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We start with the main question we deal with:

Question 0.1. SupposeA is a noetherian commutative ring,

with dimA = d and P is projective A-module, with

rank(P ) = n. Suppose

J is an ideal and ω : P �
J

J2
is a surjective map.

The question is, whether or when can we lift ω to a

surjective map f : P � J?

Admittedly, things work out better if A is regular.
Such pairs (J, ω) would be referred to as P -local ori-

entations. Set of all such P -local orientations will be
denoted by LO(P ).
Prelude: This question was first considered in [MMu]. When A is a smooth
affine algebra over an algebraically closed field k, and rank(P ) = dimA,
an obstruction class ζ(P, I) ∈ CHd(X) was written down [MMu]. It was
established that there is a surjective map P � J if and only if ζ(P, J) = 0
and there is a surjective map P � J

J2 .
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1 Introduction to the Homotopy Program

Subsequent to that [MMu], based on some Homotopy Relations, Madhav V.
Nori (around 1990) laid out a set of ideas to deal with the questions of such
obstructions in broader contexts, like when X is a regular or a noetherian
affine scheme. These were communicated verbally to some in a very informal
and open ended manner. Because of the nature of these communications,
not everyone heard the same thing and these ideas took the form of some
folklores. As a result, versions of this set of ideas available (or not) in the
literature (e. g. [M3, MV, MS, BS1, BS2, BS3, BK]) have been up to the
interpretations and adaptations by the recipients of these communications,
much to their credit, and the stated hypotheses may differ. Because of the
openendedness and broadness of these ideas, they appeared to be more like a
research Program (the Homotopy Program) to this author, which is how we
would refer to the same. Sometimes it may even be difficult to say whether
certain part of the program was actually explicitly articulated by Nori or
were part of the adaptations by others. There is no systematic exposition of
this program available in the literature and certain aspects failed to receive
deserved traction. Nori never classified these as conjectures or otherwise.
However, some results followed too quickly [M3], to treat them as anything
less than conjectures.

Analogy to the Obstruction Theory for vector bundles ([St]) was the main
backdrop behind this program and central to this Program was the Homotopy
conjecture of Nori. The following is the statement of the Homotopy Conjec-
ture from [M3], which would most likely be an adaptation by the respective
author.
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Conjecture 1.1 (Homotopy Conjecture). Suppose A is a commutative
noetherian ring, with dimA = d and P is a projective A-module.
Let R = A[T ] be a polynomial ring and I ⊆ A[T ] be an ideal.
Write P [T ] = P ⊗ A[T ]. Write I(0) = {f(0) : f ∈ I}. Let

ϕ :
P [T ]

IP [T ]
�

I

I2
and f0 : P � I(0) be surjective homomorphisms.

1. Substituting T = 0, we obtain ϕ(0) : P
I(0)P � I(0)

I(0)2 ,

2. Also, f0 ⊗ A
I(0) : P

I(0)P � I(0)
I(0)2 .

We assume ϕ(0) = f0⊗ A
I(0) . Now, the question is: Whether there

is surjective map

f : P [T ] � I 3 f(0) = f0 and f ⊗ A[T ]

I
= ϕ.

Remark: I stated it in an open-ended manner. It would be
safe to assume A is regular or smooth. However, it fails even
when A is regular [BS1, Example 3.15]. Often, it is assumed that
I(0), I are locally complete intervention ideals (the Transversal-
ity Condition). Existing results (see [M3, BS1, BK]) indicate that
with suitable hypotheses the regularity and/or transversality hy-
potheses may be spared. The best result, up to date, is due to
Bhatwadekar and Keshari [BK]. All the main results assume the
following condition:

2rank(P ) ≥ d+ 3
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Nori informed me that there is very little topological obstructions,
meaning the topological analogue is true, without such bounds.
Why Homotopy Conjecture?

1. Recall, our main object of study are (J, ω) ∈ LO(P ), where I
is an ideal of A and ω : P � J

J2 is a surjective map. Question
is whether ω lifts to a surjective map P � J .

2. In the statement of the Homotopy Conjecture
(I(0), ϕ(0)), (I(1), ϕ(1)) ∈ LO(P ).

(a) Hypothesis of the of the conjecture says (I(0), ϕ(0))

is "GOOD".

(b) Conclusion of the conjecture would imply I(1), ϕ(1))

is "GOOD".

3. The hypothesis also suggest a relation, as follows: for (J0, ω0), (J1, ω1) ∈
LO(P ) define (J0, ω0) is equivalent to (J1, ω1), if there is a
surjective map ϕ : P [T ]

IP [T ] �
I
I2 such that

(I(0), ϕ(0)) = (J0, ω0) and (I(1), ϕ(1)) = (J1, ω1).

This need not be an equivalence relation. However, it defines
a chain Equivalence relation.

