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1 Background and Main Results

We start with the following theorem of Mohan Kumar:

Theorem 1.1. [Mohan Kumar, [Mk]] Suppose A = R[X ] is a

polynomial ring over a noetherian commutative ring R. Suppose

I is an ideal in A that contains a monic polynomial.

Assume, µ

(
I

I2

)
≥ dim

(
A

I

)
+2 Then, ∃ a surjective map P � I

where P is a projective A-module with rank(P ) = µ
(
I
I2

)
.

In particular, suppose A = k[X1, . . . , Xn] is a polynomial ring

over a field k and I is an ideal in A.

Assume µ

(
I

I2

)
≥ dim

(
A

I

)
+ 2 Then, µ(I) = µ

(
I

I2

)
Subsequently, I proved the following:
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Theorem 1.2 (Mandal [M9]). Suppose A = R[X ] is a polynomial

ring over a noetherian commutative ring R. Suppose I is an ideal

in A that contains a monic polynomial.

Assume µ

(
I

I2

)
≥ dim(A/I) + 2 Then, µ(I) = µ

(
I

I2

)
In fact, the above were partial answers to the following two ver-

sions of Complete Intersection Conjecture of Murthy ([M, M8]):

Conjecture 1.3. There are two versions:

1. ([M, M8]): Suppose A = k[X1, . . . , Xn] is a polynomial ring

over a field k. Then,

µ(I) = µ

(
I

I2

)
2. (folklore): Suppose A = R[X ] is a polynomial ring over a

noetherian commutative ring R (regular?). Suppose I is an

ideal in A that contains a monic polynomial. Then,

µ(I) = µ

(
I

I2

)
Observe, Conjecture (2) =⇒ Conjecture (1)
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The following was proved in the recent past:

Theorem 1.4 (Mandal [M5]). Let R be a regular ring containing

an infinite field k, with 1/2 ∈ k. Assume R is essentially smooth

over k or k is perfect. Suppose A = R[X ] is the polynomial ring

and I is an ideal in A that contains a monic polynomial.

Then, µ(I) = µ

(
I

I2

)
In fact, any set of n-generators of I/I2 lifts to a set of generators

of I , when n ≥ 2.

In particular, Murthy’s conjecture is settled, in most cases:

Corollary 1.5 (Mandal). Suppose A = k[X1, X2, . . . , Xn] is a

polynomial ring over an infinite field k, with 1/2 ∈ k. Suppose I
is an ideal in A.

Then, µ(I) = µ

(
I

I2

)

Remark: When k is infinite perfect, Fasel proved this result

(1.5) with significant contributions from me, (acknowledged to an

extent, e. g. [F, Lemma 3.1.2]). I collaborated with him for

four weeks, during my trip to him in May-June 2015, under the

assumption that we were jointly working.

3



Before we proceed, let me recall the two versions of S. Ab-

hyankar’s epi-morphism conjecture [DG], which has been a folk-

lore, in most part.

Conjecture 1.6 (S. Abhyankar). Let k be a field with Q ⊆ k.

Suppose ϕ : k[X1, X2, . . . Xn] � k[Y1, Y2, . . . Ym]

is an epimorphism of polynomial k-algebras and I = ker(ϕ).

Then, it is conjectured (folklore)

1. that I is generated by variables. That means,

I = (X ′1, X
′
2, . . . , X

′
n−m) and

k[X1, X2, . . . Xn] = k[X ′1, X
′
2, . . . X

′
n−m, . . . , X

′
n]

2. (The weaker version): that

µ(I) = µ

(
I

I2

)
While Abhyankar’s epimorphism conjecture remains a folklore,

in most part, Amartya Dutta and Neena Gupta [DG] published

a very helpful survey recently. As indicated in [DG], very lim-

ited progress has been made on either version of Abhyankar’s epi-

morphism conjectures (arguably) (if anyone of us could solve this

one, that would be worthwhile.) However, the weaker version of

S. Abhyankar’s epi-morphism conjecture 1.6 follows from (1.4), as

follows, This is significant, because of the same reason.
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Theorem 1.7 (Mandal). Let R be a regular ring over an infinite

field k, with 1/2 ∈ k. Assume R is essentially smooth over k or

k is perfect. Suppose

ϕ : R[X1, X2, . . . Xn] � R[Y1, Y2, . . . Ym] is an epimorphism

of polynomial R-algebras and I = ker(ϕ). If n−m ≥ dimR+ 1,

Then, µ(I) = µ

(
I

I2

)
In particular, if R is local, then I is a complete intersection ideal.

