Witt Groups of Cohen-Macaulay Rings

Satya Mandal, University Kansas Based on a joint research project with Sarang Sane, University of Kansas

ATM Workshop-Conference on Classical and Non-Stable Algebraic *K*-theory July 15-24, 2013

- 4 回 2 4 日 2 4 日 2

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

Objective and Notations

- To extend and apply Triangulated Witt groups (due to Balmer and Others) to Cohen-Macaulay schemes. The existing theory, mainly, applies to regular schemes.
- Let A denote any noetherian commutative ring.
 - ► The category of finitely generated A-modules will be denoted by M(A).
 - The category of finitely generated A-modules with finite projective dimensions will be denoted by B = MFPD(A).

・ロト ・回ト ・ヨト ・ヨト

Objectives

Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

イロン イヨン イヨン イヨン

Continued

- A := MFPDfl(A) will denote the subcategory of objects in B with finite projective dimension.
- First, we proceed to justify that, for non-regular rings A, right category to work with is B := MFPD(A) or its subcategory A := MFPDfl(A)

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

ヘロン 人間 とくほど くほどう

Continued: Chain Complexes

In terms of chain complexes, we have the following:

- ► As usual Ch^b(M(A)), Ch^b(B), Ch^b(A) will denote the categories of bounded chain complexes of objectcts in the respective categories. Also, K^b(M(A)), K^b(B), K^b(A) will denote the categories of bounded chain complexes and morphisms of chain homotopic maps.
- Similarly, K^b(P(A)) denotes the category of chain complexes of objects in P(A) and morphisms of chain homotopic maps. (P(A) denote the category of finitely generated projective A−modules.)

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

Choice of the Exact Category

When A is regular, there is a functor

$$\mathcal{M}(A) \longrightarrow K^{b}(\mathcal{P}(A)) \quad M \mapsto P_{\bullet}$$

where P_{\bullet} is given by a projective resolution of M, with $H_0(P_{\bullet}) = M$. (use axiom of choice).

► If A is not regular, we ONLY have functor

$$\mathcal{B} \longrightarrow K^{b}(\mathcal{P}(A)) \quad M \mapsto P_{\bullet}$$

イロン イヨン イヨン イヨン

So, we work with \mathcal{B}, \mathcal{A} .

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

・ロト ・回ト ・ヨト ・ヨト

- ► Given our choice the exact categories, we restrict ourselves in the full subcategories of complexes with homologies in *B* or *A*.
- In this lecture, we work mostly with and denote them by

 $K^{b}_{\mathcal{A}}(\mathcal{A}), \quad K^{b}_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))$

and comment on other similar categories.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

イロト イポト イヨト イヨト

In the regular case all these K^b -categories and the corresponding derived categories are triangulated.

- Do, we have such luxury, in the non-regular case?
- Questions:
 - What kind of dualities these categories may have?
 - Are these categories closed under cone construction?

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

ヘロン 人間 とくほど くほどう

Examples

Sankar P. Dutta gave the following example to demonstrate that $K^b_{\mathcal{B}}(\mathcal{P}(A))$ is not closed under usual duality induced by Hom(-, A).

Example(Dutta). Let (A, \mathfrak{m}, k) be any non-regular Cohen-Macaulay local ring, dim A = d.

Let

$$\cdots \longrightarrow P_d \xrightarrow{\partial_d} P_{d-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow k \longrightarrow 0$$

be an (infinite) projective resolution of k.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

・ロト ・回ト ・ヨト ・ヨト

Continued

• Let $M = cokernel(\partial_d^*)$. Since $Ext^r(k, A) = 0 \ \forall \ r < d$,

$$0 \longrightarrow P_0^* \longrightarrow \cdots \longrightarrow P_d^* \longrightarrow M \longrightarrow 0 \quad is exact.$$

So, $M \in \mathcal{B}$.

