
EULER CYCLES

SATYA MANDAL

I will talk on the following three papers:

(1) A Riemann-Roch Theorem ([DM1]),
(2) Euler Class Construction ([DM2])
(3) Torsion Euler Cycle ([BDM])

In a series of papers that N. Mohan Kumar and
M.P. Murthy ([MK2], [Mu1], [MKM]) wrote, the fi-
nal theorem was the following.

Theorem 0.1. Suppose A is reduced affine al-
gebra of dimension n over an algebraically closed
field k. Suppose F nK0(A) had no (n−1)!−torsion.
Let P be a projective A−module of rank n. Then
P ≈ Q ⊕ A if and only if the top Chern class
Cn(P ) = 0.

This was the reason why Euler Class group was
introduced by Nori as an obstruction group for pro-
jective modules to split off a free direct summand.
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1. Main Definitions

First we define oriented projective module over noe-
therian affine schemes X = spec(A).

Definition 1.1. Let A be a noetherian commuta-
tive ring and L be a line bundle on X = Spec(A).
An L−oriented projective A−module of rank r is
a pair (P, χ) where P is a projective A−module
rank r and χ : L

∼
→ ∧rP is an isomorphism. Such

an isomorphism χ will be called an L−orientation
of P.

The original definition of Euler class group for smooth
affine algebras was given by Nori [MS], [BS1] (around
1989).
For a commutative noetherian ring A of dimension

n ≥ 2 and a line bundle L on Spec(A) the definition
of relative Euler class group E(A,L) was given by
Bhatwadekar and Sridharan [BS2].
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Definition 1.2. Let A be a noetherian commuta-
tive (Cohen-Macaulay) ring with dimA = n and
L be line bundle. Write F = L⊕ An−1.

(1) For an ideal I of height n, two surjective
homomorphisms ω1, ω2 : F/IF → I/I2 are
said to be equivalent if ω1σ = ω2 for some
automorphism σ ∈ SL(F/IF ). An equiva-
lence class of surjective homomorphisms ω :
F/IF → I/I2 will be called a
local L−orientation.

F/IF
SL(F/IF )

//

ω2 ## ##HH
HH

HH
HH

H
F/IF

ω1{{{{vv
vv

vv
vv

v

I/I2

(2) A local L−orientation ω : F/IF → I/I2 of
an ideal I of height n is said to be a global
Euler F−orientation, if ω lifts to a sur-
jection Θ : F → I.

F
Θ // //

²²

I

²²

F/IF
ω // // I/I2

(3) Let G(A,L) (resp. G0(A)) be the free abelian
group generated by the set of all pairs (N,ω)
(resp. by the set of all ideals N) where N is
a primary ideal of height n and ω is a local
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L−orientation of N. Elements ofG(A,L) will
be called Euler L−cycles.

(4) Let J be an ideal of height n and ω : F/IF →
J/J2 be a local L−orientation of J. Let

J = N1 ∩N2 ∩ · · · ∩Nk

be an irredundant primary decomposition of
J. Then ω induces local F−orientations ωi :
F/NiF → Ni/N

2
i for i = 1, . . . , k. We use

the notation

(J, ω) :=

r
∑

i=1

(Ni, ωi)

in G(A,L). We say that (J, ω) is the Euler
F−cycle determined by (J, ω).
Also use

(J) :=

r
∑

i=1

(Ni)

in G0(A).
(5) Let H(A,L) (resp. H0(A,L)) be the sub-
group of G(A,L) (resp. of G0(A)) generated
by the set of all pairs (J, ω) (resp. by (J))
where ω is a global Euler L−orientation.

(6) Define

E(A,L) :=
G(A,L)

H(A,L)
and E0(A,L) :=

G0(A)

H0(A,L)
.

The group E(A,L) is called the Euler class
group of A (relative to L) and E0(A,L) is
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called the weak Euler class group of A
(relative to L).

(7) Notation: The image of an Euler L−cycle
(J, ω) ∈ G(A,L) in E(A,L) will be denoted
by the same notation (J, ω) and also be called
an Euler L−cycle. It will be clear from the
context, whether we mean in G(A,L) or in
E(A,L). Similar notations and terminologies
will be use for elements in G0(A) or E0(A,L).