Proof. Regarding existence of monic polynomials in I , see Suslin’s

theorem in my book [M8, pp. 78].

The weaker version of S. Abhyankar’s epi-morphism conjecture

[DG] is settled affirmatively, for infinite fields k, with 1/2 ∈ k, as
follows.

Corollary 1.8 (Mandal). Suppose k is an infinite field, with

1/2 ∈ k. Suppose

ϕ : k[X1, X2, . . . Xn] � k[Y1, Y2, . . . Ym] is an epimorphism

of polynomial k-algebras and I = ker(ϕ).

Then, µ(I) = µ

(
I

I2

)
= n−m

Proof. From properties of regular rings, I is local complete inter-

section ideal (see [CA, pp. 121]). Therefore, I
I2

is projective and

hence free. Now this follows from (1.4).
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Comments and Open Problems:

1. Prove Murthy’s conjectures (1) when char(k) = 2

2. Prove Murthy’s conjectures (1) when char(k) 6= 2 and k is

finite. Marco Schlichting told me that this is a matter of

working out.

3. Prove Murthy’s conjectures (1) when k = Z.

4. I did not study Abhyankar’s Epimorphism conjecture 1.6 in

the recent past. I know the following:

(a) It fails when char(k) 6= 0 (see [A]).

(b) (see [A, Cor 9.21, pp. 75]) It works for epimorphisms

k[X, Y ] � k[Z]

Then, Epimorphism conjecture 1.6 is valid.

(c) (See [DG, §2.3]) Suppose k is algebraically closed field,

with char(k) = 0 and

ϕ : k[X1, . . . , Xn]→ k[Y1, . . . , Ym]

is an epimorphism. Let I = ker(ϕ). Assume n ≥ 2m+ 2.

Then, Epimorphism conjecture 1.6 is valid.

(d) Proof Rest of Epimorphism Conjecture 1.6:

Job of your generation, unless one of us finish it.

I will be happy to work with anyone on this one.

6



2 Method of proofs: Homotopy and Monic polynomials

The idea of Homotopy was around to deal with Murthy’s conjec-

tures, for a while, which was originally introduced by Nori ([M10]).

The same were used in [F, M5].

We start with Nori’s Homotopy conjecture:

Conjecture 2.1 (M. V. Nori). SupposeX = Spec (A) is a smooth

affine scheme over a field k and P is a projective A-module of rank

r. Suppose f0 : P � I0 is a surjective homomorphism, where

I0 is an ideal of A. Now suppose, I ⊆ A[T ] is an ideal in the

polynomial ring A[T ] such that I(0) = I0 and ϕ : P ⊗A[T ] � I
I2

is a surjective map, such that ϕ is compatible with f0. Then,

there is a surjective homomorphism ψ : P ⊗ A[T ] � I such that

ψ|T=0 = f0 and ψ lifts ϕ.

We interpret, Nori’s Homotopy conjecture when P = An is free:

1. Let I0 ⊆ A and I ⊆ A[T ] is ideals in the respective rings,

such that I(0) = I0.

2. Let n ≥ 0 is an integer. Assume,

I0 = (a1, . . . , an), I = (f1(T ), . . . , fn(T )) + I2

3 fi(0) ≡ ai mod I20

3. Then, the conjecture is

I = (F1(T ), . . . , Fn(T )) 3 Fi(0) = ai, Fi(T ) ≡ fi(T ) mod I2
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Homotopy is an age old concept, and we give the following

definitions:

Definition 2.2. Suppose A is a commutative noetherian ring and

P is a projective A-module and I is an ideal of A. A surjective

homomorphism f : P � I
I2

would be called a P -local orientation.