- ▶ Dualizing this sequence, it follows that $Ext_A^d(M, A) \cong k$, which does not have finite projective dimension.
- ▶ In particular, $K^{b}_{B}(\mathcal{P}(A))$ is not closed under duality.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

3

On Duality

- **Theorem.** Let A be a Cohen-Macaulay ring and $\mathcal{A} = \mathcal{M}FPDfl(A)$.
 - The functor $Ext^d(*, A) : \mathcal{A} \longrightarrow \mathcal{A}$ is a duality on \mathcal{A} .
- ► Theorem (-,Sane)

 $K^{b}_{\mathcal{A}}(\mathcal{P}(A))$ is closed under duality, indused by Hom(*, A).

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

イロト イヨト イヨト イヨト

Failure of Cone Construction

The following example shows that $Ch^{b}_{\mathcal{A}}(\mathcal{P}(A))$ is not closed under cone construction.

Example. Let (A, \mathfrak{m}) be a non-regular Cohen-Macauly ring with dim A = d, such that $\mathfrak{m} = (f_1, f_2, \ldots, f_d, z)$. We can assume, using prime avoidance, that f_1, f_2, \ldots, f_d is a regular sequence. Let $U_{\bullet} = Kos_{\bullet}(f_1, f_2, \ldots, f_d)$ be the Koszul complex.

- ► The only nonzero homology of U_{\bullet} is $H_0(U_{\bullet}) = \frac{A}{(f_1, f_2, ..., f_d)} \in \mathcal{A},$
- ▶ So, U_{\bullet} and all its translates are objects are in $K^{b}_{\mathcal{A}}(\mathcal{P}(A))$.
- Let C(z) be the cone of the chain map $z: U_{\bullet} \longrightarrow U_{\bullet}$.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

ヘロン 人間 とくほど くほどう

3

Continued

Considering the exact sequence of chain complexes

$$0 \longrightarrow U_{\bullet} \longrightarrow C(z) \longrightarrow U_{\bullet}[1] \longrightarrow 0$$

it follows that $H_0(Cone(z)) \cong$

$$\operatorname{coker}(\frac{A}{(f_1, f_2, \dots, f_d)} \xrightarrow{\cdot_z} \frac{A}{(f_1, f_2, \dots, f_d)}) \cong \frac{A}{\mathfrak{m}} \notin \mathcal{A}.$$

So, C(z) is not an object of $K^b_{\mathcal{A}}(\mathcal{P}(A))$.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

The Derived Categories

- Recall, the derived category D^b(E), of bounded complexes of objects in an exact category E, was defined by inverting the quasi-isomorphisms in K^b(E).
- ► For this lecture, A is a Cohen-Macaulay ring with dim A_m = d for all maximum ideals m of A.
 - As usual, the Derived category D^b(P(A)) is a triangulated category with dulity. The duality is induced by Hom(−A)
 - ► Similarly, D^b(A) is a triangulated category with duality. The duality is indued by Ext^d(-, A)

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

(ロ) (同) (E) (E) (E)

The Paradigm

Today, we study, the "derived categories"

 $D^b_{\mathcal{A}}(\mathcal{A}), \quad D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A})), \quad obtained \ by \ inverting$

quasi-isomorphisms, repectively in, $K^b_{\mathcal{A}}(\mathcal{A})$, $K^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))$.

• $D^b_{\mathcal{A}}(\mathcal{A}), D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))$ are not necessarily triangulated.

Objectives Choice of the Exact Category Legitimacy Questions Duality On the Cone Construction

The Paradigm: Continued

However,

$$D^b_{\mathcal{A}}(\mathcal{A}) \hookrightarrow D^b(\mathcal{A})$$
 is a full subcategory.

Likewise,

 $D^b_{\mathcal{A}}(\mathcal{P}(A)) \hookrightarrow D^b(\mathcal{P}(A)$ is a full subcategory.

- ▶ Note $D^{b}(\mathcal{A})$, $D^{b}(\mathcal{P}(\mathcal{A}))$ are triangulated with duality.
- We will define Witt groups of subcategories of triangulated with duality.

Definition

Let $\delta = \pm 1$. Suppose $K := (K, \#, \delta, \varpi)$ is a triangulated category with translation T and δ -duality #. Suppose K_0 is a full subcategory of K that is closed under isomorphism, translation, orthogonal sum and duality.