(8) Let χ0 : L ≈ ∧nF, be the obvious isomor-
phism. This isomorphism χ0 will be called
the standard orientation of F.
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(9) Now we assume that Q ⊆ A. Let (P, χ) be an
L−oriented projective module over A with
rank(P ) = n. So det(P ) = L. Let

f : P → I

be a surjective homomorphism, where I is
an ideal of height n.
Define the weak Euler class of P as

e0(P ) = (I) ∈ E0(A,L).

Now suppose γ : F/IF → P/IP is an
isomorphism such that (∧nγ)χ0 = χ where
”overline” denotes ”modulo I”. Let ω = fγ.

P
f

// //

²²

I

²²

P/IP
f

// // I/I2

F/IF

ω ;; ;;vvvvvvvvv

γ
OO

Define the Euler class of (P, χ) as

e(P, χ) = (I, ω) ∈ E(A,L).



EULER CYCLES 7

2. Some Perspective

As I said, original definitions of Euler class groups
and Euler classes were given by Nori. Nori told me
about this program in his condo in Chicago in the
summer of 1989. I am sure he told the same to Raja
Sridharan and M. P. Murthy around the same time.
Nobody clapped and there was no thumping of the
desks. We worked diligently.
Euler class theory has matured. I am looking for
some perspective. I have been asking how does this
theory and the program compares with other exist-
ing programs that are able to draw a great deal of
attention dew to the strength of publicity and money.
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3. Some Background

Nori gave two conjectures. First one is called the
homotopy conjecture and second one is called the
vanishing conjecture. We will not state them. All
these conjectures were eventually proved, at least
when Q is in the ring.
In summer of 1989, before I left Chicago, I made the
first break through and proved the following monic
polynomial theorem on Homotopy conjecture.

Theorem 3.1. ([Ma1]) Let R = A[t] be a polyno-
mial ring over a noetherian commutative ring A
and let J be an ideal in R that contains a monic
polynomial. Write J0 = {f (0) : f ∈ J}.
Suppose P is a projective A-module of rank r ≥
dimR/J + 2 and suppose

s : P → J0

is a surjective map. Now suppose that

ϕ : P [t]→ J/J2

is a surjective map such that ϕ(0) ≡ s modulo J 20 .
Then there is a surjective map ψ : P [t] → J
such that ψ lifts ϕ and ψ(0) = s.

With P.L.N. Varma, I proved a local case of the
homotopy theorem ([MV]). I also wrote my joint
paper with Raja Sridharan ([MS]). Final theorem on
vanishing conjecture is due to Raja Sridharan and S.
M. Bhatwadekar ([BS2]).
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The final result on vanishing conjecture is the fol-
lowing ([BS2]).

Theorem 3.2. ([BS2]) Let A be a noetherian com-
mutative ring of dimension n ≥ 2, with Q ⊆ A,
and L be a line bundle on Spec(A). Let (P, χ)
be an L−oriented projective A−module. Then
e(P, χ) = 0 ∈ E(A,L) if and only if P has a
unimodular element.

Bhatwadekar and Raja Sridharan ([BS2]) also proved
the following theorem.

Theorem 3.3. ([BS2]) Lat A be a noetherian com-
mutative ring of dimension n ≥ 2, with Q ⊆ A,
and L be a rank one projective A−module. Let J
be an ideal of height n. Write F = L⊕An−1. Sup-
pose ω : F/JF → J/J2 be a local L−orientation
of J.
Assume that (J, ω) = 0 ∈ E(A,L). Then ω lifts
to a surjective map Θ : F → J.
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4. Problems

The above theorem inspired us to pose the follow-
ing problem.

Problem 4.1. Let A be a Cohen-Macaulay ring
of dimension n ≥ 2 and J be local complete inter-
section ideal of height n. Suppose (J, ω) is a tor-
sion element in E(A,A) for some local A−orientation
ω of J.
Is J set theoretic complete intersection?
We can ask similar questions for cycles (J) in
the weak Euler class group E0(A,A) and for zero
cycle(J) ∈ CHn(A) in the Chow group.

These questions will be answered affimatively.

Another open problem we want to consider in this
talk is the following.

Problem 4.2. ([BS1, Mu2]) Let A be a smooth
affine algebra over a field k of dimension n ≥
2. Let CHn(A) denote the Chow group of zero
cycles. Is the natural map E0(A,A

n)→ CHn(A)
an isomorphism?

