Quillen *K*-Theory A reclamation in Commutative Algebra

Satya Mandal Department of Mathematics, KU

27, 30 October 2020

Satya Mandal Department of Mathematics, KU Quillen K-Theory A reclamation in Commutative Algebra

(D) (A) (A) (A)

Abstract

Four Chapters on Background Classifying spaces and Quillen K Expected Theorems begins Agreement K-Theory of rings K-theory of schemes Ch. 10. Projective bundle theorem of K-theory Ch. 11. Swan's work on spheres

Prelude

- When I was grad. Student K-theory used to be part of Commutative Algebra.
- After Quillen published his paper in 1972. He used too much topology, for most algebraist to be able to handle.
- For most part, Topology used was basic. Depending on the area of math, these are taught to the graduate students.

(日) (同) (三) (三)

Abstract

Four Chapters on Background Classifying spaces and Quillen K Expected Theorems begins Agreement K-Theory of rings K-theory of schemes Ch. 10. Projective bundle theorem of K-theory Ch. 11. Swan's work on spheres

Reclamation and Opportunity

- I consolidated the background needed, in about 120 pages. Everyone knows parts of it, many not be the same parts for all. *K*-theory can be taught to algebra students.
- After Quillen's paper, Topologist did what they are good at. They did not answer what Algebraists envisioned. Algebra community did not provide their input.
- So, there is a gold mine of research potential in Algebra.
 - Describe these groups algebraically.
 - Propose newer questions, to simplify and naturalize these proofs

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 1: Category Theory

In the K-theory literature, they put everything in the frame work of categories, and arrows (maps). Highlights:

- A proof of Snake Lemma, for abelian categories.
- Quotient categories
- Inverting arrows (Localization). Calculus of fractions.
- Definition of Exact categories.

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

We will see, for an exact category \mathscr{E} , the *K*-groups $K_i(\mathscr{E})$ are homotopy groups $\pi_i(-, \star)$. **Good News**: I avoided Homology Theory entirely. In about 20 pages, I summarized the background on topology and Homotopy Theory needed. Another 20 pages, discussed Quasifibrations (Dold-Thom), which would not be taught in graduate courses.

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

Given an exact sequence

$$0 \longrightarrow K_{\bullet} \xrightarrow{g} M_{\bullet} \xrightarrow{f} N_{\bullet} \longrightarrow 0 \quad \text{of modules}$$

(or in an abelian category) there is a long exact sequence

$$\cdots \longrightarrow H_n(K_{\bullet}) \xrightarrow{g_*} H_n(M_{\bullet}) \xrightarrow{f_*} H_n(N)_{\bullet}) \longrightarrow H_{n-1}(K_{\bullet}) \longrightarrow H$$

• We can do better. Given a map $f: M_{\bullet} \longrightarrow N_{\bullet}$, define the cone $C_{\bullet}(f)$, by $C_n(f) = N_n \oplus M_{n-1}$

so that it fits in a short exact sequence

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

Or, we have a triangle (birth of triangulated categories)

So, we have an exact sequence

$$\cdots \longrightarrow H_n(M_{\bullet}) \xrightarrow{f_*} H_n(N_{\bullet}) \longrightarrow H_n(C_{\bullet}(f)) \longrightarrow H_{n-1}(M_{\bullet})$$

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

While all that comes from Topology.
 We do reverse engineering.
 Given a continuous map f : (X, x₀) → (B, b₀), of pointed topological spaces,
 a topological space F(f) := F(f, b₀),
 to be called homotopy fibre, is defined, by

$$F(f, b_0) = \{(x, \gamma) : x \in X, \gamma \text{ is a path } f(x) \mapsto b_0\}$$

Then, we have a long exact sequence

$$\cdots \longrightarrow \pi_n(F(f), \star) \longrightarrow \pi_n(X, x_0) \longrightarrow \pi_n(B, b_0)$$

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

A homotopy fibration is a diagram, as follows:

$$F \xrightarrow[]{} (X, x_0) \xrightarrow{f} (B, b_0)$$

$$F(f), \star)$$

where the vertical arrow is a homotopy equivalence. So, a homotopy fibration also lead to a long exact sequence.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

▶ Homotopy theory has a base point issue. Let $f : X \longrightarrow B$ be a continuous map. For $b \in B$, let $F_b := f^{-1}b$ be the fibre. We say f is a Quasifibration, if

 $F_b \longrightarrow (X, x) \longrightarrow (B, b)$ is a homotopy fibration.

Consequently, $\forall b \in B$, and $x \in F_b$,

leads to an exact sequence

$$\cdots \longrightarrow \pi_n(F_b, x) \longrightarrow \pi_n(X, x) \longrightarrow \pi_n(B, b)$$

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 2: On Homotopy Theory

- We establish (Dold-Thom) necessary and sufficient conditions for a map f to be a quasifibration, in another 20 pages.
- Two key theorems in Quillen's paper are Theorem A, B. In a sense, Theorem A, B are like the heart of his paper. Characterization of Quasifibrations becomes instrumental in the proofs.

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 3. CW Complexes

In 20 pages, I consolidate the information needed about **CW complexes,** mainly from the book of Hatcher.

 A CW complexes, is a a topological space X together with a sequence of subspaces

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \quad \ni \quad X = \bigcup X_n$$

where X_n would be called the *n*-skeleton

 X₀ is given the discrete topology, and X_n is built from X_{n-1} by attaching a family of n-cells εⁿ_α (open disk).

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 3. CW Complexes

So, we have a push forward diagram

in **Top**

Note Φ_{α} maps the open disk $\mathbb{U}^{n} \xrightarrow{\sim} \Phi_{\alpha}(\mathbb{U}^{n})$ homeomorphically. X has the weak topology. This means $U \subseteq X$ is open $\iff U \cap X_{n}$ is open in X_{n} , and the set of X_{n} is open in X_{n} .

Satya Mandal Department of Mathematics, KU Quillen K-Theory A reclamation in Commutative Algebra

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 3. CW Complexes

CW complexes are very natural objects. They enjoy many natural properties, like $(\mathbb{D}^n, \mathbb{S}^{n-1})$.

Theorem: Suppose (X, A) be a CW pair. Then, (X, A) has homotopy extension property (HEP).

(日) (同) (三) (三)

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 3. CW Complexes

Weak equivalences are defined in many categories.

- **Definition:** A continuous map $f : X \longrightarrow Y$ is called a weak equivalence if the induced maps $f_* : \pi_n(X, x) \xrightarrow{\sim} \pi_n(Y, (f(x)))$ are isomorphisms $\forall n$.
- You may recall, a map of complexes of modules is called a weak equivalence, if it induces isomorphism of homologies.

