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1 Abstract

We consider the following question:

Let X = Spec(A) be a smooth affine variety of dimen-

sion n ≥ 2 over R (the field of real numbers) and P

a projective A−module of rank n. Under what further

restrictions, does

Cn(P ) = 0 =⇒ P ' A ⊕ Q?

We answer this question completely. We show that, in

some cases, additional topological obstruction does exist.
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This is a joint work with S. M. Bhatwadekar and

Mrinal Kanti Das.

2 Background

Swan did a lot of thinking on the the relationship between

topological vector bundles and algebraic vector bundles.

Let me start with the following theorem of Swan.

Theorem 2.1 (Swan) Let X be a compact connected

Hausdorff space.

1. Let

C(X) = {f : f : X → R is continuous function}

be the ring of continuous functions on X.

2. Let π : E → X be a real vector bundle E on X. Let

Γ(E) = {s : s : X → E is a section of E}.

Note Γ(E) is a projective C(X)−module.
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Then the association

E → Γ(E)

is an equivalence of catagories. The compactness and

connectedness conditions can be relaxed.
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Theorem 2.2 Suppose X̃ = Spec(A) is a real affine

variety and X = X̃(R) is the topological space of real

points in X̃. Then

1. there is a natural ring homomorphism A → C(X)

2. Let P(A) and P(C(X)) be catagories of finitely gen-

erated projective modules over respective rings.

3. By tensor product there is a natural functor

P(A) → P(C(X))

4. Let K0(A) and K top(X) denote the Grothendieck

group of the catagory P(A) and P(C(X)), respec-

tively. The above functor induces a natural map

K0(A) → K top(X)
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The following is another theorem of Swan.

Theorem 2.3 (Swan) Let Sn denote real n−sphere

and

An = R[X0, X1, . . . , Xn]/(X2
0 + X2

1 + · · · + X2
n − 1)

be the affine coordinate ring of Sn. Then

K0(An) ' K top(Sn)

is an isomorphism.
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3 Non-vanishing sections

Today, we are interested in the existance of nowhere van-

ishing sections and obstructions. First, let me state Serre’s

theorem.

Theorem 3.1 Suppose A is a commutative noetherian

ring of dimension n and P is a projective A−module with

rank(P ) > n. Then

P ≈ Q ⊕ A,

for some projective A−module Q. In other words P has

a nowhere vanishing section.

Similarly, if V is a vector bundle over a compact mani-

fold X with rank(V ) > dim(X), then V has a nowhere

vanishing section.
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Question. So, what happens when rank(P ) = n =

dim(A)? Note that tangent bundle over real two sphere

does not have nowhere vanishing section.

In topology, there is an obstruction theory ([MiS]) avail-

able to deal with similar quetions for vector bundles over

smooth compact manifolds.

A search for such an Obstruction theory in Algebra be-

gan with the work of Mohan Kumar and Murthy ([MK2,

MKM, Mu1]) on vector bundles over affine algebras over

algebraically closed fields. The final theorem is the fol-

lowing.

Theorem 3.2 (Murthy) Suppose A is reduced affine

algebra of dimension n over an algebraically closed field

k. Suppose F nK0(A) had no (n− 1)!−torsion. Let P be

a projective A−module of rank n. Then

P ≈ Q ⊕ A ⇐⇒ Cn(P ) = 0

where Cn(P ) denotes the top Chern class of P.
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But, for projective A−modules P with rank(P ) =

dim(A) = n, vaninshing of the top Chern class Cn(P ) =

0, is not a sufficient condition for for existance of nowhere

vanishing section. The tangent bundle over real

two sphere is an example.

At this point, M. V. Nori introduced the Euler Class

Group program ([MS, BS1] around 1989). For an smooth

affine variety X = Spec(A) of dimension n ≥ 2, he gave

a definition of Euler class group E(X) and he defined a

Euler class e(P ) ∈ E(X) of vector bundles P of rank n

over X with trivial determinant. He conjectured that

e(P ) = 0 ⇐⇒ P = Q ⊕ A.