Let f0, f1 : P �
Ii
I2i

be two P− local orientations.

We say that f0 is (strictly) homotopic to f1, if there is a P [T ]-local

orientation

F : P [T ] �
I

I2
3 F (0) = f0 and F (1) = f1

Consider the equivalence relation generated by strict homotopy.

We say, f0 is homotopic to f1, if they are equivalent to each other.

(Analyze the case when P = An is free.)

A relaxed version of Nori’s Homotopy conjecture 2.1 is:

Conjecture 2.3. Use the notations as in (2.3).

Suppose f0, f1 : P �
Ii
I2i

two P local orientations.

Assume f0 is (strictly) homotopic to f1.

Suppose ∃ surjective map ϕ0 3

I0

����

P

ϕ0
AA AA

f0
// // I0
I20

commutes.

Then, same is true about f1.

(Analyze the case when P = An is free.)
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Remark. I will show soon, that the solutions of Conjecture 2.3,

would settle the conjectures of Murthy (1):

1. There are two trivial ideals, I0 = A or I0 = (0). In both cases,
I0
I20

= 0. Any set of n generators of I0
I20
, lift to generator of I0.

2. If Conjecture 2.3 is valid, to prove Murthy’s conjecture (1),

we will prove that the set of generators are homotopic to this

trivialities.

3. When I arrived in Grenoble to visit Jean Fasel [F], in May

2015, he proposed we work on Conjecture 2.3, when P is free,

with a goal to prove Murthy’s conjecture.

I immediately told him that this is only a version of Nori’s

Homotopy conjecture [M10]. Because of my faith in the

invisibility of monic polynomials, it did not take too long

for me to figure out the following proposition.

Proposition 2.4. Suppose A = R[X ] is a polynomial ring

over a commutative ring R and I1 is an ideal

that contains a monic polynomial.

Suppose ω : An � I1
I21

is a surjective homomorphism (local

orientation).

Then, ω is (strictly) homotopic to An � A
A2 .

(Which of course lifts to generators of I0 := A.)

Proof. Postpone!
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3 The Obstruction presheaf

We will make some of the above more funtorial, which is not

deep.
There are skeptics and enthusiasts regarding A1-homotopy the-

ory. Lately, I probed into it. However, I am convinced that there
is a new way to look at things, while I am not competent to say
if it really cracks anything. I understood that they try to look at
everything as functors or presheafs, which has some advantages.
That is why we would restructure the above definition of homo-
topy. This is not deep. We will not talk about A1-homotopy.

First, we establish some notations that will be useful through-

out these talks.
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Notations 3.1. Throughout, k will denote a field (or ring), with

1/2 ∈ k and A,R will denote commutative noetherian rings. For

a commutative ring A and a finitely generated A-module M , the

minimal number of generators of M will be denoted by µ(M).

We denote

q2n+1 =

n∑
i=1

XiYi + Z2, q̃2n+1 =

n∑
i=1

XiYi + Z(Z − 1).

Denote

Q2n = Spec (A2n) where A2n =
k[X1, . . . , Xn, Y1, . . . , Yn, Z]

(q̃2n+1)
(1)

and

Q′2n = Spec (B2n) where B2n =
k[X1, . . . , Xn, Y1, . . . , Yn, Z]

(q2n+1 − 1)
.

(2)

There are inverse isomorphisms

α : A2n
∼−→ B2n β : B2n

∼−→ A2n

given by
α(xi) = xi

2 1 ≤ i ≤ n

α(yi) = yi
2 1 ≤ i ≤ n

α(z) = z+1
2


β(xi) = 2xi 1 ≤ i ≤ n

β(yi) = 2yi 1 ≤ i ≤ n

β(z) = 2z − 1

(3)

Therefore, Q2n
∼= Q′2n.
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Definition 3.2. The category of schemes over Spec (k) will be

denoted by Schk. Also, Sets will denote the category of sets.

Given a scheme Y ∈ Schk, the association X 7→ Hom(X, Y )

is a presheaf on Schk. (Recall, a presheaf is a contravariant

functor.)