イロト イポト イヨト イヨト

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 3. CW Complexes

- Among the most frequently used results are the following theorem of JHC Whitehead:
- ► Theorem: Let f : X → Y be a continuous map of CW complexes. Then, f is homotopy equivalence ⇐→ f is a weak equivalence.
- **Theorem:** Suppose $X = \bigcup X_n$ is a CW complex, and $x \in X_r$. Then,

$$\begin{cases} \pi_k(X_r, x) \xrightarrow{\sim} \pi_k(X, x) & \text{is isomorphism} \quad \forall k \le r-1 \\ \pi_r(X_r, x) \twoheadrightarrow \pi_r(X, x) & \text{is surjective} \end{cases}$$

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 4. Simplicial Sets

The geometry of simplicial sets, further breaks down the topological information combinatorially. For us information flow is as follows:

 $\textbf{Topology} \Longleftrightarrow \textbf{combinatorial Geometry} \Longleftrightarrow \textbf{Algebra}$

Recall the Δ -category. Objects in Δ are sets $[n] := \{0, 1, 2, \dots, n\}$. Arrows $[m] \longrightarrow [n]$ are non decreasing maps. Such arrows are compositions of

$$\begin{cases} d^{i}: [n-1] \longrightarrow [n] & face \\ s^{i}: [n] \longrightarrow [n-1] & degeneracies, is is a solution and its solution. \end{cases}$$

Satya Mandal Department of Mathematics, KU

Quillen K-Theory A reclamation in Commutative Algebra

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 4. Simplicial Sets

► Let $e_0, e_1, e_2, \ldots, \in \mathbb{R}^{\{0,1,2,\ldots\}}$ be the standard basis. Let Σ^n be the convex hull of e_0, e_1, \ldots, e_n . So,

$$\Sigma^n = \{(t_0, t_1, \ldots t_n) : 0 \leq t_i \leq 1, \sum t_i = 1\}$$

We say Σ^n is the **standard** *n*-simplex. Then

 $\Sigma^{\bullet}: \Delta \longrightarrow \mathsf{Top}$ is a covarint functor,

also known as co-simplicial set.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 4. Simplicial Sets

► A simplicial set K_• is a contravariant functor

$$K_{\bullet}: \Delta \longrightarrow \mathbf{Sets}$$

▶ The geometric realization of K_• is defined by

$$|K_{\bullet}| = \frac{\prod_{n} K_{n} \times \Sigma^{n}}{\sim}$$

So, $\forall \sigma \in K_n$, there is one standard *n*-simples $\sigma \times \Sigma^n$.

Category Theory On Homotopy Theory CW Complexes Simplicial Sets

Ch. 4. Simplicial Sets

Main thing that we need to know is the following:

- ► Theorem: Let K_• be a simplicial set. Then |K_•| is a CW complex.
- The classifying spaces that we define next, would be a geometric realization of a simplicial set. Hence, they would be CW complexes, and we can use everything we know about CW complexes.

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Classifying Spaces

Let \mathscr{C} be a category (always small). **Definition:** The **nerve** of a \mathscr{C} is defined to be a simplical set $N_{\bullet}(\mathscr{C})$, as follows

An *n*-simple σ ∈ N_n(𝒞) is a sequence of composable arrows

$$\sigma := X_0 \longrightarrow \cdots \longrightarrow X_r \xrightarrow{f_r} X_{r+1} \longrightarrow \cdots \longrightarrow X_n$$

Given *ι* : [*m*] → [*n*], a map N(*ι*) : N_n(*C*) → N_m(*C*) is obtained by inserting identity or by composing successive arrows.

Satya Mandal Department of Mathematics, KU

Quillen K-Theory A reclamation in Commutative Algebra

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Classifying Spaces

Definition: The Classifying space of $\mathscr C$ is defined to be

 $\mathbb{B}\mathscr{C}:=|\mathsf{N}_{\bullet}(\mathscr{C})|\quad \mathrm{the \ geometric \ realization}.$

So, for any object $X \in \mathscr{C}$, we can define **homotopy groups**:

$$\pi_n(\mathscr{C},X) := \pi_n(\mathbb{B}\mathscr{C},X)$$

(日) (同) (三) (三)

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Classifying Spaces

• Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be covariant functor. Then, it induces a map

 $\mathbb{B}F:\mathbb{B}\mathscr{C}\longrightarrow\mathbb{B}\mathscr{D}\quad\text{is continuous.}$

► Further,

$$\mathbb{B}: \mathsf{Cat} \longrightarrow \mathsf{Top} \quad \text{sending} \quad \left\{ \begin{array}{c} \mathscr{C} \mapsto \mathbb{B}\mathscr{C} \\ F \mapsto \mathbb{B}F \end{array} \right.$$

is a functor, where **Cat** denotes the category of all small categories and functors.

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Classifying Spaces

• Let $F, G : \mathscr{C} \longrightarrow \mathscr{D}$ be two functors, and $\theta : F \longrightarrow G$ be a **natural transformation**. Then, θ induces a homotopy

$$H: \mathbb{B}\mathscr{C} \times I \longrightarrow \mathbb{B}\mathscr{D} \quad \ni \quad \left\{ \begin{array}{l} H(-,0) = \mathbb{B}F \\ H(-,1) = \mathbb{B}G \end{array} \right.$$

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Classifying Spaces

▶ Let Let $F : \mathscr{C} \longrightarrow \mathscr{D}$, $F : \mathscr{D} \longrightarrow \mathscr{C}$ be two functors, and assume F is **left adjoint** to G, then

 $\mathbb{B}F : \mathbb{B}\mathscr{C} \longrightarrow \mathbb{B}\mathscr{D}$ is a homotopy equivalence.

- ► Consequently, if *C* has an initial or final object, then B*C* is contractible.
- ► We would be working with exact categories &, which has a zero. So, B& would be contractible, we would get nothing, unless we do some more work.

(D) (A) (A)

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Theorem A, B

The Plan: Given a functor $F : \mathscr{C} \longrightarrow \mathscr{D}$, and an object $Y \in \mathscr{D}$. Let $F^{-1}Y = \{X \in \mathscr{C} : FX = Y\}$ be the fibre. Then, we have a sequence $F^{-1}Y \longrightarrow \mathscr{C} \xrightarrow{F} \mathscr{D}$ We would like to write down long exact sequences

$$\pi_n(F^{-1}Y,X_0) \longrightarrow \pi_n(\mathscr{C},X_0) \longrightarrow \pi_n(\mathscr{D},Y) \longrightarrow \pi_{n-1}(F^{-1}Y,X_0)$$

In topology also, you cannot do it, without further structure. For a scheme X and a closed subschemes $Z \subseteq X$, U = X - Z, we would like to have a long exact sequences of K-groups.

Classifying Spaces Theorem A. B Quillen K-theory Higher K-groups

Ch. 5. Theorem A. B

Definition: Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be a functor. For $Y \in Obj(\mathscr{D})$. Define the category Y/F as follows:

 $\begin{cases} Obj \ Y/F = \{(X, u) : X \in Obj \ \mathscr{C}, \ u : Y \longrightarrow F(X) \\ Mor_{Y/F}((X_1, u_1), (X_2, u_2)) = \{\varphi : \text{as follows} \} \end{cases}$

commutes.