Let π0 (LO(P )) denote the set of all equivalence classes.

4. Also, notice (I, ϕ) ∈ LO(P [T ]). So, π0 (LO(P )) fits in to
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the following push forward diagram:

LO(P [T ]) T=0 //

T=1
��

LO(P )

��

LO(P ) // π0 (LO(P ))

in Sets. (1)

5. Try to think, what all these means when P = An is free.

6. TheHomotopy Obstruction set π0 (LO(P )) has other descrip-
tions, which we proceed to discuss. Fir.st, we have the fol-
lowing lemma that follows from Nakayama’s lemma

Lemma 1.2. Suppose, A is a commutative noetherian ring and P
is a projective A-module. Let (J, ω) ∈ LO(P ). By priorities of
projective modules, ω lifts as follows:

P

ω �� ��

f // J

����
J
J2

f need not be surjective.

So, J = f(P ) + I2. By Nakayama’s Lemma

∃ s ∈ I 3 (1−s)I ⊆ f(P ). So ∃ p ∈ P 3 f(p) = s(1− s).

In particular, I = (f(P ), s) and

with J = (f(P ), 1− s) f(P ) = I ∩ J, I + J = A.
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2 Homotopy Obstructions

Now, we proceed to give other descriptions of π0(LO(P )). Alway, keep track
of what all these means when P = An is free.

Definition 2.1. Let A be a noetherian commutative ring, X = Spec (A) and
P be a projective A-module. By a local P -orientation, we mean a pair (I, ω)

where I is an ideal of A and ω : P � I
I2

is a surjective homomorphism, which
is identified with surjective homomorphism P

IP
� I

I2
, induced by ω. Denote

LO(P ) = {(I, ω) : (I, ω) is a local P orientation}
Q(P ) = {(f, s) ∈ P ∗ ⊕ A : s(1− s) ∈ f(P )}
Q̃(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕ A : f(p) + s(s− 1) = 0}
Q̃′(P ) = {(f, p, z) ∈ P ∗ ⊕ P ⊕ A : f(p) + z2 = 1}

In addition to the pushout diagram (1), we have three more pushout diagrams
in Sets:

Q(P [T ]) T=0 //

T=1
��

Q(P )

��
Q(P ) // π0 (Q(P ))

Q̃(P [T ]) T=0 //

T=1
��

Q̃(P )

��

Q̃(P ) // π0

(
Q̃(P )

)
Q̃′(P [T ]) T=0 //

T=1
��

Q̃′(P )

��

Q̃′(P ) // π0

(
Q̃′(P )

)
(2)

By completing the square s(s− 1) =
(
s− 1

2

)2 − 1
4
, we obtain a bijection

κ : Q̃(P )
∼−→ Q̃′(P ) sending (f, p, s) 7→ (2f, 2p, 2s− 1) (3)

So, for all practical purposes, these two are same.

There is a commutative diagram of set theoretic maps, as denoted:

Q̃(P ) ν // //

η
����

Q(P )

η′zzzz
LO(P )

where, for (f, p, s) ∈ Q̃(P ), ν(f, p, s) = (f, s) (4)
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and η′(f, s) = η(f, p, s) = (I, ω), where I = f(P ) +As and ω : P � I
I2

is the
homomorphism is induced by f . These maps η, η′, ν are surjective.

We have four descriptions of the same.

Lemma 2.2. Use the notations, as above (2.1). The bijections κ, ν, η, η′,
induces a bijections

π0

(
Q̃′(P )

)
π0

(
Q̃(P )

)
∼
κoo ν

∼
//

η o
��

π0 (Q(P ))

η′
∼

xx
π0 (LO(P ))

Corollary 2.3. Interpret, all these when P = An is free.

Before we proceed, we introduce the following notions.

Notations 2.4. Suppose A is a commutative noetherian ring, with dimA =

d and P is a projective A-module, with rank(P ) = n. Denote ζ = ν−1χ :

LO(P ) −→ π0

(
Q̃(P )

)
and ζ0 : Q̃(P ) −→ π0

(
Q̃(P )

)
. So, we have a com-

mutative diagram:
Q̃(P )

ζ0

%%
η

��
LO(P )

ζ
// π0

(
Q̃(P )

)
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2.1 Off the Topic Comment

Four pushout diagrams (1, 2.1) is special case of a much general concept, as
follows. Recall, a pre-sheaf is a contravariant functor.

Definition 2.5. Given a pre-sheaf F : SchA → Sets, and a

scheme X ∈ SchA, define π0(F)(X) by the pushout

F(X × A1)T=0 //

T=1
��

F(X)

��

F(X) // π0(F)(X)

in Sets (5)

if X = Spec (A), the diagram would looklike

F(A[T ]) T=0 //

T=1
��

F(A)

��

F(A) // π0(F)(A)

in Sets (6)

For example, let S be a fixed scheme (think of the

sphere). Then

FS(X) = HomSch (X,S) is a pre− sheaf.

