
Paradigm
Witt Groups of subcategories of ∆ed categories with duality

Main Results
Method of Proofs by reduction of Length

Witt Groups of Cohen-Macaulay Rings

Satya Mandal, University Kansas
Based on a joint research project with

Sarang Sane, University of Kansas

ATM Workshop-Conference on
Classical and Non-Stable Algebraic K−theory

July 15-24, 2013

Satya Mandal, University Kansas Based on a joint research project with Sarang Sane, University of KansasWitt Groups of Cohen-Macaulay Rings



Paradigm
Witt Groups of subcategories of ∆ed categories with duality

Main Results
Method of Proofs by reduction of Length

Objectives
Choice of the Exact Category
Legitimacy Questions
Duality
On the Cone Construction

Objective and Notations

◮ To extend and apply Triangulated Witt groups (due to
Balmer and Others) to Cohen-Macaulay schemes. The
existing theory, mainly, applies to regular schemes.

◮ Let A denote any noetherian commutative ring.
◮ The category of finitely generated A−modules will be

denoted by M(A).
◮ The category of finitely generated A−modules with finite

projective dimensions will be denoted by
B = MFPD(A).
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Continued

◮ A := MFPDfl(A) will denote the subcategory of objects
in B with finite projective dimension.

◮ First, we proceed to justify that, for non-regular rings A,
right category to work with is B := MFPD(A) or its
subcategory A := MFPDfl(A)
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Continued: Chain Complexes

In terms of chain complexes, we have the following:

◮ As usual Chb(M(A)),Chb(B), Chb(A) will denote the
categories of bounded chain complexes of objectcts in the
respective categories. Also, K b(M(A)),K b(B), K b(A)
will denote the categories of bounded chain complexes
and morphisms of chain homotopic maps.

◮ Similarly, K b (P(A)) denotes the category of chain
complexes of objects in P(A) and morphisms of chain
homotopic maps. (P(A) denote the category of finitely

generated projective A−modules.)
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Choice of the Exact Category

◮ When A is regular, there is a functor

M(A) −→ K b (P(A)) M 7→ P•

where P• is given by a projective resolution of M , with
H0(P•) = M . (use axiom of choice).

◮ If A is not regular, we ONLY have functor

B −→ K b (P(A)) M 7→ P•

◮ So, we work with B,A.
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Continued

◮ Given our choice the exact categories, we restrict
ourselves in the full subcategories of complexes with
homologies in B or A.

◮ In this lecture, we work mostly with and denote them by

K b
A(A), K b

A (P(A))

and comment on other similar categories.
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In the regular case all these K b−categories and the
corresponding derived categories are triangulated.

◮ Do, we have such luxury, in the non-regular case?

◮ Questions:
◮ What kind of dualities these categories may have?
◮ Are these categories closed under cone construction?
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Examples

Sankar P. Dutta gave the following example to demonstrate
that K b

B(P(A)) is not closed under usual duality induced by
Hom(−,A).
Example(Dutta). Let (A,m, k) be any non-regular
Cohen-Macaulay local ring, dimA = d .

◮ Let

· · · // Pd

∂d // Pd−1
// · · · // P0

// k // 0

be an (infinite) projective resolution of k .
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Continued

◮ Let M = cokernel(∂∗d). Since Ext r (k ,A) = 0 ∀ r < d ,

0 // P∗
0

// · · · // P∗
d

// M // 0 is exact.

So, M ∈ B.

◮ Dualizing this sequence, it follows that ExtdA(M ,A) ∼= k ,
which does not have finite projective dimension.

◮ In particular, K b
B(P(A)) is not closed under duality.
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On Duality

Theorem. Let A be a Cohen-Macaulay ring and
A = MFPDfl(A).

◮ The functor Extd(∗,A) : A −→ A is a duality on A.

◮ Theorem (-,Sane)
K b

A(P(A)) is closed under duality, indused by Hom(∗,A).
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Failure of Cone Construction

The follwoing example shows that ChbA(P(A)) is not closed
under cone construction.
Example. Let (A,m) be a non-regular Cohen-Macauly ring
with dimA = d , such that m = (f1, f2, . . . , fd , z). We can
assume, using prime avoidance, that f1, f2, . . . , fd is a regular
sequence. Let U• = Kos•(f1, f2, . . . , fd) be the Koszul
complex.