In fact, Y/F is exact analogue of homotopy fibres, in topology, of F, at Y. ・ロト ・回ト ・ヨト ・ヨト

Satya Mandal Department of Mathematics, KU

Quillen K-Theory A reclamation in Commutative Algebra

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Theorem A, B

Further, given $v: Y \longrightarrow Z$, there is a functor

$$v^*: Z/F \longrightarrow Y/F$$
 sending $(X, u) \mapsto (X, uv)$

Dually, we can define the category F/Y.

・ロト ・ 同ト ・ ヨト ・ ヨト

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Theorem A

Theorem A: Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be a functor.

- ► Assume Y/F is contractible, ∀ Y ∈ Obj(𝒫). Then, F is a homotopy equivalence.
- There is also a dual version of the theorem, by replacing Y/F by F/Y.

(日) (同) (三) (三)

Classifying Spaces Theorem A. B Quillen K-theory

Ch. 5. Theorem B

Theorem B: Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be a functor. Assume the functors

 $v^*: Z/F \longrightarrow Y/F$ are homotopy equivalences $\forall v$

Then, $\forall Y \in Obj(\mathcal{D})$, the commutative diagram

(1)

・ロト ・四ト ・ヨト ・ヨト

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 5. Theorem B

So, $\forall X \in Obj(\mathscr{C})$, FX = Y, there is a long exact sequence:

$$\longrightarrow \pi_{n+1}(\mathscr{D}, Y) \longrightarrow \pi_n(Y/F, \tilde{X}) \longrightarrow \pi_n(\mathscr{C}, X) \longrightarrow \pi_n(\mathscr{D}, Y)$$

where $\tilde{X} := (X, 1_Y) \in Obj(Y/F)).$

- The theorem admits a dual formulation, by replacing Y/F by F/Y etc., in the diagram (1).
- ► A version, replacing Y/F by the actual fibre F⁻¹Y is also available.

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Quillen K-theory

Suppose $\mathscr E$ is a small exact category. Define the category $\mathbb Q \mathscr E$ as follows.

- First $Obj(\mathbb{Q}\mathscr{E}) = Obj(\mathscr{E})$.
- For X, Y ∈ Obj (Q𝔅), a morphism X → Y in Q𝔅, is an equivalence class of pairs (p, i) of arrows in 𝔅, as in the diagram:

$$X \stackrel{p}{\Longrightarrow} Z \stackrel{i}{\longrightarrow} Y \ni \exists \operatorname{exact} \operatorname{seq} \begin{cases} K \stackrel{p}{\longleftrightarrow} Z \stackrel{p}{\longrightarrow} X \\ Z \stackrel{i}{\longrightarrow} Y \stackrel{p}{\longrightarrow} C \end{cases} \text{ in } \mathscr{E}.$$

$$(2)$$

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

 $X \stackrel{p}{\longleftarrow} Z \stackrel{i}{\longrightarrow} Y$

Ch. 6. Quillen K-theory

- In alternate jargon, p is a deflation (admissible epi), and i is an inflation (admissible mono).
- (p, i), (p', i') are defined to be equivalent, if

 $\exists \text{ an isomorphism } \tau, \ \ni \left\| \begin{array}{c} X & Z \\ \downarrow \tau \\ X \swarrow_{p'} & Z' \longleftarrow_{i'} Y \end{array} \right\| \text{ commutes.}$

Such an isomorphism τ would be unique. A morphism $X \longrightarrow Y$ in $\mathbb{Q}\mathscr{E}$ is an equivalence class [(p, i)]. A diagram, as in (2), will be denoted by (\mathbb{Z}, p, i) .

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Quillen K-theory

• (Compositions): Given two morphisms $X \longrightarrow Y$ and $Y \longrightarrow Z$, represented by $X \stackrel{p}{\longleftarrow} W \stackrel{i}{\longrightarrow} Y$, $Y \stackrel{q}{\longleftarrow} V \stackrel{j}{\longrightarrow} Z$, the composition is given by

$$U \stackrel{i'}{\hookrightarrow} V \stackrel{j}{\longrightarrow} Z$$

$$\downarrow^{i}_{q' \downarrow} \qquad \downarrow^{q}_{q} \qquad \left\{ \begin{array}{c} \text{where } U = V \times_{Y} W \\ \text{is the pullback.} \end{array} \right.$$

$$X \stackrel{q'}{\ll} V \stackrel{j'}{\longrightarrow} Y$$

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Quillen K-theory

Example: If $\mathscr{C} = \mathscr{P}(A)$ is the category of finitely generated projective A modules, the a morphism $X \longrightarrow Y$ is a de compostion $Y = Z \oplus K \oplus C$:

$$X \dashrightarrow X \oplus K \hookrightarrow X \oplus K \oplus C$$

(日) (同) (三) (三)

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Quillen K-theory

There is no natural functor from $\mathscr E$ to $\mathbb Q\mathscr E$. However,

$$\begin{cases} \forall \iota : X \hookrightarrow Y \text{ inflations, associate } \iota_! := & X \xrightarrow{\iota_X} X \xrightarrow{\iota} Y \\ \forall p : Y \twoheadrightarrow X \text{ deflations, associate } p^! := & X \xrightarrow{\ll_p} Y \xrightarrow{\iota_Y} Y \end{cases}$$

イロン イヨン イヨン イヨン
Classifying Spaces Theorem A. B Quillen K-theory Higher K-groups

Ch. 6. Quillen K-theory

Lemma: Let \mathscr{E} be an exact category. We denote the usual/classical K-groups by $K_0^c(\mathscr{E})$, etc. Then, there is a natural isomorphism

$$K_0^c(\mathscr{E}) \xrightarrow{\sim} \pi_1(\mathbb{B}(\mathbb{Q}\mathscr{E}), 0)$$

The map is defined as follows:

▶ For $X \in \mathscr{E}$, there are two arrows $0 \mapsto X$ in $\mathbb{Q}\mathscr{E}$:

$$(0,0,0_X) = 0 \xrightarrow{0_X} X$$

Satya Mandal Department of Mathematics, KU

 $0 \iff X \stackrel{1_X}{\longrightarrow} X \Longrightarrow$

Quillen K-Theory A reclamation in Commutative Algebra

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Quillen K-theory

These define, two paths $0 \mapsto X$ in $\mathbb{B}(\mathbb{Q}\mathscr{E})$:

$$\gamma_0^X := \gamma(0,0,0_X), \quad \gamma_1^X := \gamma(X,0,1_X)$$

So,
$$\ell_X := \overline{\gamma}_0^X \gamma_1^X : 0 \xrightarrow{\gamma_0^X} X$$
 is a loop at 0