I did some work on this program of Nori ([Ma1, MS,

MV]) and S. M. Bhatwadekar and Raja Sridharan ([BS1])

settled the conjecture affirmatively.
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4 Main Definitions

For a commutative noetherian ring A of dimension n ≥ 2

and a line bundle L on Spec(A) a more general definition

of relative Euler class group E(A, L) and relative weak

Euler class group E0(A, L) was given by Bhatwadekar

and Sridharan [BS2].

Definition 4.1 Let A be a noetherian commutative ring

with dim A = n and L be line bundle. Write F =

L ⊕ An−1.

1. For an ideal I of height n, two surjective homo-

morphisms ω1, ω2 : F/IF ³ I/I2 are said to be

equivalent if ω1σ = ω2 for some automorphism σ ∈

SL(F/IF ). An equivalence class of surjective homo-

morphisms ω : F/IF → I/I2 will be called a

local L−orientation.

F/IF
SL(F/IF )

//

ω2 $$ $$HH
HH

HH
HH

H
F/IF

ω1zzzzvv
vv

vv
vv

v

I/I2
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2. Let

G(A, L) = Z < {(N, ω) : N primary, ht(N) = n} >

be the free abelian group generated by the set of all

pairs (N, ω) (resp. by the set of all ideals N) where

N is a primary ideal of height n and ω is a local

L−orientation of N. Similarly, let

G0(A) = Z < {(N) : N primary, ht(N) = n} > .

3. Let J be an ideal of height n and

ω : F/IF ³ J/J2

be a local L−orientation of J and

J = N1 ∩ N2 ∩ · · · ∩ Nk

an irredundant primary decomposition of J. Then

(J, ω) :=

r∑

i=1

(Ni, ωi) ∈ G(A, L)

denotes the cycle determined by (J, ω). Also use

(J) :=

r∑

i=1

(Ni) ∈ G0(A).
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4. A local L−orientation ω : F/IF ³ I/I2 of an ideal

I of height n is said to be a global L−orientation,

if ω lifts to a surjection Θ : F ³ I.

F
Θ // //

²²

I

²²

F/IF ω // // I/I2

5. Let

H(A, L) = Subgroup({(J, ω) : it is GLOBAL}) ⊆ G(A, L)

and

H0(A, L) = Subgroup({(J) : it is GLOBAL}) ⊆ G0(L).

6. Define

E(A, L) :=
G(A, L)

H(A, L)
and E0(A, L) :=

G0(A)

H0(A, L)
.

The group E(A, L) is called the Euler class group

of A (relative to L) and E0(A, L) is called the weak

Euler class group of A (relative to L).
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7. Now we assume that Q ⊆ A. Given a projective

A−module P with rank(P ) = n and an isomor-

phism (orientation) χ : L
∼
→ ∧nP, we define euler

class e(P, χ) as follows: Let

f : P // // I

be a surjective homomorphism, where I is an ideal

of height n. Now suppose γ : F/IF → P/IP is an

isomorphism such that (∧nγ) = χ where ”overline”

denotes ”modulo I”. Let ω = fγ.

P
f

// //

²²²²

I

²²²²

P/IP
f

// // I/I2

F/IF

ω
:: ::vvvvvvvvv

γ o

OO

Define the Euler class of (P, χ) as

e(P, χ) = (I, ω) ∈ E(A, L).

Also define weak Euler class of P as

e0(P ) = (I) ∈ E0(A, L).
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The final result on vanishing conjecture of Nori is the

following, due to Bhatwadekar and Raja Sridharan ([BS2]).

Theorem 4.2 ([BS2]) Let A be a noetherian commu-

tative ring of dimension n ≥ 2, with Q ⊆ A, and L be

a line bundle on Spec(A). Let P be an A−module of

rank n and determinant L. Let χ : L
∼
→ ∧nP be an

orientation. Then

e(P, χ) = 0 ⇐⇒ P = Q ⊕ A

for some A−module Q.