This presheaf is often identified with Y , itself. So, in

some literature one may write, Y for the presheaf Hom(−, Y )

and Y (X) := Hom(X, Y ).
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With such an approach, for X = Spec (A), it follows immedi-

ately that, Q2n(A) and Q′2n(A) can be identified with the sets, as

follows:

Q2n(A) =

{
(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :

n∑
i=1

figi + s(s− 1) = 0

}

Q′2n(A) =

{
(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :

n∑
i=1

figi + s2 − 1 = 0

}
The homotopy pre-sheaves are given by the pushout diagrams in

Sets:

Q2n(A[T ]) T=0 //

T=1
��

Q2n(A)

��

Q2n(A) // π0 (Q2n) (A)

and

Q′2n(A[T ]) T=0 //

T=1
��

Q′2n(A)

��

Q′2n(A) // π0 (Q′2n) (A)

The isomorphism Q2n
∼= Q′2n, induces

a bijection π0 (Q2n) (A) ∼= π0 (Q′2n) (A).

Remark for mature audience: By including more variables,

you can define higher homotopy sets/sheaves πi (Q2n) (A). In fact

you do the same for any contravariant functor.
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For any ring A and

v = (f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A), let I(v) := (f1, . . . , fn, s)A

Also, let ωv : An → I(v)
I(v)2

denote the surjective homomorphism

defined by ei 7→ fi + I2 where e1, . . . , en is the standard basis of

An.

Definition 3.3. Suppose A is a commutative ring and I is an

ideal in A. For an integer n ≥ 1, and a local An-local orienta-

tion, ω : An � I/I2, would be called a local n-orientation of I

(renaming).

Let O(A, n) =

{
(I, ω) : ω : An �

I

I2
is a local n− orientation

}
For (I, ω) ∈ O(A, n), write

ζ(I, ω) := [(f1, . . . , fn; g1, . . . , gn, s)] ∈ π0 (Q2n(A))

where

1. ω : An � I
I2

is given by ei 7→ fi + I2

2. and hence
∑n

i=1 figi + s(s − 1) = 0 for some g1, . . . , gn ∈ A
and s ∈ I .

3. Note,

(f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A).
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It was established in [F, Theorem 2.0.7], that this association is

well defined. We refer to ζ(I, ω), as an obstruction class. There-

fore, we have a commutative diagram

Q2n(A)
ζ

''
η
����

O(A, n)
ζ
// π0 (Q2n(A))

and η(v) = (I(v), ωv). Note that we use the same notation ζ for

two set theoretic maps.

We comment

1. Note thatQ2n(A) ≡ Hom(A,Q2n) is a presheaf, whileO(n,A)

is not. This why Q2n(A) wins, and we want to work with

it, instead of O(n,A).

2. We define u,v ∈ Q2n(A) homotopic, if they have same images

in π0 (Q2n) (A).

Define u,v ∈ Q2n(A) to be strictly homotopic, if

∃ F (T ) ∈ Q2n(A[T ]) 3 F (0) = u, F (1) = v
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Proposition 3.4. Suppose A = R[X ] is a polynomial ring over a

commutative ring R and I is an ideal that contains a monic poly-

nomial. Suppose ω : An � I/I2 is a surjective homomorphism

(local orientation). Then ζ(I, ω) = [0] ∈ π0 (Q2n) (A), where

0 := (1, 0, . . . , 0; 0, . . . , 0; 0) ∈ Q2n(A).

Proof. Let f1, . . . , fn ∈ I be a lift of ω. Then,

I = (f1, f2, . . . , fn) + I2

We can assume that f1 is a monic polynomial, with even degree.

Now, consider the transformation [M9]:

ϕ : R[X,T±1]
∼−→ R[X,T±1] by

{
ϕ(X) = X − T + T−1

ϕ(T ) = T

There is a commutative diagram

R[X ]

��

R[X ]

R[X,T±1] ϕ
//R[X,T±1]

T=1

OO

Then, ϕ(f1) = f1(X − T + T−1) is doubly monic in T , meaning

that its lowest and the highest degree terms have coefficients 1.