Define, $\varphi: \mathcal{K}_0^c(\mathscr{E}) \longrightarrow \pi_1(\mathbb{BQE}, 0)$ by $\varphi(X) = [\ell_X]$

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Higher K-groups

4

Definition: Let & be an exact category.

$$\begin{cases} \text{Note } \pi_0\left(\mathbb{B}(\mathbb{Q}\mathscr{E}), 0\right) = 0. \quad \text{Define,} \\ K_n(\mathscr{E}) := \pi_{n+1}\left(\mathbb{B}(\mathbb{Q}\mathscr{E}), 0\right) \end{cases}$$

We can also define the K-theory space

 $\mathsf{K}\mathscr{E} = \Omega(\mathbb{B}(\mathbb{Q}\mathscr{E}), 0)$, the loop space. Then, $K_n(\mathscr{E}) := \pi_n(\mathsf{K}\mathscr{E})$

・ロト ・四ト ・ヨト ・ヨト

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Higher K-groups

Classically, three groups K^c₀(R), K^c₁(R), K^c₂(R), were defined. In chapter 7, we prove,

 $K_1^c(R) \cong K_1(\mathscr{P}(R))$, where R is a commutative ring.

I skipped, plus construction or homology theory.

Classifying Spaces Theorem A, B Quillen *K*-theory Higher *K*-groups

Ch. 6. Higher K-groups

Lemma Let $F : \mathscr{E} \longrightarrow \mathscr{D}$ be an exact sequence of exact functors. Then, F induces natural maps and homomorphisms

$$\begin{cases} \mathsf{K}_n \mathscr{E} \longrightarrow \mathsf{K}_n \mathscr{D} & \text{homomorphisms } \forall n \geq 0\\ \mathbb{B} \mathbb{Q} \mathscr{E} \longrightarrow \mathbb{B} \mathbb{Q} \mathscr{D} & \text{continuous map}\\ \mathsf{K} \mathscr{E} \longrightarrow \mathsf{K} \mathscr{D} & \text{continuous map} \end{cases}$$

In a sense, these three are equivalent.

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Additivity Theorem: Let

 $G, F, H : \mathscr{E} \longrightarrow \mathscr{D}$ be exact functors

of exact categories, such that

 $0 \longrightarrow G \longrightarrow F \longrightarrow H \longrightarrow 0 \quad \text{is also exact.} \quad (4)$

Then,

$$\forall n \geq 0 \quad F_* = G_* + H_* : K_n(\mathscr{E}) \longrightarrow K_n(\mathscr{D})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Example: Let *R* be a commutative ring and $P = P_1 \oplus P_2$ be a projective *R*-modules. Then

$$\begin{cases} -\otimes P_1 \\ -\otimes P & : Coh(R) \longrightarrow Coh(R) \text{ are exact.} \\ -\otimes P_2 \end{cases}$$

$$0 \longrightarrow - \otimes P_1 \longrightarrow - \otimes P \longrightarrow - \otimes P_2 \longrightarrow 0 \quad \text{is exac. So,} \\ (-\otimes P)_* = (-\otimes P_1)_* + (-\otimes P_2)_* : K_n(Coh(R)) \longrightarrow K_n(Coh(R))$$

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

• In particular, there is a $K_0(R)$ action on $K_n(Coh(R))$:

$$K_0(R) \otimes K_n(Coh(R)) \longrightarrow K_n(Coh(R))$$

This works for schemes X, and exact sequences

 $0 \longrightarrow P_1 \longrightarrow P \longrightarrow P_2 \longrightarrow 0 \quad \text{of locally free sheaves.}$

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Resolution Theorem: Let \mathscr{E} be an exact category and $\mathscr{P} \subseteq \mathscr{E}$ be a full subcategory. Assume

• For any exact sequence in \mathscr{E} :

$$0 \longrightarrow K \longrightarrow M \longrightarrow C \longrightarrow 0 \begin{cases} K, C \in \mathscr{P} \Longrightarrow M \in \mathscr{P} \\ M, C \in \mathscr{P} \Longrightarrow K \in \mathscr{P} \end{cases}$$

▶ $\forall M \in Obj(\mathscr{E})$, there is a finite resolution, with P_i in \mathscr{P} :

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

Sometimes these are called resolving categories.

Satya Mandal Department of Mathematics, KU Quillen K-Theory A reclamation in Commutative Algebra

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

$\begin{array}{l} \text{Then,} & \left\{ \begin{array}{l} \forall \ n \geq 0, \quad {K_n(\mathcal{P})} \stackrel{\sim}{\longrightarrow} {K_n(\mathcal{E})} \quad \text{are isomorphisms.} \\ \mathbb{B}\mathbb{Q}\mathcal{P} \longrightarrow \mathbb{B}\mathbb{Q}\mathcal{E} \quad \text{ is a homotopy equivalence.} \\ \mathbb{K}\mathcal{P} \longrightarrow \mathbb{K}\mathcal{E} \quad \text{ is a homotopy equivalence.} \end{array} \right. \end{array}$

In fact, these three are equivalent statements.

・ロト ・聞ト ・ヨト ・ヨト

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Example: Let R be a commutative ring. Let $\mathscr{P}(R)$ be the category of projective R-modules, and $\mathbb{H}(R)$ be the category of $M \in Coh(R)$ with finite projective dimension. Then,

$$K_n(\mathscr{P}(R)) \xrightarrow{\sim} K_n(\mathbb{H}(R))$$

This works for schemes X, and locally free sheaves.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Dévissage Theorem: Let \mathscr{A} be an abelian category. Let $\mathscr{B} \subseteq \mathscr{A}$ be a full subcategory, such that $(\star) \mathscr{B}$ is closed under subobjects, quotient objects and finite product in \mathscr{A} . In this case, \mathscr{B} is an abelian subcategory. Assume, every object $M \in Obj(\mathscr{A})$ has a filtration:

$$0 = M_0 \hookrightarrow M_1 \hookrightarrow \cdots \hookrightarrow M_r =: M \quad \frac{M_j}{M_{j-1}} \in Obj(\mathscr{B}) \quad \forall j.$$

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Then, $\begin{cases} \forall n \ge 0, \quad K_n(\mathscr{B}) \xrightarrow{\sim} K_n(\mathscr{A}) \text{ are isomorphisms.} \\ \mathbb{B}\mathbb{Q}\mathscr{B} \longrightarrow \mathbb{B}\mathbb{Q}\mathscr{A} \text{ is a homotopy equivalence.} \\ \mathsf{K}\mathscr{B} \longrightarrow \mathsf{K}\mathscr{A} \text{ is a homotopy equivalence.} \end{cases}$

・ロト ・四ト ・ヨト ・ヨト

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Example: Let *R* be a commutative ring. Let $R_{red} = \frac{R}{\sqrt{0}}$.