Bhatwadekar and Raja Sridharan ([BS2]) also proved:

Theorem 4.3 ([BS2]) Let A be a noetherian commu-

tative ring of dimension n ≥ 2, with Q ⊆ A, and P be

a projective A−module of rank n and det(P ) = L.

Suppose J is an ideal of height n and

ω : (L ⊕ An−1)/J(L ⊕ An−1)³ J/J2

be a local L−orientation of J. Let χ : L
∼
→ ∧nP be

an isomorphism and e(P, χ) = (J, ω) . Then there is a
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surjective map Θ : P ³ J, such that Θ and χ induces

ω.

Following is also an useful theorem from [BS2].

Theorem 4.4 ([BS2]) Let X = Spec(A) be a smooth

affine variety of dimension n ≥ 2 over R. Then the can-

nonical map

Φ : E0(A, L) → CH0(X)

is an isomorphism. In fact, we have the commutative

diagram:

E0(A, A) ∼ //

∼

''NNNNNNNNNNN
E0(A, L)

∼wwppppppppppp

CH0(A)

.

All maps here are well defined isomorphisms.
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5 On Real Smooth affine Varieties

Recall, for tangent bundle T of the real two sphere S2,

the top Chern class C2(T ) = 0, but T does not

have a nowhere vanishing section. Still, Bhat-

wadekar and Raja Sridharan posed and initiated an in-

vestigation the following question in [BS4].

Question. Let X = Spec(A) be a smooth affine va-

riety of dimension n ≥ 2 over R (the field of real

numbers) and P a projective A-module of rank n.

When does Cn(P ) = 0 =⇒ P ' A ⊕ Q?

They proved ([BS4]), if n is odd and KA ' A '

∧n(P ) then the vanishing of the top Chern class Cn(P )

is sufficient to conclude that P ' A ⊕ Q, where KA =

∧n(ΩA/R) denotes the canonical module of A.

This question was settled in complete generality ([BDM])

as follows.
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Theorem 5.1 Let X = Spec(A) be a smooth affine va-

riety of dimension n ≥ 2 over the field R of real numbers.

Let K denote the canonical module ∧n(ΩA/R). Let P be

a projective A-module of rank n and let ∧n(P ) = L. As-

sume that Cn(P ) = 0 in CH0(X). Then P ' A ⊕ Q in

the following cases:

1. X(R) has no compact connected component.

2. For every compact connected component C of X(R),

LC 6' KC where KC and LC denote restriction of

(induced) line bundles on X(R) to C.

3. n is odd.

Moreover, if n is even and L is a rank 1 projective

A-module such that there exists a compact connected

component C of X(R) with the property that LC ' KC ,

then there exists a projective A-module P of rank n such

that P ⊕ A ' L ⊕ An−1 ⊕ A (hence Cn(P ) = 0) but P

does not have a free summand of rank 1.
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Note that the last part says that apart from the possi-

ble nonvanishing of its top Chern class, further topologin-

cal obstruction exists, for an algebraic vector bundle of

top rank over X to split off a trivial subbundle of rank 1.

The main thrust of our proof in brief consists in show-

ing that for a projective A-module P of rank n, Cn(P ) =

0 implies that its Euler class e(P, χ) vanishes for some

orientation χ.

To do this, we need the structure theorem for Euler

class groups.
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6 Structure Theorem

Theorem 6.1 Let X = Spec(A) be a smooth affine

variety of dimension n ≥ 2 over the field R of real num-

bers and let K = ∧n(ΩA/R) be the canonical module

of A. Let L be a projective A-module of rank 1. Let

C1, · · · , Cr, Cr+1, · · · , Ct be the compact connected com-

ponents of X(R) in the Euclidean topology. Let KCi
and

LCi
denote restriction of (induced) line bundles on X(R)

to Ci. Assume that

LCi
' KCi

for 1 ≤ i ≤ r

and

LCi
6' KCi

for r + 1 ≤ i ≤ t.

