW(\mathcal{E})}{NW(\mathcal{E})}$$

- $W(\mathcal{E})$ has a group structure.
- $W(\mathcal{E})$ is called the Witt Group of \mathcal{E} , or of $(\mathcal{E}, *, \pi)$.

The Witt Group Two Examples Witt Group of a Field

イロト イポト イヨト イヨト

The Witt Group of Projective Modules

Let A be a commutative noetherian ring. We defined, the exact category $(\mathcal{P}(A), *, \pi)$ of projective modules. Define the Witt group of A as

$$W(A) := W(\mathcal{P}(A), *, \pi).$$

The Witt Group Two Examples Witt Group of a Field

The Witt Group of Modules of FPDFL

Let A be a Cohen-Macaulay ring. Assume dim $A_m = d$ for all maximal ideals.

- Let A = FPDFL(A) be the category of modules of finite length and finite projective dimension.
- ► Then, *A* is an exact category.
- ▶ For objects $M \in A$, deifne $M^{\vee} := Ext^d(M, A)$.
- There is a natural isomorphism $\pi: M \xrightarrow{\sim} M^{\vee\vee}$.
- (\mathcal{A}, \lor, π) defines an exact category with duality.
- ► The Witt Group W(A) := W(A, ∨, π) is called the Witt group of FPDFL modules.

イロン イヨン イヨン イヨン

The Witt Group Two Examples Witt Group of a Field

イロト イポト イヨト イヨト

Exercise

Let F be a field.

- Let (V, φ) be a regular symmetric space over F. Then, if (V, φ) is neutral, then it is hyperbolic, in the sense of the book of Lam ([Lam]).
- ► Temporatily, let W(F) denote the Witt group of F, as defined in the book of Lam ([Lam]) and W(F) denote the Witt group defined as above. Prove W(F) ~ W(F).

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

イロン イヨン イヨン ・

δ -exact Functors

K be a Δ ed category and $T : K \xrightarrow{\sim} K$ be the translation. Suppose $\delta = \pm 1$. An additive contravarient functor $\# : K \longrightarrow K$ is called δ -exact,

- if $To\# = \#oT^{-1}$ (equivalently, if $\#T = T^{-1}\#$).
- and if \forall exact Δs ,

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA$$

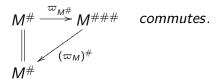
the "Dual" Δ ,

$$C^{\#} \xrightarrow{v^{\#}} B^{\#} \xrightarrow{v^{\#}} A^{\#} \xrightarrow{\delta T(w^{\#})} T(C^{\#})$$
 is exact.

Acd category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

Duality on Δed categories

A δ -exact functor $\# : K \longrightarrow K$ is said to be a δ -duality on K, if \exists natural equivalace $\varpi : Id \xrightarrow{\sim} \#\# \ni \forall$ objects M in K \blacktriangleright The diagram



And

$$\varpi_{T(M)} = T(\varpi_M). \quad \text{Diagramatically}, \quad TM \xrightarrow{T(\varpi_M)} T(M^{\#\#})$$
$$\| \qquad \| \qquad \|$$
$$= TM \xrightarrow{\varpi_{TM}} (TM)^{\#\#}_{\approx 2.5}$$

 Δ ed category with Duality Examples Witt Groups of Δ ed categories with duality The Witt Groups

イロト イポト イヨト イヨト

Duality on Δ ed categories

- A triangualted category K with such a duality # is called a triangualted category with δ−duality. Sometimes we denote it by (K, T, δ, ∞) or simply by K.
- When δ = −1, it is also referred to a skew duality. We are, in this case, thinking of the skew symmetric matrices.

 Witt Groups of Exact Categories
 ∆ed category with Duality

 Witt Groups of ∆ed category
 Kitt Groups of ∆ed categories

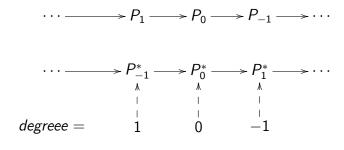
 Translated or Shifted Duality
 Witt Groups

 The Witt Groups
 The Witt Groups

Example I

Let A be a noetherian commutative ring with dim A = d.

The Derived category D^b(P(A)) is a ∆ed category with δ = ±1 duality, induced by Hom(−, A), meaning the dual of of the first line in the textcolorredsecond line:



Same is true if we replace A by a noetherian scheme A.

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

イロト イヨト イヨト イヨト

Example II

Assume A ic Cohen-Macaulay. Let A = FPDFL(A).

- The Derived category D^b(A) is a ∆ed category with δ = ±1 duality, # is induced by M[∨] := Ext^d(M, A).
- ► Remark. In D^b(P(A)) and D^b(A), for the transaltion T(P_•), it is customary to change the sign of the differential.
- Exercise. $K^b(\mathcal{P}(A)) \xrightarrow{\sim} D^b(\mathcal{P}(A))$.

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

Preview

As we saw in the case of exact category with duality, to define Witt groups of a category, we need two things:

- A concept of duality.
- A concept of Orthogonal Sum.
- A concept of Neutral.

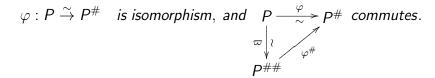
We will define Witt groups of Δed categories with duality.

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

イロン イヨン イヨン イヨン

Symmetric Spaces

- $({\sf K},{\sf T},\#,arpi)$ will denote a Δ ed category with $\delta-$ duality.
 - A symmetric space in K is a pair (P, φ) such that



We sometimes (often) say $\varphi = \varphi^{\#}$.