▶ Define the Witt monoid of $MW(K_0)$ to be the submonoid

$$MW(K_0) = \{(P, \varphi) \in MW(K) : P \in Ob(K_0)\}.$$

A symmetric space $(P, \varphi) \in MW(K_0)$ will be called a neutral space in $MW(K_0)$ if it has a Lagrangian (L, α, w) in MW(K) such that $L, L^{\#} \in Ob(K_0)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Continued

- ► Let NW(K₀) be the submonoid of MW(K₀) generated by the isometry classes of neutral spaces in K₀.
- Define the Witt group

$$W(K_0) := rac{MW(K_0)}{NW(K_0)}$$
. $W(K_0)$ has a group structure.

イロン イヨン イヨン ・

3

Satya Mandal, University Kansas Based on a joint research proj Witt Groups of Cohen-Macaulay Rings

Continued

Accordingly, the shifted Witt groups

$$W^n\left(D^b_{\mathcal{A}}\left(\mathcal{P}(\mathcal{A})
ight)
ight) := W\left(T^n\left(D^b_{\mathcal{A}}\left(\mathcal{P}(\mathcal{A})
ight), *, 1, \varpi
ight)
ight), \text{ and}$$

 $W^n\left(D^b_{\mathcal{A}}\left(\mathcal{A}
ight)
ight) := W\left(T^n\left(D^b_{\mathcal{A}}\left(\mathcal{A}
ight), ^{ee}, 1, ilde{\omega}
ight)
ight)$
are defined, where

 $*,^{\vee}$ are induced by $Hom(-, A), Ext^{d}(-, A),$ respectively.

The Serre Category Theorem The Dévissage

・ロト ・回ト ・ヨト ・ヨト

The Serre Category Theorem

Theorem (-,Sane)

We have the diagram of isomorphisms

- The diagonal isomorphism is a theorem of Balmer.
- ► The theorem holds for any Serre Category.

The Serre Category Theorem The Dévissage

The Dévissage Theorem

- Theorem (-,Sane)
 - ▶ 0*—Shift*:

$$W(\mathcal{A}) \stackrel{\sim}{
ightarrow} W^d(D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A})))$$

► 2-Shift:

$$W^-(\mathcal{A}) \stackrel{\sim}{
ightarrow} W^{d+2}(D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A})))$$

Odd-Shift:

$$W^{d+1}(D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))) \cong W^{d-1}(D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))) = 0.$$

イロト イポト イヨト イヨト

æ

4-periodicity describes all the shifted Witt groups.

The Serre Category Theorem The Dévissage

- 4 回 ト 4 ヨ ト 4 ヨ ト

Diagramatically Stated:

Here is a commutative diagram of some of the isomorphisms:

The Serre Category Theorem The Dévissage

イロト イポト イヨト イヨト

▶ When (A, m) is regular local, the theorem above is a result of Balmer-Walter. In that case,

•
$$W(\mathcal{A}) = W(\mathcal{A}/m) = W^d \left(D^b_{\mathcal{A}}(\mathcal{P}(\mathcal{A})) \right)$$

- All the other three groups are zero.
- Our theorems assumes neither regular nor local.
- Our methods are fairly elementary.

Sublagrangian Theorem of Balmer Sketch of the Proof

The Theorem of Balmer

We borrow a good deal of methods from the work of Balmer, including following theorem:

Theorem.(Balmer) Let (K, #) be a triangulated category with duality containing 1/2. Suppose K satisfies $(TR4^+)$.

- Let (P_{\bullet}, φ) be a a symmetric space and
- let ν₁ : L_• → P_• be a morphism such that ν₁[#] φν = 0 (we say ν₁ is a sublagrangian).
- Choose any triangle over ν_1 , as in the top line
- The second line is the dual of the first line.

Sublagrangian Theorem of Balmer Sketch of the Proof

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Continued: The Theorem of Balmer

Sublagrangian Theorem of Balmer Sketch of the Proof

イロト イポト イラト イラト 一日

Continued: The Theorem of Balmer

- By choice μ_0 very good morphism (see Balmer).
- The verticle line is a triangle on μ_0 .