Let F1(X,T ) = T deg f1(X)ϕ(f1) ∈ R[X,T ]. Then, F1(X, 0) = 1.

Also, for i = 2, . . . , n write Fi(X,T ) = T δϕ(fi), for some integer

δ � 0, such that Fi(X,T ) ∈ TR[X,T ]. Therefore, Fi(X, 0) = 0.

Now, write

I ′ = ϕ(IR[X,T±1]) and I := I ′ ∩R[X,T ].
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Since R[X,T ]
I

∼−→ R[X,T±1]
I ′ , it follows

I = (F1(X,T ), . . . , Fn(X,T )) + I 2.

Therefore, by Nakayama’s Lemma, there is a S(X,T ) ∈ I , such

that

(1− S(X,T ))I ⊆ (F1(X,T ), F2(X,T ), . . . , Fn(X,T )).

and hence∑
Fi(X,T )Gi(X,T ) + S(X,T )(S(X,T )− 1) = 0

for some G1, . . . , Gn ∈ A[X,T ]. Write ψ(X,T ) =

(F1(X,T ), F2(X,T ), . . . , Fn(X,T );G1(X,T ), . . . , Gn(X,T );S(X,T ))

Then, ψ(X,T ) ∈ Q2n(R[X,T ]) and I|T=1 = I . Further,

ψ(X, 1) = (f1, . . . , fn;G1(X, 1), . . . , Gn(X, 1);S(X, 1))

and

ψ(X, 0) = (1, 0, . . . , 0;G1(X, 0), . . . , Gn(X, 0), S(X, 0)).

By [F, 2.0.10], ψ(X, 0) ∼ 0 ∈ Q2n(A). Hence, ψ(X, 1) ∼ 0 ∈
Q2n(A). Therefore,

ζ(I, ω) = [ψ(X, 1)] = [0] ∈ π0 (Q2n(R)) .

The proof is complete.

17



Remark 3.5. In the light of (3.4), our objective would be to prove

if v ∈ Q2n(A) is homotopically trivial, then the corresponding

local n-orientation

ωIv : An �
Iv
I2v

lifts to a surjection

An // //

ωIv �� ��

Iv

����
Iv
I2v
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4 Homotopy and the lifting property

Recall, for any commutative ring A, we have A2n(A)
∼−→ B2n(A).

Therefore, there are set theocratic bijections

α : Q2n(A)
∼−→ Q′2n(A), β : Q′2n(A)

∼−→ Q2n(A)

This induces, set theocratic bijections

π0 (Q2n) (A)
∼−→ π0 (Q′2n) (A)

4.1 Elementary Orthogonal group and Lifting

Some Prelude to the Elementary Orthogonal groups

1. Recall, GLn(A) has a subgroup ELn(A) of elementary matri-

ces.

2. Given any quadratic form q (non-singular), over k of rank n,

we can define

(a) Orthogonal subgroups O(An, q) ⊆ GLn(A), defined same

way as we do in Linear Algebra classes.

(b) In analogy to elementary subgroup, there is a elementary

orthogonal subgroups EO(q, An) ⊆ O(An, q).

3. We will be considering q2n+1 =
∑n

i=1XiYi + Z2.

(a) The elementary orthogonal subgroup EO
(
A2n+1, q2n+1

)
acts on Q′2n(A).
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(b) We Pull this action to Q2n(A), as follows.

Definition 4.1. Define an action on Q2n(A) as follows:

∀ v ∈ Q2n(A),M ∈ EO (A, q2n+1) define v ∗M := β (α(v)M)

This action is not given by the usual matrix multiplication. Five

different classes of the generators of EO
(
A2n+1q2n+1

)
and their

actions on Q2n(A) are given in [F].

Theorem 4.2. Let A be a essentially smooth algebra over an in-

finite field k, with 1/2 ∈ k. Then, for n ≥ 2, the natural map

ϕ :
Q′2n(A)

EO(A, q2n+1)
−→ π0 (Q′2n) (A) is a bijection.

Proof. See my paper. When k is infinite perfect, this was proved
by Fasel [F]. I extended to the infinite field case.
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5 Final Lifting Theorems

I will SKIP most of the following details.