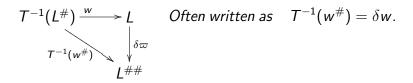
- Symmetric spaces are also referred to as symmetric form.
- (P, φ) is called skew symmetric space, if $\varphi = -\varphi^{\#} \varpi$.

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

(ロ) (同) (E) (E) (E)

Neutral Forms

 $(K, T, \#, \varpi)$ be a Δ ed category with δ -duality. A symmetric form (P, ϖ) is said to be a neutral form, if $\exists L, \alpha, w$ such that $\mathbf{w} : T^{-1}(L^{\#}) \longrightarrow L, \alpha : L \longrightarrow P$ are a morphisms. $T^{-1}(w^{\#}) = (\delta \varpi_L)^{-1} ow$. Diagramatically,



• And $(P, \varphi) = cone(w)$, which means that the triangle

$$T^{-1}(L^{\#}) \xrightarrow{w} L \xrightarrow{\alpha} P \xrightarrow{\alpha^{\#} \varphi} L^{\#}$$
 is exact.

 Witt Groups of Exact Categories
 △ed category with Duality

 Witt Groups of △ed category
 Examples

 Witt Groups of △ed category
 Witt Groups of △ed categories with duality

 Translated or Shifted Duality
 The Witt Groups

The Witt Groups

$({\sf K},{\sf T},\#,\varpi)$ be a Δ ed category with $\delta-$ duality.

- MW(K :) = MW(K, T, #, ∞) be the set of all isometry classes of symmetric spaces in K. The orthogonal sum gives a monoid structure on MW(K). We call it the Witt monoid of K or of (K, T, #, ∞).
- Let NW(K) := NW(K, T, #, ∞) ⊆ MW(K) denote the submonoid of neutal spaces.
- Define,

$$W(K) := W(K, T, \#, \varpi) := \frac{MW(K, T, \#, \varpi)}{NW(K, T, \#, \varpi)}$$

・ロト ・回ト ・ヨト ・ヨト

A priory, W(K) is monoid.

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

イロト イポト イヨト イヨト

Conitnued: The Witt Groups

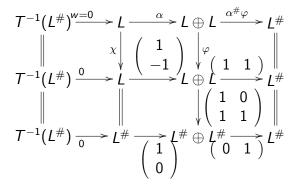
- Given a symmetric space (L, φ), define the Hyperbolic space H(L, χ) := (L, φ) ⊥ (L, −χ)
- Lemma. $\mathcal{H}(L, \varphi)$ is a neutral form.
- Theorem. W(K) is a group.
- Proof. We only need to prove the lemma. Write $P = L \oplus L$ and

$$\varphi = (\chi \perp \chi) = \begin{pmatrix} \chi & \mathbf{0} \\ \mathbf{0} & -\chi \end{pmatrix}, \quad \alpha = \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix}$$

∆ed category with Duality Examples Witt Groups of ∆ed categories with duality The Witt Groups

・ロト ・回ト ・ヨト ・ヨト

Proof: Hyperbolic is Neutral



The first Δ is exact, because the last Δ is. The latter follows from the fact that direct sum of exact Δ s is exact.

The Shifted Sructure

 $({\sf K},{\sf T},\#,arpi)$ be a Δ ed category with $\delta-$ duality.

- ► Then, $T(K, T, \#, \varpi) := T(K, T, T\#, -\delta \varpi)$ is also Δ ed category with $-\delta$ -duality.
- Likewise, T⁻¹(K, T, #, ∞) := T(K, T, T⁻¹#, δ∞) is also Δed category with -δ-duality.
- Inductively, Tⁿ(K, T, #, ∞) are defined ∀ n ∈ Z. These are referred to as shifted structure.

イロト イポト イヨト イヨト 三国

It is easy to see T²: Tⁿ(K, T, #, ∞) → Tⁿ⁺⁴(K, T, #, ∞) is an equivalence of categories.

Shifted Witt Groups

Define the shifted Witt groups

$$W^n(K) := W(T^n(K, T, \#, \varpi)).$$

イロン イヨン イヨン イヨン

3

• It follows
$$W^n(K) \xrightarrow{\sim} W^{n+4}(K)$$
.

Shifted Derived Categories

Suppose A is a noetherian commutative ring with dim A = d. Let $D^b_{fl}(\mathcal{P}(A))$ be the subcategory of $D^b(\mathcal{P}(A))$, consisting of complexes $P_{\bullet} \in D^b(\mathcal{P}(A))$ with finite length homologies.

- Then, $D^b_{fl}(\mathcal{P}(A))$ is also a Δ ed category.
- ► Hence the shifted structues TⁿD^b_{ff}(P(A)) ∀ n ∈ Z are also ∆ed categories.
- ► Of particular interest is T^dD^b_{fl}(P(A)) and shifted Witt group W^d(D^b_{fl}(P(A)).

イロン イヨン イヨン イヨン

- Weibel, Charles A. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. xiv+450 pp.
- PAUL BALMER, Triangular Witt Groups Part I: The 12-Term Localization Exact Sequence, K-Theory 19: 311?-63, 2000
- PAUL BALMER, *Triangular Witt groups Part II: From usual to derived* Math. Z. 236, 351-382 (2001)
- T. Y.Lam, Introduction to Quadratic Forms over Fields. The Book.

・ロト ・同ト ・ヨト ・ヨト