Then,
$$K_n(Coh(R_{red})) \cong K_n(Coh(R))$$

Note, usually, $K_1(\mathscr{P}(R_{red})) \neq K_1(\mathscr{P}(R))$. This works for schemes X.

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Definition: Let \mathscr{A} be an abelian category. A full subctegory $\mathscr{B} \subseteq \mathscr{A}$ is defined to be a **Serre subcategory**, if, for any exact sequence in \mathscr{A} :

 $0 \longrightarrow K \longrightarrow M \longrightarrow C \longrightarrow 0 \quad M \in \mathscr{B} \Longleftrightarrow K, C \in \mathscr{B}$

In this case, the quotient category $\frac{\mathscr{A}}{\mathscr{B}}$ is defined, and

イロト 不得下 イヨト イヨト

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Localization Theorem: Let \mathscr{A} be an abelian category and $\mathscr{B} \subseteq \mathscr{A}$ be a **Serre subcategory**. Then, the sequence

$$\mathscr{B} \xrightarrow{\iota} \mathscr{A} \xrightarrow{\mathfrak{q}} \mathscr{A} \xrightarrow{\mathscr{A}}$$
 is a homotopy fibration.

Consequently, there is an exact sequence

 $\cdots \xrightarrow{\mathfrak{q}_{*}} K_{1}\left(\frac{\mathscr{A}}{\mathscr{B}}\right) \longrightarrow K_{0}\left(\mathscr{B}\right) \xrightarrow{\iota_{*}} K_{0}\left(\mathscr{A}\right) \xrightarrow{\mathfrak{q}_{*}} K_{0}\left(\frac{\mathscr{A}}{\mathscr{B}}\right) \longrightarrow 0$

(ロ) (部) (E) (E) (E)

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Example: Let X be a noetherian scheme and $Z \hookrightarrow X$ be a closed subset and U = X - Z. Then, we have exact sequences

$$\cdots \xrightarrow{\mathfrak{q}_*} K_{n+1}(Coh(U)) \longrightarrow$$

$$K_n(Coh_Z(X)) \xrightarrow{\iota_*} K_n(Coh(X)) \xrightarrow{\mathfrak{q}_*} K_n(Coh(U)) \longrightarrow \cdots$$

$$\overset{h}{\iota_2}$$

$$K_n(Coh(Z_{red}))$$

Additivity Theorem Resolution Theorem Dévissage Localization Theorem

Ch. 6. Higher K-groups

Here $Coh_Z(X) \subseteq Coh(X)$ is full subcategory of objects $\mathcal{F} \in Coh(X)$, with support in Z. The vertical isomorphism is given by Dévissage, above.

Ch. 7. Agreement

Already mentioned above $K_1^c(R) \cong K_1(R)$ Consider a symmetric monoidal category (S, \odot, \mathbf{e}) , where \odot represents direct sum, and \mathbf{e} the zero. There is a so called $S^{-1}S$ category. This relates to both Quillen K-theory and Plus-construction.

Classical(R)

$$\downarrow$$
Plus construction(R) $\longleftrightarrow S^{-1}S(R) \longleftrightarrow$ Quillen K

Ch. 8. K-Theory of rings

Now on, given a ring R (usually commutative), Coh(A) = the category of finitely generated A-modules $\mathscr{P}(A) =$ the category of finitely generated projective A-modules.

The K-theory of Coh(A) is referred to as G-theory, and

$$\begin{cases} G_n(A) := K_n(Coh(A)) \\ K_n(A) := K_n(\mathscr{P}(A)) \end{cases}$$

イロト イポト イヨト イヨト

Ch. 8. K-Theory of rings

Main theorem in this section is the **Homotopy invariance**:

Theorem: Let A be a noetherian ring and B = A[T] be the polynomial ring. Then,

 $\left\{\begin{array}{ll} \mathbb{B}\mathbb{Q}\mathit{Coh}(A) \longrightarrow \mathbb{B}\mathbb{Q}\mathit{Coh}(B) & \text{is a homotopy equivalence} \\ G_n(A) \stackrel{\sim}{\longrightarrow} G_n(B) & \text{are isomorphisms} & n \geq 0 \end{array}\right.$

Corollary: Let A be a noetherian regular ring and B = A[T] be the polynomial ring. Then,

 $K_n(A) \xrightarrow{\sim} K_n(B)$ are isomorphisms $n \ge 0$

イロト 不得下 イヨト イヨト

Ch. 8. Bass-Quillen Conjecture, naturalized

Naturalized Bass-Quillen Conjecture: Suppose A is an regular affine algebra over a (perfect) field. Let P be a A[T]-module, and $\overline{P} = \frac{P}{TP}$.

 $\left\{ \begin{array}{ll} \text{Is there a natural isomorphism} & P \xrightarrow{\sim} \overline{P} \otimes A[T]? \\ \text{Or, Is there a natural transformation} & P \longrightarrow \overline{P} \otimes A[T] \\ \text{in } & \mathbb{Q} \mathscr{P}(A[T])? \end{array} \right.$

If yes, the above corollary would have more natural proof.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. K-Theory of schemes

Scheme theory is part of commutative algebra. For a scheme X (usually noetherian), Coh(X) = the category of coherent \mathcal{O}_X -modules $\mathscr{P}(X) =$ the category of locally free X-modules. The K-theory of Coh(X) is referred to as G-theory, and

 $\begin{cases} G_n(X) := K_n(Coh(X)) & \mathbf{G}(X) = \Omega(\mathbb{BQ}Coh(X)) \\ K_n(X) := K_n(\mathscr{P}(X)) & \mathbf{K}(X) = \Omega(\mathbb{BQ}\mathscr{P}(X)) \end{cases}$

Two columns basically have the equivalanet information.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. K-Theory of schemes

The functor $\mathscr{P}(X) \longrightarrow Coh(X)$ induces maps

$$\begin{cases} K_n(X) \longrightarrow G_n(X) & \forall n \ge 0\\ \mathbb{B}\mathbb{Q}\mathscr{P}(X) \longrightarrow \mathbb{B}\mathbb{Q}\operatorname{Coh}(X)\\ K(X) \longrightarrow G(X) \end{cases}$$

Theorem: If X is regular and separated, then

 $\left\{\begin{array}{ll} K_n(X) \longrightarrow G_n(X) & \text{are isomorphisms} \forall n \geq 0 \\ \mathbb{B}\mathbb{Q}\mathscr{P}(X) \longrightarrow \mathbb{B}\mathbb{Q}\mathit{Coh}(X) & \text{is homotopy equivalence} \\ \mathsf{K}(X) \longrightarrow \mathsf{G}(X) & \text{is homotopy equivalence} \end{array}\right.$

Proof. Follows from resolution theorem.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Pullback : *G*-Theory

Definiton: Let $f : X \longrightarrow Y$ be a map of schemes. Then, f induces a functor

$$f^*: Coh(Y) \longrightarrow Coh(X) \text{ sending } \mathcal{F} \mapsto f^*\mathcal{F}$$
 (5)

Usually, this is not exact.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

Ch. 9. Pullback : *G*-Theory

► The restriction f* : 𝒫(Y) → 𝒫(X) is exact. So, it induces maps

$$\begin{cases} f^*: \mathsf{K}(Y) \longrightarrow \mathsf{K}(X) & \text{of } K\text{-theory spaces,} \\ f^*: K_n(Y) \longrightarrow K_n(X) & \text{of } K\text{-groups } \forall n \ge 0. \end{cases}$$

▶ If f is flat, (5) is an exact functor. So, it induces maps

$$\begin{cases} f^*: \mathbf{G}(Y) \longrightarrow \mathbf{G}(X) & \text{of } G-\text{theory spaces,} \\ f^*: G_n(Y) \longrightarrow G_n(X) & \text{of } G-\text{groups } \forall n \ge 0. \end{cases}$$
(6)

We can do better!