Definition 5.1. Let A be a commutative ring over k. Let v ∈
Q2n(A). We write v := (a1, . . . , an; b1, . . . , bn; s). For integers,

r ≥ 1 we say that r-lifting property holds for v, if

I(v) = (a1 + µ1s
r, . . . , an + µns

r) for some µi ∈ A.

We say the lifting property holds for v, if

I(v) = (a1 + µ1, . . . , an + µn) for some µi ∈ I(v)2.

The following is the main homotopy invariance theorem, for

lifting generators of I/I2. When k is infinite perfect, theorem

was proved in [F], with significant contributions from me.

Theorem 5.2. Suppose A is a regular ring containing a field k,

with 1/2 ∈ k. Let n ≥ 2 be an integer. Let v ∈ Q2n(A) and

M ∈ EO (A, q2n+1). Then, v has 2-lifting property if and only if

v ∗M has the 2-lifting property.

Proof. We outline the proof. It would be enough to assume that

M is a generator of EO (A, q2n+1). There would be five cases to

deal with, one for each type of generators of EO (A, q2n+1), listed

in [F, pp 3-4]. Only of them is nontrivial, that is of the case of

generators of the type 4 (in the list [F, pp 3-4]). This case follows,
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mainly from Theorem 5.3 (which [F, Lemma 3.1.2] I gave him in

a pdf to the author of [F]). In deed, I spotted the gap in the

proof of (see [F, Lemma 3.1.2]), in the first version of [F] and

communicated to him, what needs to be done to apply Theorem

5.3.

We state the following homotopy lifting theorem [F, Corollary

3.2.6], due to this author (unpublished), that was used crucially

in [F].

Theorem 5.3 (Mandal). Let R be a regular ring containing a

field k. Let

H(T ) := (f1(T ), . . . , fn(T ), g1(T ), . . . , gn(T ), s) ∈ Q2n(R[T ]), with

s ∈ R.
Write ai = fi(0), bi = gi(0). Write I(T ) = (f1(T ), . . . , fn(T ), s).

Also assume I(0) = (a1, . . . , an) . Then,

I(T ) = (F1, . . . , Fn) 3 fi − Fi ∈ s2R[T ]

Proof. See [F, Lemma 3.1.2], communicated by myself.

Remark 5.4. Note, there is no mention of Homotopy in Theo-

rem 5.2. We will show that homotopy relations reduces to the

equivalences defined by the action of EO(q2n+1).
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6 Further Details: Homotopy to the Action of EO(q2n+1)

The following is the quadratic analogue of the result of Ton Vorst

[T, pp 507].

Theorem 6.1. Suppose A is a regular ring containing a field k.

Then,

∀ σ(T ) ∈ O(A[T ], q2n+1), σ(0) = 1 =⇒ σ(T ) ∈ EO(A[T ], q2n+1).

Proof. In the case when k is perfect, it follows from the theorem

of Stavrova ([S, Theorem 1.3]) on REDUCTIVE groups. I reduce

it to the perfect field case, using Popescu’s theorem.

I remark that an elementary proof would be possible, without

using Stavrova’s theorem, exactly as the proof of Ton Vorst ([T,

pp 507]). Someone needs to work it out.

The following is repeat of Theorem 4.2.

Theorem 6.2. Let A be a essentially smooth algebra over an in-

finite field k, with 1/2 ∈ k. Then, for n ≥ 2, the natural map

ϕ :
Q′2n(A)

EO(A, q2n+1)
−→ π0 (Q′2n) (A) is a bijection.

Proof. See my paper. According to an expert on quadratic forms,
this lemma is standard, which I am not surprised, because of the
structure of the proof.
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The following summarizes the final results on homotopy and

lifting of generators (also see [F, Theorem 3.2.7]).

Theorem 6.3 (Mandal). Suppose A is a regular ring containing

an infinite field k, with 1/2 ∈ k. Assume A is essentially smooth

over k or k is perfect. Let n ≥ 2 be an integer. Denote 0 :=

(0, . . . , 0; 0, . . . , 0; 0) ∈ Q2n(A) and let v ∈ Q2n(A). Then, the

following conditions are equivalent:

1. The obstruction ζ (I(v, ωv)) = [0] ∈ π0 (Q2n) (A).

2. v has 2-lifting property.