In fact, one can include more variables and define higher
homotopy sheaves πn (F(X)).
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2.2 Homotopy Triviality

In this subsection, we establish that, for (I, ωI) ∈ LO(P ), under some ad-
ditional conditions, that the triviality of ζ(I, ωI) implies that ωI lifts to a
surjective map P � I. First, we fix a base point, as follows.

Definition 2.6. Suppose A is a commutative noetherian ring, with dimA =

d and P is a projective A-module, with rank(P ) = n.

1. If P = P0 ⊕ A, let f0 ∈ P ∗ be the projection map P0 ⊕ A� A.

2. If P does not split, let f0 ∈ P ∗ be such that, height(f0(P )) = n. Recall,
existence of such a map f0 is assured by basic element theory.

We fix v0 := (f0, 0, 0) ∈ Q̃(P ) and treat is it as the base point of Q̃(P ). In
fact, ζ0(v0) = ζ0(0, 0, 0) ∈ π0

(
Q̃(P )

)
(see my paper).

The following is, in deed, reinterpretation of [BK, Theorem 4.13].

Theorem 2.7. Suppose A is an essentially smooth ring

over an infinite perfect field k, with 1/2 ∈ k and dimA =

d. Let P be a projective A-module with rank(P ) = n,

with 2n ≥ d + 3. Let v0 = (f0, 0, 0) ∈ Q̃(P ) be a

base point, as in (2.6). Suppose (I, ωI) ∈ LO(P ), with

height(I) ≥ n. Then, ωI lifts to a surjective map

P � I if and only if ζ(I, ωI) = ζ0(v0).

Proof. Extra hypotheses on A and k are needed, be-
cause we use [BK, Theorem 4.13].
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2.3 Homotopy and the Equivalence Relation

The following Corollary would be of some use for our future discussions.

Theorem 2.8. Let A be a regular ring over a field k, with 1/2 ∈ k. Let P
be a projective A-module, with rank(P ) = n ≥ 2, and (Q(P ), q) = H(P ) ⊥
A. Let u,v ∈ Q̃′(P ) such that [u] = [v] ∈ π0

(
Q̃′(P )

)
. Then, there is a

homotopy H(T ) ∈ Q̃′(P [T ]) such that H(0) = u and H(1) = v. Equivalently,
for u,v ∈ Q̃′(P ) if ζ0(u) = ζ0(v) ∈ π0

(
Q̃(P )

)
, then there is a homotopy

H(T ) ∈ Q̃(A[T ]) such that H(0) = u and H(1) = v.

In other words, the homotopy relation on Q̃(P ) is
actually an equivalence relation.
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3 The Involution and the Monoid Structure

Proposition 3.1. Suppose A is a commutative ring and P is a projective
A-module, with rank(P ) = n.

For (f, p, s) ∈ Q̃(P ), define Γ(f, p, s) = (f, p, 1− s)

Then,

Γ : Q̃(P )
∼−→ Q̃(P ), is a bijection, such that Γ2 = 1.

We say Γ is an involution on on Q̃(P ).

We record the following obvious lemma.

Lemma 3.2. Suppose A is a commutative ring and P is a projective A-
module, with rank(P ) = n and Γ : Q̃(P )

∼−→ Q̃(P ) is the involution. Let
v = (f, p, s) ∈ Q̃(P ) and denote

η(v) = (I, ωI), η(Γ(v)) = (J, ωJ) where I = (f(P ), s), J = (f(P ), 1−s)

Then,

1. I ∩ J = f(P ).

2. For H(T ) ∈ Q̃(P [T ]), we have Γ(H(T ))T=t = Γ(H(t)).

3. Therefore, ∀ v,w ∈ Q2n(S) ζ0(v) = ζ0(w)⇐⇒ ζ0(Γ(v)) = ζ0(Γ(w)).

In deed, Γ factors through an involution on π0(Q2n)(A), as follows.

Corollary 3.3. Suppose A is a commutative ring and P is a projective A-
module, with rank(P ) = n. Then, the involution Γ : Q̃(P )

∼−→ Q̃(P ) induces
a bijective map Γ̃ : π0

(
Q̃(P )

)
∼−→ π0

(
Q̃(P )

)
, such that Γ̃2 = 1 and ζ0Γ =

Γ̃ζ0. We say Γ̃ is an involution. (The notation Γ̃ will also be among our
standard notations throughout this article.)
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Proof. First, consider the map ζ0Γ : Q̃(P ) −→ π0

(
Q̃(P )

)
. For, H(T ) ∈

Q̃(P [T ]), we have ζ0Γ(H(0)) = ζ0Γ(H(1)). Therefore, ζ0Γ is homotopy
invariant. Hence, it induces the a well defined map Γ̃ : π0

(
Q̃(P )

)
∼−→

π0

(
Q̃(P )

)
. Clearly, Γ̃2 = 1 and Γ̃ is a bijection. The proof is complete.