Satya Mandal Department of Mathematics, KU

マロト マラト マラト マラト ラ つへの Quillen K-Theory A reclamation in Commutative Algebra

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Pullback : *G*-Theory

Lemma: Let $f : X \longrightarrow Y$ be a morphism of noetherian schemes. Assume Y has enough locally free sheaves and f has finite Tor dimension, meaning

 $\sup \left\{ k: \mathit{Tor}_k^Y(\mathcal{F}, \mathcal{O}_X) \neq 0 \text{ for some } \mathcal{F} \in \mathit{QCoh}(Y) \right\} < \infty$

Define the full subcategory of Coh(Y), as follows

 $\mathfrak{Coh}(f, Y) = \big\{ \mathcal{F} \in Coh(Y) : \operatorname{Tor}_{k}^{Y}(\mathcal{F}, \mathcal{O}_{X}) = 0 \,\,\forall \,\, k \geq 1 \big\}$ (7)

Then, the restriction

 $f^*: \mathfrak{Coh}(f, Y) \longrightarrow Coh(X)$

《ロト 《日 》 《ヨト 《ヨト 《王 》 Quillen K-Theory A reclamation in Commutative Algebra

(8)

is an exact functor.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Pullback : *G*-Theory

So, this induces

 $\begin{cases} \mathsf{K}(\mathfrak{C}oh(f,Y)) \longrightarrow \mathsf{G}(X) & \text{map of } K-\text{theory spaces} \\ K_n(\mathfrak{C}oh(f,Y)) \longrightarrow G_n(X) & \text{homomorphisms of } K-\text{groups } \forall n \end{cases}$

Further, every $\mathcal{F} \in Coh(Y)$ has a finite resolution by objects in $\mathfrak{C}oh(f, Y)$. By resolution theorem, we have

 $\begin{cases} \mathsf{K}(\mathfrak{C}oh(f,Y)) \xrightarrow{\sim} \mathsf{G}(Y) & \text{homotopy equivalence of } K-\text{theory} \\ K_n(\mathfrak{C}oh(f,Y)) \xrightarrow{\sim} G_n(Y) & \text{isomorphisms of } K-\text{groups } \forall n \ge q \end{cases}$ (9)

Combining this with (9),

Satya Mandal Department of Mathematics, KU

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ch. 9. Pullback : *G*-Theory

we obtain map Pullback maps

$$f^*: \begin{cases} G_n(Y) \xleftarrow{} K_n(\mathfrak{C}oh(f,Y)) \longrightarrow G_n(X) \\ G(Y) \xleftarrow{} K(\mathfrak{C}oh(f,Y)) \longrightarrow G(X) \end{cases}$$

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : G-Theory

For simplicity, consider f : Spec (B) → Spec (A). Given M ∈ Coh(B), it is not necessary that M ∈ Coh(A). So, for f : X → Y, defining push forward

 $f_*:G_n(X)\longrightarrow G_n(Y) \quad {\rm would\ require\ some\ work}.$

• However, if $f: X \longrightarrow Y$ is a projective morphism, then

 $\forall \mathcal{F} \in Coh(X)$ then, $R^k f_* \mathcal{F} \in Coh(Y) \ \forall k$

where $R^k f_* \mathcal{F}$ denote the higher direct images, with $R^0 f_* \mathcal{F} = f_* \mathcal{F}$.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : G-Theory

What is a projective morphisms? We say $f : X \longrightarrow Y$ is a projective morphism, if it factors as

Satya Mandal Department of Mathematics, KU Quillen K-Theory A reclamation in Commutative Algebra

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : G-Theory

What is higher direct images $R^k \mathcal{F}$? Let $f : X \longrightarrow Y$ be a morphism noetherian schemes. Given $\mathcal{F} \in QCoh(X)$, consider a injective resolution:

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathscr{I}_0 \longrightarrow \mathscr{I}_1 \longrightarrow \mathscr{I}_2 \longrightarrow \cdots \quad \text{denoted by} \quad \mathscr{I}_{\bullet}$$
(10)

Apply (1) the global section $\Gamma(X, -)$ and (2) direct image functor f_* functor:

$$\begin{cases} 0 \longrightarrow \Gamma(X, \mathcal{F}) \longrightarrow \Gamma(X, \mathscr{I}_0) \longrightarrow \Gamma(X, \mathscr{I}_1) \longrightarrow \cdots \\ 0 \longrightarrow f_* \mathcal{F} \longrightarrow f_* \mathscr{I}_0 \longrightarrow f_* \mathscr{I}_1 \longrightarrow f_* \mathscr{I}_2 \longrightarrow \cdots \end{cases}$$

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : G-Theory

For integers $k \ge 0$, define the following: Define the **sheaf cohomology**,

 $\begin{cases} H^{k}(X,\mathcal{F}) = H^{k}(\Gamma(X,\mathscr{I}_{\bullet})) & \text{sheaf cohomology} \\ R^{k}f_{*}\mathcal{F} = \mathcal{H}^{k}(f_{*}\mathscr{I}_{\bullet}) \in QCoh(Y) & \text{higher direct image} \\ \end{cases}$ (12)

As usual, given an exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0 \qquad \text{in} \qquad QCoh(X) \quad (13)$$

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : *G*-Theory

there is a connecting morphism $\partial^k : R^k f_* \mathcal{G} \longrightarrow R^{k+1} f_* \mathcal{K}$ such that we obtain a long exact sequence

$$\cdots \longrightarrow R^{k} f_{*} \mathcal{K} \longrightarrow R^{k} f_{*} \mathcal{F} \longrightarrow R^{k} f_{*} \mathcal{G} \xrightarrow{\partial^{k}} R^{k+1} f_{*} \mathcal{K} \xrightarrow{} \cdots$$
(14)

starting at degree zero.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

(D) (A) (A)

Ch. 9. Push Forward : G-Theory

I did the following:

- ▶ For a morphism $f : X \longrightarrow Y$, and $\mathcal{F} \in QCoh(X)$, defined $\mathbb{R}^k f_* \mathcal{F} \in QCoh(Y)$, with $\mathbb{R}^0 f_* \mathcal{F} = f_* \mathcal{F}$.
- I defined projective morphisms $f : X \longrightarrow Y$.