Because of the result of Murthy [Mu1], this problem
has an affirmative answer when the ground field k is
algebraically closed.
The problem has an affirmative answer for smooth
affine varieties over R ([BS2]).
We will be able to answer these questions affima-
tively, upto torsion.
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5. Boratynski’s Construction

Motivation also came from the following construc-
tion of Boratynski ([B]).

Theorem 5.1. ([B]) Let R be any commutative
ring. Let I be an ideal in R and

I = (f1, . . . , fn−1, fn) + I
2.

Write
J = (f1, . . . , fn−1) + I

(n−1)!.

Then J is image of a projective R−module P with
rank(P ) = n.

This theorem of Boratynski served as a central mo-
tivation for some of the developments in this theory
and of some techniques. We introduce the following
notation.

Notation 5.1. Let I be an ideal of a ring A such
that I/I2 is generated by k elements. Suppose
I = (f1, · · · , fk) + I

2. For integers r ≥ 2, let

I (r) := (f1, . . . , fk−1) + I
r.

Note that I (r) depends on first k − 1 generators
of I/I2 but not the last generator fk.
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We quote the following from [Ma3].

Theorem 5.2. ([Ma3]) Let A and I be as above.
Further, assume that A is Cohen-Macaulay.

(1) Then I is a local complete intersection ideal
of height k if and only if so is I (r) for any
integer r ≥ 2.

(2) If I is local complete intersection of height
n then

[A/Ir] = r[A/I ]

in K0(A).

We investigated whether we can prove similar re-
sults for cycles in Euler class groups E(A,A) or weak
Euler class groups E0(A,A).We had good luck with
cycles in E0(A,A).
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6. Euler Cycle Calculus

With Mrinal Das ([DM1]) we prove the following.

Lemma 6.1. ([DM1]) Let A be a noetherian com-
mutative ring of dimension n and L be line bundle
on Spec(A). Let J be a local complete intersection
ideal of height n. Let J = (f1, . . . , fn) + J2 and
J (r) = (f1, . . . , fn−1)+J

r. If f1, . . . , fn is a regular
sequence, then the class

(J (r)) = r(J)

in E0(A,L).

Proof. I am including this proof to give a flavor
of arguments involved. The proof is given by usual
moving techniques.
We will write fn = g1.We can find a local complete
intersection ideal K1 of height n such that

J ∩K1 = (f1, . . . , fn−1, g1)

and J +K1 = A.
By induction, we can find, for i = 1, . . . , r, ele-
ments gi ∈ J and local complete intersection ideals
Ki of height n such that

(1) J = (f1, f2, . . . , fn−1, gi) + J
2.

(2) J ∩Ki = (f1, f2, . . . , fn−1, gi).
(3) J +Ki = A and Ki +Kj = A, for i 6= j.
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It follows that

J (r) ∩K1 . . . ∩Kr = (f1, f2, . . . , fr−1, g)

where
g = g1g2 · · · gr.

Therefore,

(J (r)) = −
∑

(Ki) = r(J)

in E0(A,A).
Since the natural map

ηL : E0(A,A)→ E0(A,L)

is an isomorphism, the theorem follows.

We were not as lucky with Euler cycles, because
lifting generators of I/I2 and Ki/K

2
i could not be

done in a compatible manner.
But, with Bhatwadekar and Mrinal Das we can
prove the following.

Proposition 6.1. ([BDM]) Suppose A is a noe-
therian commutative ring of dimension n. Let I
be a local complete intersection ideal of height n.
Assume I/I2 has a square generator, namely, I =
(f1, . . . , fn−1, f

2
n) + I

2 for some f1, . . . , fn−1, fn ∈
A. Let ωI be any local A−orientation of I. For
positive integers r, define

I (r) = (f1, . . . , fn−1) + I
r.

Then,
r(I, ωI) = (I

(r), ωr)
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in E(A,A) for some A−orientation ωr on Ir. Also
the right hand side is independent of ωr.

Having a square generator f 2n helps. For I
(2) we

can prove the following.