3.1 The Monoid Structure on π0

(
Q̃(P )

)
The following would be a natural way to define addition,

when conditions are met.

Definition 3.4. Let A be a commutative noetherian

ring and P be a projective A-module, with rank(P ) =

n ≥ 2. Let (I, ωI), (J, ωJ) ∈ LO(P ) be such that

I + J = A. Let ω := ωI ? ωJ : P � IJ
(IJ)2

be the

unique surjective map induced by ωI , ωJ . We define a

pseudo-sum

(I, ωI)+̂(J, ωJ) := ζ(IJ, ω) ∈ π0

(
Q̃(P )

)
= π0 (LO(P )) .

Also, for u,v ∈ Q̃(P ) with η(u) = (I, ωI) and η(v) =

(J, ωJ), if I + J = A, define pseudo-sum

u+̂v := η(u)+̂η(v) ∈ π0

(
Q̃(P )

)
.
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This, in deed, extends to an addition on π0

(
Q̃(P )

)
,

when A is a regular ring over a field k, with 1/2 ∈ k.

Now we define a pseudo-difference in the spirit of

(3.4).

Definition 3.5. Let A be a commutative noetherian

ring and P be a projective A-module, with rank(P ) =

n ≥ 2. Suppose (K,ωK), (I, ωI) ∈ LO(P ). Assume

∃ u = (f, p, s) ∈ Q̃(P ) 3 η(u) = (I, ωI), η(Γ(u)) = (J, ωJ),

and J + K = A. So, f (P ) = I∩J I+J = K+J = A.

Define the pseudo-difference

(K,ωK)−̂(I, ωI) := (K,ωK)+̂(J, ωJ) ∈ π0

(
Q̃(P )

)
.

We remark: (1) Under additional conditions, we prove

that the pseudo-difference does not depend on the choice

of J . (2) By Moving Lemma (Basic Element Theory),

such choices u = (f, p, s) ∈ Q̃(P ) would be available if

2n ≥ dimA + 1 and height(K) ≥ n.

13



Extend pseudo-difference to π0

(
Q̃(P )

)
×π0

(
Q̃(P )

)
:

Theorem 3.6. Suppose A is a regular ring over a field

k, with 1/2 ∈ k and dimA = d. Let P be a projective

A-module with rank(P ) = n. Assume 2n ≥ d + 2.

Then, there is a well defined set theoretic map

Θ : π0

(
Q̃(P )

)
× π0

(
Q̃(P )

)
−→ π0

(
Q̃(P )

)
such that, for (K,ωK) ∈ LO(P ), with height(K) ≥ n,

and (I, ωI) ∈ LO(P ),

Θ (ζ(K,ωK), ζ(I, ωI)) = (K,ωK)−̂(I, ωI). (7)

Remark: For x ∈ π0

(
Q̃(P )

)
, by Moving Lemma, we

can write x = ζ(K,ωK) such that height(K) ≥ n.
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Finally, define the binary structure on π0

(
Q̃(P )

)
.

Definition 3.7. Suppose A is a regular ring over a field

k, with 1/2 ∈ k and dimA = d. Let P be a projective

A-module with rank(P ) = n. Assume 2n ≥ d + 2.

Then, for x, y ∈ π0

(
Q̃(P )

)
, define

x + y := Θ
(
x, Γ̃(y)

)
This operation is well defined because so are Θ and Γ̃.
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The following is a final statement on the binary struc-

ture on π0

(
Q̃(P )

)
, which is not necessarily a group.

Theorem 3.8. Suppose A is a regular ring over a field

k, with 1/2 ∈ k and dimA = d. Let P be a projective

A-module with rank(P ) = n. Assume 2n ≥ d + 2.

Then, the addition operation on π0

(
Q̃(P )

)
, defined in

(3.7) has the following properties. Let e0 = ζ0(0, 0, 0)

and e1 = ζ0(0, 0, 1).

1. The addition in π0

(
Q̃(P )

)
is commutative and as-

sociative. Further, e1 acts as the additive identity

in π0

(
Q̃(P )

)
. In other words, π0

(
Q̃(P )

)
has a

structure of an abelian monoid.

2. For any x ∈ π0

(
Q̃(P )

)
, x + Γ̃(x) = e0.

3. If e0 = e1, then π0

(
Q̃(P )

)
is an abelian groups

under this addition. (In particular, if P = Q ⊕ A,
then π0

(
Q̃(P )

)
is an abelian groups.)
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4 The Euler Class Groups

Suppose A is a noetherian commutative ring with dimA = d and P is a
projective A-module, with rank(P ) = n. In this section, in analogy to the
definition of the Euler class groups En(A) in [BS2, MY], we define a group
E(P ), which would also be called the Euler class group of P .