◮ The only nonzero homology of U• is
H0(U•) =

A
(f1,f2,...,fd )

∈ A,

◮ So, U• and all its translates are objects are in K b
A(P(A)).

◮ Let C (z) be the cone of the chain map z : U• −→ U•.
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Continued

◮ Considering the exact sequence of chain complexes

0 // U•
// C (z) // U•[1] // 0

it follows that H0(Cone(z)) ∼=

coker(
A

(f1, f2, . . . , fd)

·z
→

A

(f1, f2, . . . , fd)
) ∼=

A

m

/∈ A.

So, C (z) is not an object of K b
A(P(A)).
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The Derived Categories

◮ Recall, the derived category Db(E), of bounded
complexes of objects in an exact category E , was defined
by inverting the quasi-isomorphisms in K b(E).

◮ For this lecture, A is a Cohen-Macaulay ring with
dimAm = d for all maximum ideals m of A.

◮ As usual, the Derived category D
b(P(A)) is a

triangulated category with dulity. The duality is induced
by Hom(−A)

◮ Similarly, Db(A) is a triangulated category with duality.
The duality is indued by Ext

d(−,A)
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The Paradigm

◮ Today, we study, the ”derived categories”

Db
A(A), Db

A(P(A)), obtained by inverting

quasi-isomorphisms, repectively in, K b
A(A), K b

A(P(A)).

◮ Db
A(A),Db

A(P(A)) are not necessarily triangulated.
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The Paradigm: Continued

◮ However,

Db
A(A) →֒ Db(A) is a full subcategory .

◮ Likewise,

Db
A(P(A)) →֒ Db(P(A) is a full subcategory .

◮ Note Db(A), Db(P(A) are triangulated with duality.

◮ We will define Witt groups of subcategories of
triangulated with duality.
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Let δ = ±1. Suppose K := (K ,#, δ,̟) is a triangulated

category with translation T and δ−duality #. Suppose K0

is a full subcategory of K that is closed under isomorphism,

translation, orthogonal sum and duality.

◮ Define the Witt monoid of MW (K0) to be the

submonoid

MW (K0) = {(P , ϕ) ∈ MW (K ) : P ∈ Ob(K0)}.

◮

A symmetric space (P , ϕ) ∈ MW (K0) will be called a

neutral space in MW (K0) if it has a Lagrangian

(L, α,w) in MW (K ) such that L, L# ∈ Ob(K0).
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◮ Let NW (K0) be the submonoid of MW (K0) generated by
the isometry classes of neutral spaces in K0.

◮ Define the Witt group

W (K0) :=
MW (K0)

NW (K0)
. W (K0) has a group structure.
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Continued

◮ Accordingly, the shifted Witt groups

W n
(

Db
A (P(A))

)

:= W
(

T n
(

Db
A (P(A)) , ∗, 1, ̟

))

, and

W n
(

Db
A (A)

)

:= W
(

T n
(

Db
A (A) ,∨ , 1, ˜̟

))

are defined, where

∗,∨ are induced by Hom(−,A),Extd(−,A), respectively .
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The Serre Category Theorem

◮ Theorem (-,Sane)
We have the diagram of isomorphisms

W (A) ∼ //

∼
&&LLLLLLLLLLL

W
(

Db
A(A)

)

≀

��

W
(

Db(A)
)

◮ The diagonal isomorphism is a theorem of Balmer.

◮ The theorem holds for any Serre Category.
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The Dévissage Theorem

Theorem (-,Sane)

◮ 0−Shift:

W (A)
∼
→ W d(Db

A(P(A)))

◮ 2−Shift:

W−(A)
∼
→ W d+2(Db

A(P(A)))

◮ Odd-Shift:

W d+1(Db
A(P(A))) ∼= W d−1(Db

A(P(A))) = 0.

◮ 4-periodicity describes all the shifted Witt groups.

Satya Mandal, University Kansas Based on a joint research project with Sarang Sane, University of KansasWitt Groups of Cohen-Macaulay Rings



Paradigm
Witt Groups of subcategories of ∆ed categories with duality

Main Results
Method of Proofs by reduction of Length

The Serre Category Theorem
The Dévissage

Diagramatically Stated:

Here is a commutative diagram of some of the isomorphisms:

W
(

Db (A)
)

W (A)

∼
''OOOOOOOOOOOO

Balmer
77o

o
o

o
o

o
∼ // W

(

Db
A (A)

)

≀

OO

≀

��

W d
(

Db
A (P(A))

)
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Comments

◮ When (A,m) is regular local, the theorem above is a
result of Balmer-Walter. In that case,

◮ W (A) = W (A/m) = W
d
(

D
b
A
(P(A)

)

◮ All the other three groups are zero.