Proposition 6.2. ([BDM]) Suppose A is a noe-
therian commutative ring of dimension n. Let I
be a local complete intersection ideal of height n
and I = (f1, . . . , fn−1, fn) + I

2 for some f1, . . . , fn
in A. Let ωI denote the local A−orientation of I
defined by f1, . . . , fn−1, fn. Define

I (2) = (f1, . . . , fn−1) + I
2.

Then, for any local A−orientation ω0 on I
(2)

(I (2), ω0) = (I, ω) + (I,−ω)

in E(A,A).
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7. Equivalence of cycles

All these follows from the following equivalance
theoem ([BDM]). Mrinal was of great help.

Proposition 7.1. ([DM1]) Suppose A is a com-
mutative ring of dimension n and L is a line bun-
dle on Spec(A). Let J be a local complete intersec-
tion ideal of height n and J = (f1, . . . , fn−1, f

2
n) +

J2. Then, for any two local L−orientations ω1, ω2 :
F/JF → J/J2 we have

(J, ω1) = (J, ω2) ∈ E(A,L).

This one works because an unimodular row (a, b, c2)
is completeable to an invertible matrix.

8. Unimodular Element Theorem

Following improves the corresponding results of Mo-
han Kumar ([MK2]) and Mandal ([Ma3]).

Theorem 8.1. ([DM1]) Suppose A is a noether-
ian commutative ring of dimension n with Q ⊆ A.
Let f1, . . . , fn−1, fn be a regular sequence Suppose
P is a projective A−module of rank n and there
is a surjective homomorphism

ϕ : P → (f1, . . . , fn−1, f
2
n).

Then P ≈ Q ⊕ A for some projective A−module
Q.

Proof. Note that (I, ω) = 0 in E(A,L) for any
local L−oriantation ω. So, Euler class e(P, χ) = 0.
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9. Time for Riemann-Roch Theorem

Further inspiration came from the following version
of Boratynski’s theorem, due to Murthy ([Mu1]).

Theorem 9.1. ([Mu1]) Let A be a noetherian
commutative ring and I ⊂ A be a local com-
plete intersection ideal of height r. Suppose I =
(f1, · · · , fr) + I

2 and J = (f1, · · · , fr−1) + I
(r−1)!.

Assume f1, . . . , fr is a regular sequence. Then
there is a projective A-module P of rank r and
a surjective homomorphism P → J , such that
[P ]− [Ar] = −[A/I ] ∈ K0(A).

Notation 9.1. Let A be a noetherian commutative
ring of dimension n and X = Spec(A).

(1) F 1K0(A) will denote the kernel of the rank map
ε : K0(A)→ Z.

(2) Define

F 2K0(A) = {x ∈ F
1K0(A) : det(x) = A}.

(3) Define

F nK0(A) = {[A/I ] ∈ K0(A) : I is a LCI ideal of height n}.

It was established in ([Ma3]) that F nK0(A)
is a subgroup of K0(A).



18 SATYA MANDAL

9.1. Two Homomorphisms. With Mrinal Das
we define two maps/homomorphisms.

Definition 9.1. ([DM1]) Let A be a ring of di-
mension n with Q ⊆ A Let L be a line bundle on
Spec(A). Write F = L⊕ An−1.
Define a map ΦL : F

2K0(A)→ E0(A,L) as

ΦL(x) = e0(P )

the weakEuler class of P, where x ∈ F 2K0(A) is
written as x = [P ]−[F ] for some projectiveA−module
P with rank(P ) = n and det(P ) = L.
ΦL is well defined because the weak Euler class
respects stable isomorphism.
We will be more concerned with the restriction map

ϕL : F
nK0(A)→ E0(A,L)

of ΦL to F
nK0(A). Both the maps ΦL and ϕL will be

called the weak Euler class map. ϕL is a group
homomorphism, while ΦL is not a group homomor-
phism.

We also define a map in the opposite direction.

Definition 9.2. ([DM1]) Let A be a Cohen-Macaulay
ring of dimension n. Define

ψL : E0(A,L)→ F nK0(A)

as the natural map that sends the class (J) of
an ideal J to the class [A/J ]. Note that J is local
complete intersection ideal and [A/J ] ∈ F nK0(A).
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10. Riemann-Roch Theorem

First, we prove the following commutativity theo-
rem ([DM1]).