(In the sequel, for a set S, the free abelian group generated by S will be
denoted by Z(S)).

Definition 4.1. Suppose A is a noetherian commutative ring, with dimA =

d and P is a projective A-module, with rank(P ) = n ≥ 0. Denote,{
LOn(P ) = {(I, ωI) ∈ LO(P ) : height(I) ≥ n},
LOn

c (P ) = {(I, ωI) ∈ LO(P ) : V (I) is connected and height(I) ≥ n}.

Let (I, ωI) ∈ LOn(P ).

1. We can write I = ∩mi=1Ii, where V (Ii) ⊆ Spec (A) are connected (that
means A

Ii
has not nontrivial idempotent).

2. Now, ωI induce a ωIi : P
IiP

� Ii
I2i
. Hence (Ii, ωIi) ∈ LOn

c (P ), for i =

1, . . . ,m.

3. Denote

ε(I, ωI) =
m∑
i=1

(Ii, ωIi) ∈ Z (LOn
c (P ))

A local orientation (I, ωI) ∈ LO(P ) would be called global, if ωI lifts
to a surjective map P � I.

4. Let R(P ) denote the subgroup of Z (LOc(P )), generated by the set

{ε(I, ωI) : (I, ωI) ∈ LOn(P ) and, is global} .

(Note η(0, 0, 1) is global, only if P = Q⊕ A.)
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Define

E(P ) =
Z (LOn

c (P ))

R(P )
to be called the Euler class group of P.

Images of ε(I, ωI) in E(P ) with be denoted by ε(I, ωI). So, we have a
commutative diagram

LOn
c (P )

%%

� _

��
LOn(P )

ε
// // π0

(
Q̃(P )

) (8)

Subsequently, we assume P = Q ⊕ A. We define a homomorphism ρ :

E(P ) −→ π0

(
Q̃(P )

)
, as follows.

Definition 4.2. Suppose A is a regular ring over a field k, with 1/2 ∈ k and
dimA = d, and P = Q⊕A is a projective A-module with rank(P ) = n and
2n ≥ d + 2. Since π0

(
Q̃(P )

)
has a group structure, the diagonal map in

diagram (8) induce a homomorphism

Z (LOn
c (P )) −→ π0

(
Q̃(P )

)
Now suppose (I, ωI) ∈ LOn(P ) be global. Then, ε(I, ω) = e0 = e1, the

identity element. Therefore, ρ0 factors through a group homomorphism

ρ : E(P ) � π0

(
Q̃(P )

)
In fact, ρ is surjective.
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We comment on the question of injectivity of ρ.

Theorem 4.3. Suppose k is an infinite perfect field,

with 1/2 ∈ k and A is an essentially smooth ring over

k, with dimA = d. Suppose P is a projective A-module

with rank(P ) = n and 2n ≥ d+3. Assume P ∼= Q⊕A.
Then, the homomorphism ρ : E(P ) −→ π0

(
Q̃(P )

)
is

an isomorphism.

Proof. The extra hypothesis on A and k, is needed
because we are using [BK, Theorem 4.13].
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4.1 The Vanishing of Euler cycles

I borrowed the word "cycle", from the jargons of Chow

groups. An element x ∈ E(P ) of may be referred to as

an Euler cycle. If x = ε(I, ω), the x may be called the

cycle of (I, ω).

In [BS2], the Euler class groups En(A) was defined.

In fact, we got rid of some superfluous aspects in the

definition in [BS2]. Then, En(A) coincides with E(An),

as defined above. In this section, we extend the main

theorem [BS2, Theorem 4.2], for E(P ), as follows. We

will follow the arguments in the proof of [BS2, Theo-

rem 4.2], which mainly depends on the availability of

Subtraction and Addition Principles.
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The following is the version of Corollary 4.1.

Theorem 4.4. Suppose A is a commutative noetherian

ring with dimA = d and P is a projective A-module,

with rank(P ) = n. Assume 2n ≥ d+3 and P ∼= Q⊕A.
If A = R[X ] is a polynomial ring over a regular ring R,

over an infinite field k, assume 2n ≥ dimR[T ] + 2. Let

(J, ωJ) ∈ LOn(P ) and ε (J, ωJ) = 0 ∈ E(P ). Then, ωJ
lifts to a surjective map P � J .
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A The Motivic Approach

We assume A is a commutative ring containing a field k, with 1/2 ∈ k. In
some literature (e. g. [F, AF]), perhaps known as Motivic Approach, driven
by the desire to view the data in LO(An) = LO(A, n) in a functorial manner,
one writes{