Lemma: Let $f : X \longrightarrow Y$ be a projective morphism. Then, for $\mathcal{F} \in Coh(X)$, we have (1) $R^k f_* \mathcal{F} \in Coh(Y)$ (2) $R^k f_* \mathcal{F} = 0 \quad \forall k \gg 0$ (3) $\exists n_0$, such that $\forall n \ge n_0$, $R^k f_* \mathcal{F}(n) = 0$, $\forall k \ge 1$.

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : *G*-Theory

We define push forward: **Definition:** Let $f : X \longrightarrow Y$ be a projective morphism of noetherian schemes. Consider the direct image functor

 $f_*: Coh(X) \longrightarrow Coh(Y)$, which is not necessarily exact.

Consider the full subcatgory of Coh(X), as follows

$$\mathfrak{Coh}(X, f) = \left\{ \mathcal{F} \in \mathit{Coh}(X) : R^k f_* \mathcal{F} = 0 \ \forall \ k \geq 1 \right\}$$

The restriction $f_*: \mathfrak{Coh}(X, f) \longrightarrow Coh(Y)$, is exact
Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

Ch. 9. Push Forward : G-Theory

Consequently, there are maps

 $\begin{cases} \mathsf{K}\mathfrak{C}oh(X,f) \longrightarrow \mathsf{G}(Y) & \text{of } K-\text{theory spaces} \\ \mathsf{K}_n(\mathfrak{C}oh(X,f))) \longrightarrow \mathsf{G}_n(Y) & \text{of the } K-\text{groups} \end{cases}$ (15)

For $\mathcal{F} \in Coh(X)$ there is a finite resolution in $Coh(X)^{op}$:

 $0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_0 \longrightarrow \cdots \longrightarrow \mathcal{F}_d \longrightarrow 0 \text{ with } \mathcal{F}_k \in \mathfrak{Coh}(X, f).$

By resolution theorem applied to $\mathfrak{C}oh(f, X)^{op} \hookrightarrow Coh(X)^{op}$, and we have, homotopy equivalence and isomorphisms:

$$\begin{cases} \mathsf{K}\mathfrak{C}oh(X,f) = \mathsf{K}\mathfrak{C}oh(X,f)^{op} \cong \mathsf{K}(Coh(X)^{op}) = \mathsf{G}(X) \\ \mathsf{K}_n\mathfrak{C}oh(X,f) = \mathsf{K}_n(X,f)^{op} \cong \mathsf{K}_n(Coh(X)^{op}) = \mathsf{G}_n(X) \end{cases}$$

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

・ロン ・四と ・ヨン・

Ch. 9. Push Forward : *G*-Theory

Combining with (15), we have the **push forward** maps of K-theory spaces, and K-groups:

$$f_*: \begin{cases} \mathbf{G}(X) \stackrel{\sim}{\longleftarrow} \mathbf{K}\mathfrak{C}oh(X, f) \longrightarrow \mathbf{G}(Y) \\ G_n(X) \stackrel{\sim}{\longleftarrow} K_n\left(\mathfrak{C}oh(X, f)\right) \longrightarrow G_n(Y) \end{cases}$$
(16)

Preliminaries Pullback maps Push forward maps **A projection Formula** A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

イロト イポト イヨト イヨト

Ch. 9. Projection Formula: G-Theory

The following projection formula for *G*-theory. **Theorem:** Let $f : X \longrightarrow Y$ be a projective morphism (proper) of noetherian schemes. Assume (1) f has finite Tor dimension and (2) both X, Y support ample bundles. Then,

- Recall $K_0(X)$ has an action on $G_n(X)$.
- We have,

$$f_*(x \cdot f^*y) = f_*(x) \cdot y \in G_n(Y) \qquad \forall x \in K_0X, y \in G_n(Y)$$

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Ch. 9. Projection Formula: G-Theory

So the diagram

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of G-theory Filtration of support and Gersten complex

Ch. 9. Projective Bundle: G-Theory

Theorem: Let Y be a noetherian scheme and let $\mathscr{E} \in \mathscr{P}(Y)$ be locally free sheaf with $rank(\mathscr{E}) = r$. Write $\mathbb{P}\mathscr{E} = \operatorname{Proj}(\operatorname{Sym}(\mathscr{E}))$. Let $f : \mathbb{P}\mathscr{E} \longrightarrow Y$ be the structure map. Then, with notation $\zeta = [\mathcal{O}(-1)] \in K_0(\mathbb{P}\mathscr{E})$, we have an isomorphism

$$\varphi_X: G_n(Y)^r \xrightarrow{\sim} G_n(\mathbb{P}\mathscr{E}) \quad (x_0, x_1, \dots, x_{r-1}) \mapsto \sum_{k=0}^{r-1} \zeta^k \cdot f^* x_k$$
(18)

Preliminaries Pullback maps Push forward maps A projection Formula A Projective bundle theorem of *G*-theory Filtration of support and Gersten complex

(D) (A) (A) (A)

Ch. 9. Filtration of support and Gersten complex: K-Theory of schemes

Skip

Ch. 10. Projective Bundle Theorem: K-Theory

Theorem: Let Y be a noetherian scheme and let $\mathscr{E} \in \mathscr{P}(Y)$ be locally free sheaf with $rank(\mathscr{E}) = r$. Write $\mathbb{P}\mathscr{E} = \operatorname{Proj}(\operatorname{Sym}(\mathscr{E}))$. Let $f : \mathbb{P}\mathscr{E} \longrightarrow Y$ be the structure map. Then, with notation $\zeta = [\mathcal{O}(-1)] \in K_0(\mathbb{P}\mathscr{E})$, we have an isomorphism

$$\varphi_{Y}: \mathcal{K}_{n}(X)^{r} \xrightarrow{\sim} \mathcal{K}_{n}(\mathbb{P}\mathscr{E}) \quad (x_{0}, x_{1}, \dots, x_{r-1}) \mapsto \sum_{k=0}^{r-1} \zeta^{k} \cdot f^{*} x_{k}$$
(19)

Ch. 10. Projective Bundle Theorem: K-Theory

- The statement of is exactly similar to the theorem on G-theory.
- The proof is much involved scheme theoretically.
- One main ingredient is construction of a canonical resolution, of regular locally free sheaves.
- Then use resolution theorem, on a tight rope walk.