Then,

E(R(X), L) = Zr ⊕ (Z/(2))t−r.
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Proof of the Main Theorem 5.1: Let L = det(P ).

Fix an orientation χ : L
∼
→ ∧nP. Let e(P, χ) ∈ E(A, L)

be the euler class.

We have the following commutative diagram of exact

sequences:

0

²²

0

²²

K1
∼ //

²²

K2

²²

0 // EC(L)

o ϕ
²²

// E(A, L)

Θ
²²²²

// E(R(X), L) //

²²²²

0

0 // CH(C) // CH0(A) // CH0(R(X)) // 0

From the sructure theorem above and the knowledge

of the group CH0(R(X)), due to Colliot-Thélène and

Schiderer ([CT-S]), it follows that

K2 ' Zr.

Case 1 : X(R) has no compact connected com-

ponent: In this case E(R(X), L) = 0 and so Θ :

E(A, L) → CH0(A) is an isomorphism. Since Cn(P ) =

0, we have e(P, χ) = 0. By theorem 4.2, P ≈ Q ⊕ A.
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Case 2 : For every compact connected compo-

nent C of X(R) we have LC 6' KC.:

So,r = 0 and E(R(X), L) = Z/(2)t. By a THEO-

REM of Colliot-Thélène and Schiderer Θ : E(A, L) →

CH0(A) is an isomorphism and theorem follows as above.

Case 3 : n odd: Let ∆ : P → P be multiplicatin

by −1. Then det(∆) = −1. Let α : P → I be a surjec-

tion where I is a (locally complete intersection) ideal of

height n. Write F = L ⊕ An−1. Using an isomorphism

γ : F/IF
∼
→ P/IP, we get a ω : F/IF → I/I2 so that

e(P, χ) = (I, ω) ∈ E(A, L).

Again α∆ will induce −ω : F/IF → I/I2 and hence

e(P, χ) = (I,−ω) ∈ E(A, L).

Therefore

2e(P, χ) = (I, ω) + (I,−ω).
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Also recall, E0(A, L) ≈ CH0(A). Since Cn(P ) =

cycle(I) = 0, we have class [I ] = 0 ∈ E0(A, L). There-

fore

2e(P, χ) = (I, ω) + (I,−ω) = 0 ∈ E(A, L).

Also, e(P, χ) ∈ K1 the kernel of Θ. The serious part of

the proof (4.29) is K1 is torsion free. Therefore e(P, χ) =

0 and theorem follows.
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Case 4: n even and for some compact compo-

nent LC ' KC: It is not a news that ΨL : E0(A, L) '

CH0(X). Also ker(Θ) is free abelian group of rank at

least one. So,

0 → ker(Θ) → E(A, L) → E0(A, L) → 0

is exact.

From definition of E0(A, L) it follows that ker(Θ) is

generated by elements of the type (J, ω) where J is an

ideal of height n and is image of F = L ⊕ An−1.

Since ker(Θ) 6= 0, we pick a generator (I, ω) 6= 0 ∈

ker(Θ) such that F maps onto I.

Let α : F → I be a surjective map and ω0 : F/IF →

I/I2 be the induced orientation.

We can find f such that the diagram

F/IF ω //

f
²²

I/I2

F/IF
ω0 // I/I2

commutes. Note that det(f ) = ū has to be a unit (check

mod maximal ideals and use height). So, ω = ūω0 and
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ūv̄ = 1. Let M = ker(α), and we have the exact se-

quence:

0 → M → F
α
→ I → 0.

We can consider this exact sequence as an element of

z ∈ Ext(I, M). Then vz is given by the diagram

0 // M //

v
²²

F
α //

g
²²

I // 0

0 // M // P
β

// I // 0

Therefore P is projective and [P ] = [F ]. Also

e(P, χ) = (I, ω) 6= 0

for some orientation χ : L
∼
→ ∧nP.
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