Theorem 10.1. ([DM1]) Let A be a commutative
noetherian ring of dimension n and L be a line
bundle on Spec(A). Assume that A contains the
field of rationals Q. Then the diagram

F nK0(A)
ϕA //

ϕL

''OOOOOOOOOOO
E0(A,A

n)

ηL
²²

E0(A,F )

commutes where

ηL : E0(A,A)→ E0(A,L)

is the natural isomorphism.

With Mrinal Das, we prove the following theorem
([DM1]), in analogy to the Riemann-Roch theorem,
without denominator, for the Chern class map.

Theorem 10.2. ([DM1]) Let A be a Cohen-Macaulay
ring of dimension n with Q ⊆ A. Then,

ϕLψL = −(n− 1)!IdE0(A,L)

and

ψLϕL = −(n− 1)!IdFnK0(A).
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11. Weak Euler class group and the

Chow Group

For a noetherian commutative ring A of dimension
n, CHn(A) will denote the Chow group of zero cy-
cles. There is a natural map

Θ : E0(A,A)→ CHn(A)

that sends the weak Euler cycles (J) to the Chow
cycle of J.
Following theorem follows from the Riemann-Roch
theorems.

Theorem 11.1. ([DM1]) Let A be a regular ring
with Q ⊆ A and dimA = n. Let Θ : E0(A,A) →
CHn(A) be the natural homomorphism. Then

Q⊗ E0(A,A) ≈ Q⊗ CHn(A).

This theorem answers Problem 4.2,, affirmatively,
upto torsion
Proof. The proof follows from the following com-
mutative diagram:

F nK0(A)
ϕA //

C

''OOOOOOOOOOO
E0(A,A

n)

(−1)nΘ
²²

CHn(A)

where C the top Chern class map.
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12. Torsion Cycles

With Bhatwadekar and Das ([BDM]) we answer
the first problem 4.1 as follows.

Theorem 12.1. Let A be a Cohen-Macaulay ring
of dimension n ≥ 2 with Q ⊆ A. Let J be an ideal
of height n such that µ(J/J 2) = n.
Then J is set theoretically generated by n ele-
ments in all the following situations:

(1) [A/J ] ∈ K0(A) is torsion then J,
(2) the weak Euler cycle (J) ∈ E0(A,A) is tor-
sion,

(3) A is a regular ring and the Chow cycle [J ] ∈
CHn(A) is torsion.

Proof. Because of the above diagram, it is enough
to prove (2). Write J = (f1, . . . , fn−1, fn)+J

2 where
f1, . . . , fn−1, fn is a regualr sequence. As before,
write

J (r) = (f1, . . . , fn−1) + J
r.

Note J and J (r) have same radical and

r(J) = (J (r)).

Replacing (J) by J (r) we can assume (J) = 0.
Look at the map ϕ : E(A,A) → E0(A,A). Let

ω : (A/J)n → J/J2 be any local orientation. Since
ϕ(J, ω) = 0, by ([BS2]) we have

(J (2), ω∗) = (J, ω) + (J,−ω) = 0.

Therefore J (2) is complete intersection.
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13. Euler Class Construction

The heading is the title of the second paper [DM2]
with Mirnal Das. Our main theorem in ths paper is
the following construction.

Theorem 13.1. Let A be a commutative noether-
ian ring of dimension n. Let L be a line bundle
on Spec(A) and F = An−1 ⊕ L. Let J be a local
complete intersection ideal of height n with J/J 2

free and J = (f1, . . . , fn−1, fn) + J
2. Let

I = (f1, . . . , fn−1) + J
(n−1)!.

Let (I, ω) be any L−cycle in E(A,L).
Then, there is an L−oriented projective A−module
(P, χ) of rank n such that

(1) [P ]− [F ] = −[A/J ] in K0(A),
(2) P maps onto I,
(3) the Euler class e(P, χ) = (I, ω) ∈ E(A,F ),
if Q ⊆ A.

As simple construction of projective modules, with-
out (3), with a given determinant L, it improves
Murthy’s theorem.
Recall the following diagram for a comparison:

F nK0(A)
ϕA //

ϕL

''OOOOOOOOOOO
E0(A,A

n)

ηL
²²

E0(A,F )

Euler classes do not respect stable isomorphism.
So, there is no maps to work with.
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