(D) (A) (A) (A)

Ch. 11. K-Theory of quadrics

Swan extended the projective bundle theorem to nonsingular quadric hypersurfcaes

$$Y = \operatorname{Proj}\left(\frac{R[X_0, X_1, \dots, X_n]}{(f)}\right)$$

This is used compute *K*-theory of real and complex (affine) spheres $\mathbb{S}^n = (\sum_{i=0}^n X_i^2 = 1)$, by looking at the open subset

$$\mathbb{S}^n \cong (T = 1) \subseteq Y = \operatorname{Proj}\left(\frac{R[X_0, X_1, \dots, X_n, T]}{(\sum_{i=0}^n X_i^2 - T^2)}\right)$$

Ch. 11. K-Theory of quadrics

Let $\mathfrak{q} = \sum_{1 \leq i \leq j \leq n} a_{ij} X_i X_j$. Then, it relates to the bilinear form

$$B(\mathbf{X}, \mathbf{Y}) = \mathbf{X}^{t} \begin{pmatrix} 2a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{12} & 2a_{22} & a_{23} & \cdots & a_{2n} \\ a_{13} & a_{23} & 2a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & 2a_{nn} \end{pmatrix} \mathbf{Y} \quad \text{where}$$

where X, Y are column matrices. So,

$$q(\mathbf{X}) = \frac{1}{2}B(\mathbf{X}, \mathbf{X})$$

Ch. 11. K-Theory of quadrics

Definition. Let *R* be a commutative ring, with $1/2 \in R$. By a quadratic *R*-module, we mean a pair (P, φ) , where *P* is a projective *R*-module and $\varphi : P \longrightarrow P^*$ is a symmetric linear map. This means,

It is customary to say, (P, q) is a quadratic *R*-module.

Ch. 11. *K*-Theory of quadrics

- ► $Sym(P^*) = \bigoplus_{n \ge 0} Sym_n(P^*)$ be the symmetric algebra.
- Let Quad(P) denote the module of all quadratic R-modules (P, q). Then, there is bijection Sym₂(P*) → Quad(P)

We denote the preimage of $\mathfrak q$ by the same notation $\mathfrak q.$ Let

$$S(q) = \frac{Sym(P^*)}{(q)}$$
 and $X(q) = \operatorname{Proj}(S(q))$

We say (P, q) is a non degenerate, if φ is an isomorphism.

Ch. 11. K-Theory of quadrics

- Lemma: Let R be a commutative ring, with 1/2 ∈ R.
 Let (P, q) be a non degenerate quadratic R-modules.
 Then, X(q) → Spec (R) is smooth.
- To work with the sphere, we would have

$$\begin{cases} \mathfrak{q}_{d} = \sum_{i=0}^{d} X_{i}^{2} & P = R^{d+1} \\ \mathfrak{q}_{d}^{s} = \sum_{i=0}^{d} X_{i}^{2} - T^{2} & P = R^{d+2} \\ dim X(\mathfrak{q}_{d}^{s}) = d \end{cases}$$

Ch. 11. K-Theory of quadrics

Theorem: Let *R* be a commutative ring, with $1/2 \in R$. Let (P, \mathfrak{q}) be a non degenerate quadratic *R*-modules. Assume rank(P) = d + 1. We denote $\mathfrak{q}^s = \mathfrak{q} - T^2$ on $P \oplus R$. In fact

$$\begin{cases} (P \oplus R, \mathfrak{q}^s) = (P, \mathfrak{q}) \perp (R, -T^2), \\ X(\mathfrak{q}) = (T = 0) \subseteq X(\mathfrak{q}^s) & \dim X(\mathfrak{q}^s) = d \\ U := (T \neq 0) \cong \operatorname{Spec} (A(\mathfrak{q})) & \dim A(\mathfrak{q}) = d \end{cases}$$

where
$$A(q) = \frac{Sym(P^*)}{(q-1)}$$
 the sphere

Ch. 11. K-Theory of quadrics

Assume R is regular. Then, we have long exact sequence

$$\longrightarrow K_n(X(\mathfrak{q})) \xrightarrow{\iota_*} K_n(X(\mathfrak{q}^s)) \longrightarrow K_n(A(\mathfrak{q})) \longrightarrow K_{n-1}(X(\mathfrak{q}))$$

_____>···· _____>···· _____>

$$\longrightarrow K_0(X(\mathfrak{q})) \longrightarrow K_0(X(\mathfrak{q}^s)) \longrightarrow K_0(A(\mathfrak{q})) \longrightarrow 0$$

(D) (A) (A) (A)

Ch. 11. K-Theory of quadrics

Apply Swan's formula to : {

$$egin{aligned} X(\mathfrak{q}) &\longrightarrow \operatorname{Spec}{(R)} \ X(\mathfrak{q}^s) &\longrightarrow \operatorname{Spec}{(R)} \end{aligned}$$

(D) (A) (A) (A)

We have the vertical identifications:

Ch. 11. K-Theory of quadrics

Here $C(\mathfrak{q})$ denotes the **Clifford algebra** of (P, \mathfrak{q}) , which has a \mathbb{Z}_2 -grading.

- ► Thus, we can write the above long exact sequence, in terms of K-groups of R and C(q), C(q^s).
- In particular, we can compute the K₀(A(q)) of the affine spheres.
- ▶ With $R = \mathbb{R}$, it leads to the result that $K_0(A(\mathfrak{q}_d)) \cong KO(\mathbb{S}^d)$.

Ch. 11. K-Theory of quadrics

Further inspection, the above exact sequence reduces to: Corollary: Assume R is regular. Then, there is an exact sequence,

$$\xrightarrow{\partial} K_n^{gr}(C(\mathfrak{q})) \xrightarrow{(\beta,-\varepsilon)_*} K_n(R) \oplus K_n(C(\mathfrak{q})) \xrightarrow{(\rho_1,\rho_2)_*} K_n(A(\mathfrak{q}))$$

where $K_n(C(\mathfrak{q})) = K_n(\mathscr{P}_r(C(\mathfrak{q})))$, the K-groups of the category of right projective $C(\mathfrak{q})$ -modules (ungraded).

イロト イポト イヨト イヨト

Ch. 11. K-Theory of quadrics

We reinterpret the functors:

$$\begin{cases} \beta: \mathscr{P}_{r,\mathbb{Z}_{2}}(C(\mathfrak{q})) \longrightarrow \mathscr{P}(R) & \beta(M) = M_{1} \\ \varepsilon: \mathscr{P}_{r,\mathbb{Z}_{2}}(C(\mathfrak{q})) \longrightarrow \mathscr{P}_{r}(C(\mathfrak{q})) & \varepsilon(M) = M \text{ (ungraded)} \\ \rho_{1}: \mathscr{P}(R) \longrightarrow \mathscr{P}(R(\mathfrak{q})) & \rho_{1}(M) = M \otimes A(\mathfrak{q}) \\ \rho_{2}: \mathscr{P}_{r}(C(\mathfrak{q})) \longrightarrow \mathscr{P}(R(\mathfrak{q})) & \rho_{2}(N) = \Gamma(U, \mathfrak{U}_{d-1}(N)) \end{cases}$$