Q2n(A) = {(s; f1, . . . , fn; g1, . . . , gn) ∈ A2n+1 :
∑n

i=1 figi + s(s− 1) = 0}
Q′2n(A) = {(s; f1, . . . , fn; g1, . . . , gn) ∈ A2n+1 :

∑n
i=1 figi + s2 = 1}

and the homotopy sets π0 (Q2n) (A), π0 (Q′2n) (A) were defined. It was pointed
out thatt there is a bijection Q2n(A)

∼−→ Q′2n(A), which induces a bijection
π0 (Q2n) (A)

∼−→ π0 (Q′2n) (A). So, we would comment only on Q′2n(A). Re-
call, the pref-sheaf (functoriality) structure of A 7→ Q′2n(A) was obtained
from bijection Q′2n(A) ∼= Hom (Spec (A) , Spec (B2n+1)), where B2n+1 =
k[X1,...,Xn;Y1,...,Yn,Z]

(
∑n

i=1XiYi+Z2−1)
.

By analogy, for our purpose, for a projective A-module P , we considered{
Q̃(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕ A : f(p) + s(s− 1) = 0} ,
Q̃′(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕ A : f(p) + s2 = 1} .

and define π0
(
Q̃(P )

)
, π0

(
Q̃′(P )

)
. As usual, a bijection Q̃(P )

∼−→ Q̃′(P ), is

obtained by completing the square s(s−1) =
(
s− 1

2

)2− 1
4
. It was established

(see Theorem ??) that there is a bijection π0 (LO(P ))
∼−→ π0

(
Q̃(P )

)
∼−→

π0

(
Q̃′(P )

)
. We clarify the pre-sheaf structure (functoriality) on Q̃′(P ) as

follows.

Suppose Q is a projective A-module and S(Q∗) =
⊕

i≥0 Si(Q
∗) denote

the symmetric algebra of Q∗. Let quad(Q) = {ϕ ∈ Hom(Q,Q∗) : ϕ∗ = ϕ}
denote the A-module of all the quadratic forms on Q. Given ϕ ∈ quad(Q),
let B(ϕ) :∈ Hom(Q ⊗ Q,A) ∼= Q∗ × Q∗ be the corresponding bilinear map.
In fact, this association ϕ 7→ B(ϕ) induces a bijection quad(Q)

∼−→ S2(Q
∗)

(see [Sw, § 2]). Consider the commutative diagram of bijections

Q
ev
∼
//

λ

∼

&&

Hom(Q∗, A)

o
��

Hom(S(Q∗), A)
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Fix x ∈ Q. For f, g ∈ Q∗, λ(x)(f) = f(x) and λ(x)(fg) = f(x)g(x). Let
"overline" denote the images of elements in Q∗ ⊗ Q∗ ∼= Hom(Q ⊗ Q,A)
in S2(Q

∗) Given bilinear map β : Q ⊗ Q −→ A, β =
∑
fi ⊗ gi for some

fi, gi ∈ Q∗. So, λ(x)(β) =
∑
fi(x)gi(x) = β(x, x).

Fix quadratic form ϕ : Q −→ Q∗ and B(ϕ) : Q ⊗ Q −→ A be the
corresponding bilinear map. More precisely, B(ϕ)(x, y) = ϕ(x)(y). As usual,
define q : Q −→ A by q(x) = B(x, x). Then,

for x ∈ Q λ(x)(B(ϕ)) = B(ϕ)(x, x) = q(x).

For our purpose, we summarize the above, as follows.

Proposition A.1. Suppose A is a commutative noetherian ring, containing
a field k, with 1/2 ∈ k. Now, let (Q,ϕ) be a quadratic space, over A. Define

S(Q,ϕ) = {x ∈ Q : q(x) = 1}, B(Q,ϕ) =
S(Q∗)

(B(ϕ)− 1)

Then, there are bijections, as follows

S(Q,ϕ)
∼−→ Hom (B(Q,ϕ), A) = Hom (Spec (A) , Spec (B(Q,ϕ))) .

Proof. Follows from above discussions.

Remark A.2. Suppose A0 is a commutative noetherian ring, containing a
field k, with 1/2 ∈ k and (Q0, ϕ0) is a quadratic space over A0. There is
pre-sheaf

SchA0
−→ Sets sending Spec (A) 7→ S ((Q0, ϕ0)⊗ A)

In fact, there are bijections, as follows

S ((Q0, ϕ0)⊗ A)
∼−→ Hom (B ((Q0, ϕ0)⊗ A) , A)

∼−→ Hom (B(Q0, ϕ0), A) .
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Corollary A.3. Suppose A is a commutative noetherian ring, containing a
field k, with 1/2 ∈ k. Let P be a projective A-module, H(P ) = P ∗ ⊕ P be
the hyperbolic space and (Q,ϕ) = H(P ) ⊥ A, and H(P ) = P ∗ ⊕ P . Let
B : Q ⊗ Q −→ A be the bilinear form of (Q,ϕ). Let A (P ) = S(P⊕P ∗⊕A)

(B−1) .
Then, there are bijections, as follows

Q̃(P )
∼−→ Hom (A (P ), A) = Hom (Spec (A) , Spec (A (P ))) .