Then, there there exists a symmetric form

 $\psi: R_{\bullet} \xrightarrow{\sim} R_{\bullet}^{\#} \quad \ni \quad [(P_{\bullet}, \varphi)] = [(R_{\bullet}, \psi)] \in W(K, \#).$

Sublagrangian Theorem of Balmer Sketch of the Proof

2

The Map

We give a sketch of the proof that

$$\pi: W(\mathcal{A}) \stackrel{\sim}{
ightarrow} W^d\left(D^b\left(\mathcal{P}(\mathcal{A})
ight)
ight)$$

First, there is a narural homomorphism

$$\pi([(M,\varphi_0)] = [(P_\bullet,\varphi)]$$

where P_{\bullet} is a finite projective resolution of $H_0(P_{\bullet}) = M$.

Sublagrangian Theorem of Balmer Sketch of the Proof

イロン イヨン イヨン イヨン

The Surjectivity

• Let (P_{\bullet}, φ) be a symmetric form in

 $T^{d}D^{b}_{\mathcal{A}}\left(\mathcal{P}(A)\right)\subseteq T^{d}D^{b}\left(\mathcal{P}(A)\right)$

Upto Quasi-isomorphism the form looks like:

Sublagrangian Theorem of Balmer Sketch of the Proof

ヘロン 人間 とくほど くほどう

3

Continued: The Surjectivity

- with $H_{-n}(P_{\bullet}) \neq 0$. Assume $N \geq 1$.
- By definition $\forall i \; H_i(P_{\bullet}) \xrightarrow{\sim} H_i(P_{\bullet}^{\#}).$
- By a simple lemma, $H_i(P_{\bullet}) = 0 \quad \forall i > n$.
- We have

$$0 \neq H_{-n}(P_{\bullet}) \approx Ext^{d}\left(\frac{P_{n}}{\ker(\partial_{n})}, A\right) \approx Ext^{d}\left(H_{n}(P_{\bullet}), A\right)$$

► Take a projective resolution $L_{\bullet} \rightarrow H_{-n}(P_{\bullet})$, and complete the following diagram.

Sublagrangian Theorem of Balmer Sketch of the Proof

The Sublagrangian Construction: The Surjectivity

Satya Mandal, University Kansas Based on a joint research pro Witt Groups of Cohen-Macaulay Rings

Sublagrangian Theorem of Balmer Sketch of the Proof

イロト イポト イヨト イヨト

The Sublagrangian Construction: The Surjectivity

- It follows $\forall i \ H_i(\nu^{\#}\varphi\nu) = 0$
- L[#] is "exact enough" to prove that ν[#]φν ~ 0 in K^b−category, hence in D^b (P(A)).
- ► We apply Balmer's theorem, in D^b (P(A)). He proved, there is a Lagrangian

$$\eta: \mathbb{N}^{\#} \longrightarrow (\mathbb{P}_{\bullet}, \varphi) \perp (\mathbb{R}_{\bullet}, -\psi) \quad in \quad D^{b}(\mathcal{P}(\mathcal{A}))$$

Sublagrangian Theorem of Balmer Sketch of the Proof

ヘロン 人間 とくほど くほどう

Final Steps: The Surjectivity

- Since N[#] is in D^b_A(P(A)), η is a Lagrangian in D^b_A(P(A)).
- Hence

$$[(P_{\bullet},\varphi)] = [(R_{\bullet},\psi)] in \quad D^{b}_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))$$

Chasing the homology sequences, it follows

$$H_i(R_ullet)=0$$
 unless $n-1\leq i\leq -(n-1).$

- Since $H_{-n}(R_{\bullet}) = 0$, it splits ar degree -n.
- Upto quasi-isomorphism, R_{\bullet} is supported on [(n-1) + d, -(n-1)].

Sublagrangian Theorem of Balmer Sketch of the Proof

イロト イポト イヨト イヨト

2

Final Steps: The Surjectivity

By induction,

$$[(P_{\bullet},\varphi)] = [(Q_{\bullet},\psi)] in \quad D^{b}_{\mathcal{A}}(\mathcal{P}(\mathcal{A}))$$

where $H_i(Q_{\bullet}) = 0 \quad \forall i \neq 0$

So, surjectivity is established.