◮ Our theorems assumes neither regular nor local.

◮ Our methods are fairly elementary.
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The Theorem of Balmer

We borrow a good deal of methods from the work of Balmer,
including following theorem:
Theorem.(Balmer) Let (K ,#) be a triangulated category
with duality containing 1/2. Suppose K satisfies (TR4+).

◮ Let (P•, ϕ) be a a symmetric space and

◮ let ν1 : L• −→ P• be a morphism such that ν#1 ϕν = 0
(we say ν1 is a sublagrangian).

◮ Choose any triangle over ν1, as in the top line

◮ The second line is the dual of the first line.
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Continued: The Theorem of Balmer

T−1N•
//

T−1µ0

��

L•
ν1 //

µ
#
0

��

P•

ϕ≀

��

// N•

µ
#
0

��
T−1L#•

// N#
•

��

// P#
•

ν
#
1

// L#•

R•

��
T−1L•
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Continued: The Theorem of Balmer

◮ By choice µ0 very good morphism (see Balmer).

◮ The verticle line is a triangle on µ0.

Then, there there exists a symmetric form

ψ : R•

∼
→ R#

• ∋ [(P•, ϕ)] = [(R•, ψ)] ∈ W (K ,#).
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The Map

We give a sketch of the proof that

π : W (A)
∼
→ W d

(

Db (P(A))
)

◮ First, there is a narural homomorphism

π([(M , ϕ0)] = [(P•, ϕ)]

where P• is a finite projective resolution of H0(P•) = M .
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The Surjectivity

◮ Let (P•, ϕ) be a symmetric form in

T dDb
A (P(A)) ⊆ T dDb (P(A))

◮ Upto Quasi-isomorphism the form looks like:

Pn+d
//

ϕ

��

· · · // P0
//

ϕ

��

· · · // P−n

ϕ

��
P∗
−n

// · · · // P∗
d

// · · · // P∗
n+d
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Continued: The Surjectivity

◮ with H−n(P•) 6= 0. Assume N ≥ 1.

◮ By definition ∀ i Hi(P•)
∼
→ Hi(P

#
• ).

◮ By a simple lemma, Hi(P•) = 0 ∀ i > n.

◮ We have

0 6= H−n(P•) ≈ Extd
(

Pn

ker(∂n)
,A

)

≈ Extd (Hn(P•),A)

◮ Take a projective resolution L• ։ H−n(P•), and complete
the following diagram.
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The Sublagrangian Construction: The Surjectivity

Ln+d
//

ν

��

· · · // Ln

ν

��
Pn+d

//

ϕ

��

· · · // Pn
//

ϕ

��

· · · P0

��

// · · · // P−n

ϕ

��
P∗
−n

// · · · // P∗
−n+d

// · · · P∗
d

// · · · // P∗
n+d

ν#

��
· · · // L∗n

// · · · // · · · // L∗n+d
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The Sublagrangian Construction: The Surjectivity

◮ It follows ∀ i Hi(ν
#ϕν) = 0

◮ L# is ”exact enough” to prove that ν#ϕν ∼ 0 in
K b−category, hence in Db (P(A)).

◮ We apply Balmer’s theorem, in Db (P(A)). He proved,
there is a Lagrangian

η : N# −→ (P•, ϕ) ⊥ (R•,−ψ) in Db (P(A))
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Final Steps: The Surjectivity

◮ Since N# is in Db
A (P(A)), η is a Lagrangian in

Db
A (P(A)).

◮ Hence
[(P•, ϕ)] = [(R•, ψ)]in Db

A (P(A))

◮ Chasing the homology sequences, it folows

Hi(R•) = 0 unless n − 1 ≤ i ≤ −(n − 1).

◮ Since H−n(R•) = 0, it splits ar degree −n.

◮ Upto quasi-isomorphism, R• is supported on
[(n − 1) + d ,−(n − 1)].
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Final Steps: The Surjectivity

◮ By induction,

[(P•, ϕ)] = [(Q•, ψ)]in Db
A (P(A))

where Hi(Q•) = 0 ∀ i 6= 0

◮ So, surjectivity is established.
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