Proof. Follows from (A.1). This completes the proof. .

B From Intro Section

In this article, we mainly investigate various aspects of the Homotopy Pro-
gram that concerns the structure of the obstruction set π0 (LO(P )). Un-
der some additional hypotheses, we prove that π0 (LO(P )) has a natural
structure of Monoid, which is a groups structure, when P ∼= Q ⊕ A. We
give a definition of the Euler Class groups E(P ), which coincides with the
same in [BS2] when P = An and, likewise that in [MY]. Then, we compare
π0 (LO(P )) with the Euler class group E(P ).

Now on, we assume that A contains a field k, with 1/2 ∈ k. The results
in this article are extension of the results in [MM, AF], where the case of
free modules P = An was dealt with. When P = An is a free A-module,
LO(P ) was denoted by LO(A, n) in [MM]. In some literature [F, AF],
driven by the desire to view the same in a functorial manner, one writes
Q2n(A) = {(s; f1, . . . , fn; g1, . . . , gn) ∈ A2n+1 :

∑n
i=1 figi + s(s− 1) = 0} and

the homotopy obstruction set π0 (Q2n) (A) was defined. It was established
in [MM] that π0 (LO(A, n)) ∼= π0 (Q2n) (A). By analogy or due to the same
desire, for a projective A-module P , we consider{

Q̃(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕ A : f(p) + s(s− 1) = 0} ,
Q̃′(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕ A : f(p) + s2 = 1} .

and define homotopy obstruction sets π0
(
Q̃(P )

)
, π0

(
Q̃′(P )

)
. Note that

there is a bijection Q̃(P )
∼−→ Q̃′(P ). We establish (see Theorem ??) that
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there is a bijection π0 (LO(P ))
∼−→ π0

(
Q̃(P )

)
. Recall, there is a bijection

Q2n(A) ∼= Hom (Spec (A) , Spec (A2n+1)), where A2n+1 = k[X1,...,Xn;Y1,...,Yn,Z]

(
∑n

i=1XiYi+Z(Z−1))
.

By analogy, define A (P ) = S(P⊕P ∗⊕A)
(B−1) , where S(P ⊕ P ∗ ⊕ A) denotes the

symmetric algebra and B ∈ S2(P ⊕ P ∗ ⊕ A) is the bilinear form of the
quadratic space P ∗ ⊕ P ⊕ A. In Section A, an interpretation of Q̃′(P ),
analogous to that of Q′2n(A), given by establishing a bijection Q̃′(P )

∼−→
Hom(A (P ), A).

Among the main results in this article, is the following reinterpretation
(see (2.7)) of [BK, Theorem 4.13] on the Homotopy Conjecture 1.1, in terms
of vanishing of obstruction classes.

Theorem B.1. Suppose A is an essentially smooth ring over an infinite
filed k, with 1/2 ∈ k and dimA = d. Let P be a projective A-module with
rank(P ) = n, with 2n ≥ d + 3. Let v0 = (f0, 0, 0) ∈ Q̃(P ) be a base point,
as in (2.6). Suppose (I, ωI) ∈ LO(P ), with height(I) ≥ n. Then, ωI lifts to
a surjective map P � I if and only if ζ(I, ωI) = ζ0(v0).

In Section 2.3, we develop some machinery regarding Homotopy. In par-
ticular, we establish the homotopy relation on Q̃(P ) is, in deed, an equiva-
lence relation ( see (2.8), (??)), when A is a regular ring over a filed k, with
1/2 ∈ k.

In Section 3, we consider the involution Q̃(P ) −→ Q̃(P ) sending (f, p, s) 7→
(f, p, 1−s). For any commutative noetherian rings A, this involution induces
an involution on π0

(
Q̃(P )

)
, which serves as a key tool, for the subsequent

definition of the Monoid structure on π0 (LO(P ))) = π0

(
Q̃(P )

)
). In Sec-

tion 3.1, we establish that, when A is a regular ring over a filed k, with
1/2 ∈ k, with 2rank(P ) ≥ d + 2, π0

(
Q̃(P )

)
) has the structure of a nat-

ural Monoid (see Theorem refabelianGroup). There are two distinguished
elements in Q̃(P ), namely e0 = ζ0(0, 0, 0), e1 = ζ0(0, 0, 1) ∈ π0

(
Q̃(P )

)
. It

turns out that, if e0 = e1 then the Monoid structure on π0
(
Q̃(P )