3. v has the lifting property.

4. v has r-lifting property, ∀ r ≥ 2.

Proof. It is clear, (2) =⇒ (3). To prove (3) =⇒ (1), suppose I(v) = (a1+µ1, . . . , an+µn),
with µi ∈ I(v)2. Write v′ = (a1 + µ1, . . . , an + µn; 0, . . . , 0; 0) ∈ Q2n(A). By [F, 2.0.10], we
have ζ (I(v, ωv)) = ζ (I(v′, ωv′)) = [v0] ∈ π0 (Q2n) . This establishes, (3) =⇒ (1).

Now we prove (1) =⇒ (2). Assume ζ (I(v, ωv)) = [0]. In case A is essentially finite over
k, it follows from Theorem 6.2 that 0 = v∗M , for some M ∈ EO(A, q2n+1) and (2) follows
from Theorem 5.2. However, when A is regular and contains an infinite perfect field, we
have to use Popescu’s theorem. By definition, ζ (I(v, ωv)) = [0] implies that there is a
chain homotopy from v to 0. This data can also be encapsulated in a finitely generated
algebra A′ over k. As in the proof of (6.1) there is a diagram

k

''

// A′ ι //� p

  

B

��
A

of homomorphisms

such that B is smooth over k. The homotopy relations are carried over to B. Therefore,
by replacing A by B, we can assume that A is essentially smooth over k. So, Theorem 6.2
applies and (2) follows as in the previous case.

So, it is established that (1) ⇐⇒ (2) ⇐⇒ (3). It is clear that (4) =⇒ (2). Now
suppose, one of the first three conditions hold. Fix r ≥ 2. Notice I(v) = (a1, . . . , an, s

r)A.

24



So, replacement of s by sr leads to the same obstruction class in ∈ π0 (Q2n) (A), which is
= [0] ∈ π0 (Q2n) (A). Since (1) ⇐⇒ (2), it follows I(v) has 2r-lifting property and hence
the r-lifting property. The proof is complete.
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A Abstract

Abstract: For a commutative ring A and a finitely generated A-

moduleM , we denote µ(M) := minimal number of generators of M.

It follows, from Nakayama’s Lemma, that (exercise),

for any ideal I ⊆ A µ

(
I

I2

)
≤ µ(I) ≤ µ

(
I

I2

)
+ 1

The following is the statement of Murthy’s complete intersection

conjecture:

Conjecture A.1 (M. P. Murthy). SupposeA = k[X1, X2, . . . , Xn]

is a polynomial ring over a field k. Suppose I is an ideal in A.

Then,

µ(I) = µ

(
I

I2

)
This conjecture is settled, affirmatively, when k is an infinite

field with 1/2 ∈ k. Further, S. Abhyanka’s epimorphism conjec-

ture has two versions, as follows:

Conjecture A.2 (S. Abhyankar). Let k be a field with char(k) =

0. Suppose

ϕ : k[X1, X2, . . . Xn] � k[Y1, Y2, . . . Ym] is an epimorphism

of polynomial k-algebras and I = ker(ϕ). Then, it is conjectured

(folklore)
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1. that I is generated by variables. That means,

I = (X ′1, X
′
2, . . . , X

′
n−m) and

k[X1, X2, . . . Xn] = k[X ′1, X
′
2, . . . X

′
n−m, . . . , X

′
n]

2. (The weaker version): that

µ(I) = µ

(
I

I2

)
The weaker version of the epimorphism conjecture follows from

Murthy’s complete intersection conjecture. I plan to give two or

three lectures on these results. Following are come highlights or

comments:

1. In the first lecture I will explain the results and would write

down the open problems. In the second lecture I will go

through the methods.

2. I should be able to write down some exercises that may be

suitable for prelims or quals.

3. Anecdotally, my interview talk at KU in 1988, was on the

conjecture of Murthy.
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