)
becomes

an abelian group, where e0 = e1 would be the identity. It is easy to see that,
if P = Q⊕ A for some projective A-module Q, then e0 = e1.
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It had always remained conjectural , as a part of the Homotopy Program,
that the Homotopy obstruction sets π0

(
Q̃(P )

)
would have a group structure,

when rank(P ) is hight enough. However, when P = An is free, an obstruction
group En(P ) was explicitly given by Nori, when n = dimA. Subsequently,
this definition was extended in [BS2]. This was further extended in [MY],
when P = L⊕An−1, where L is rank one projective A-module. These groups
came to be known as Euler class groups. In Section 4, we extend these and
give a natural definition of an Euler class groups E(P ), for any projective
A-module P over a commutative noetherian ring A. It is helpful that certain
superfluous aspect of the definition in [BS2] was pointed out in [MM]. in
analogy the the results in [BS2, MY], we prove the following:

Theorem B.2. Suppose A is a commutative noetherian ring with dimA = d

and P is a projective A-module, with rank(P ) = n. Assume 2n ≥ d+ 3 and
P ∼= Q ⊕ A. If A = R[X] is a polynomial ring over a regular ring R, over
an infinite field k, assume 2n ≥ dimR[T ] + 2. Let (J, ωJ) ∈ LOn(P ) and
ε (J, ωJ) = 0 ∈ E(P ). Then, ωJ lifts to a surjective map P � J .

When π0
(
Q̃(P )

)
is a group, one can naturally define a group homomor-

phism E(P ) −→ π0

(
Q̃(P )

)
. Consequently, we prove the following.

Theorem B.3. Suppose k is a field, with 1/2 ∈ k and dimA = d. Suppose
P = Q ⊕ A is a projective A-module with rank(P ) = n and 2n ≥ d + 2.
Then, there is a surjective group homomorphism ρ : E(P ) � π0

(
Q̃(P )

)
.

In particular, if A is an essentially smooth ring over an infinite perfect
field k and 2n ≥ d + 3 then, the homomorphism ρ : E(P ) −→ π0

(
Q̃(P )

)
is

an isomorphism. (We make further comments when π0
(
Q̃(P )

)
fails to be a

group or when P fails to have a unimodular element.)

C From Homo Obs Section

Before we proceed, we introduce some notations.
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Notations C.1. Throughout, k will denote a field, with 1/2 ∈ k. Also A
will denote a commutative ring with dimA = d. For A-modules M,N , we
denote M [T ] := M ⊗ A[T ] and M∗ = Hom(M,A). For f ∈ Hom(M,N),
denote f [T ] := f ⊗ 1 ∈ Hom(M [T ], N [T ]). Homomorphisms f : M −→ I

I2

would be identified with the induced maps M
IM
−→ I

I2
.

For surjective homomorphisms ω1 : M � I1
I21
, ω2 : M � I2

I22
, where I1, I2

be two ideals, with I1 + I2 = A, ω1 ? ω2 : M � I1I2
(I1I2)2

will denote the unique
surjective map induced by ω1, ω2.

For a projective A-module P , Q(P ) = (Q(P ), q) will denote the quadratic
space H(P ) ⊥ A, where H(P ) = P ∗⊕P is the hyperbolic space. So, P ∗⊕P⊕
A id the underlying projective module of Q(P ) and, for (f, p, s) ∈ P ∗⊕P⊕A,
q(f, p, s) = f(p) + s2.

The category of schemes over Spec (A) will be donated by SchA. The
category of sets will be denoted by Sets. Given a pre-sheaf F : SchA → Sets,
and a scheme X ∈ SchA, define π0(F)(X) by the pushout

F(X × A1) T=0 //

T=1
��

F(X)

��
F(X) // π0(F)(X)

in Sets (9)

For an affine scheme X = Spec (B) ∈ SchA and a pre-sheaf F , as above,
we write F(A) := F(Spec (B)) and π0(F)(B) := π0(F)(Spec (B)). (For
our purpose, we could restrict ourselves to affine schemes Spec (A) and its
polynomial extensions Spec (A[T ]).)

D Bibekananda Lemma

We also record the following obvious observation.
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Lemma D.1. Suppose A is a commutative noetherian ring with dimA = d

and P = P0 ⊕A is a projecttive A-module. Denote p0 = (0, 1) ∈ P0 ⊕A and
f0 : P � A be the projection map P0 ⊕ A −→ A. Let u0 = (f0, 0, 0) ∈ Q̃(P )

be the base point and u1 = (0, 0, 1). Then, ζ0(u0) = ζ0(u1) ∈ π0
(
Q̃(P )

)
Proof. Write H(T ) = ((1− T )f0, Tp0, T ). Then, (1−T )f0(Tp0) = T (1−T ).
So, H(T ) ∈ Q̃(P [T ]). We have H(0) = u0 and H(1) = u1. The proof is
complete.
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